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Quantization of 2+1 gravity for genus 2
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(Received 10 December 1993)

In previous papers are established and discussed the algebra of observables for 2+1 gravity at both
the classical and quantum levels, and gave a systematic discussion of the reduction of the expected
number of independent observables to 6g —6 (g ) 1). In this paper the algebra of observables
for the case g = 2 is reduced to a very simple form. A Hilbert space of state vectors is de6ned
and its representations are discussed using a deformation of the Euler I' function. The deformation
parameter 8 depends on the cosmological and Planck's constants.

PACS number(s): 04.60.Kz

I. INTRODUCTION

In a previous paper [1] we presented the abstract quan-
tum commutator algebra for 2+1 gravity with cosmolog-
ical constant A:

[a s, a, i) = [a, , a%i] = o,

stant [2]. The algebra (1.1)—(1.4) is invariant under the
quantum action of the mapping class group on traces [1];
the lower component yields an independent algebra of
traces b;z identical to (1.1)—(1.4) but with K -+ 1/K.
Moreover [a;~, bsi] = 0 Vi,j,k, l. Here we discuss only
the upper component. The homotopy group vri(Z) of
the surface is de6ned by generators t;, i = 1, . . . , 2g + 2
and presentation:

[a/a, ak ] =
I

——1
~

(a l —agsa l),iK (1 2) t] t2 t2g+2 1
y tgt3 ' ' ' t2g+g —1)

t2t4 ~ t2g+2 ——1 .

( 11
[a~s ~ a&i] =

I
1 ——

I (a~ &
—aj &aj &) (1 3)

(
[a~s, ai~] =

I

K ——
1 (a,i, as .—aslaj ) )

K&
(1.4)

where K = (4a —ih)/(4a + ih) = e', A = 1/3a is
the cosmological constant and h is Planck's constant.
In (1.1)—(1.4) m, j, I, k are four anticlockwise points of
Fig. 1. m, j, l, k = 1, . . . , n, and the time-independent
quantum operators ais correspond to the classical n(n—
1)/2 gauge-invariant trace elements

The first relator in (1.6) implies that Z is closed. The
operators in (1.1)—(1.4) are ordered with the convention
that t(a;z) is increasing from left to right where t(a;~) =
[(i —1)(2n —2 —i)/2+ j —1.

The case of g = 1, the torus, has been studied ex-
tensively, both in this approach [2], and others [3,4]. In
this approach the algebra (1.1)—(1.4) is isomorphic to the
quantum algebra of SU(2)s when A P 0 [2]. For A = 0
is has been shown [5] that the metric approach to deter-
mining the complex modulus of the torus [3] is classically
equivalent to the classical limit of (1.1)—(1.4) for n = 4.
There are similar, recent results for A g 0 [6].

For g ) 1 there are very few results apart &om those

1
a;, = a,; = —Tr[S(t;t,+, t, ,)], S E SL(2, R) .

S
For n = 2g+ 2 the map 8: xi(Z): SL(2, R) is defined
by the integrated anti —de Sitter connection in the initial
data Riemann surface Z of genus g, and refers to one of
the two spinor components, say the upper component, of
the spinor group SL(2, R) SL(2, R) of the gauge group
SO(2,2) of 2+1 gravity with a negative cosmological con- P,

P,
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FIG. 1. 2g + 2 polygon representing a Riemann surface of
genus g.
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of Moncrief [3] who studies the second-order, metric for-
malism and achieves very general results. In this pa-
per the case g = 2 of the algebra (1.1)—(1.4) is studied
in detail. In [7] we determined for n & 6, i.e. , g & 2
a set of p linearly independent central elements A
m = 1, . . . , p where n = 2p or n = 2p+ 1, and analyzed
the trace identities which follow &om the presentation
(1.5) of the homotopy group xq(Z) and a set of rank
identities. These identities together generate a two-sided
ideal. For generic g there are precisely 6y —6 indepen-
dent elements which satisfy the algebra (1.1)—(1.4). The
reduction from n(n —1)/2 = (g + 1)(2g + 1) to 6g —6
results from the use of the above-mentioned identities [7]
but is highly nonunique. For g = 2 the reduction from
the original 15 elements a;~ to six independent elements
has been the subject of a long study. Here this reduction
is implemented explicitly in terms of a set of six indepen-
dent operators which satisfy a particularly simple alge-
bra. There are many such possibilities but a convincing
set is described as follows:

We group the vertices of the hexagon into three sectors,
see Fig. 2, the vertices labeled 2b and 2b —1 belonging
to the sector b, b = 1, . . . , 3. Accordingly, we de6ne the
sector function s[2b] = s[2b —1] = b. A convenient choice
for the six independent elements is given by three com-
muting angles y p

———pg, b = kl, . . . , +3 de6ned by

Sector 3

Sec

13

M g ——Mg, a, b= +1, . . . , +3,

M. , =1, M, sMs, , ——M
(1 8)

The M ~ act as raising and lowering operators on the y:

FIG. 2. Hexagon representing a g = 2 Riemann surface,
with three commuting sectors.

cos pg
a~& —i,~a = ~, b= 1, . . . , 3,

cos—
2

and commuting operators M g with the properties

(1.7) My s~ = (&p y 8)My (1.9)

It can be checked that the 12 remaining a;g are repre-
sented by

= K+1
n, m=kX

sm(S + Fa+~pb+&pc
) sm(S + ~pa+ pb vc

)
exp( —i[~(k+ 1)V - + ~jr»]) ' .' . ' ' Mna mb,

sin ny sin mph'

(1.10)

where we set k = k mod 2 + 3 and a = s(k), b = s(j), a, b, c in cyclical order. Under these conditions the a;g satisfy
the trace and rank identities. These identities can all be derived from

aq3a34+ K G33G]4 K 'agsa34 —(1+K —K ')uw ——0

by repeated commutation with the elements of the algebra (1.1)—(1.4). For example two useful identities are

K a&3a4s + Ka34azs —(1 + K )a34a43 —K u&4a3s + (1 —K + K )a35 —0, (1.12)

(1 + K )[(1+K)a34assa43 —Ka34a4s —assa33] + K aq4a33 —K aq3a43 —Ka34aqs + K(1+ K —K)ass ——0,

and their images under cyclical permutations of the indices 1, . . . , 6. These identities are certainly not all independent.
By heavy use of computer algebra we were able to show that (1.11) and (1.12) and their images follow &om (1.7)—(1.10).

The relations (1.8) and (1.9) follow from the single sector factorization for all a, b = +1, . . . , +3:

Mg=M Mg ——Mg ——MgM (1.13)

M =M (1.14)

Mg y = ((p gg)Mg (1.15)

It is clear that (1.13)—(1.15) can be formally satisfied by setting M = exp( —8& ) and therefore M s = exp[—8(& +
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)], in turn (1.10) becomes

1 sin( s + ~v o+~vb+Pc
) sin( 8 + vu+~vs v c

)
ag = ) . . exp ( —i[n(k + 1)y + mj yg+ 8(np + mph)]),

2 cos( —) n,~=+1 sin ny~ sin mug

(1.16)

where we have used the Baker-Hausdorff formula [8]

( AB —BA )t
exp(A) exp(B) = exp

l

A + B +
l

= exp(AB —BA) exp(B) exp(A)
l 2

(1.17)

valid when AB —BA is a c number and M = exp( —i8p ). Note that, Rom (1.7) and (1.16), all of the 15 original a;~
are expressed in terms of the three angles y and their conjugate momenta p .

The treatment of (1.16) can be further simplified by noting that asi = U:-. A sU&-. where
kg

(1.18)

sin( s + tap~+rntpg+&p~
) sin( s + mrp~+na~g —&p~

)) . . exp[ —i8(np + mp )] .
2 cos(s) n, m=+1 sin %pa sin mph

A p is an operator which is a function of the sectors a, b only and is independent of the position of k, j within a, b. It
can alternatively be expressed as

cos pcA s = cos(8p ) cos(8ps) + coty coty' —
s sin(8p ) sin(8ps)

cos(2) siny sinys)
I'8)

i tan
l

—
l

[cot—ys cos(8p ) sin(8ps) + cot y cos(8ps) sin(8p )].
&2J

The discussion of the representations of (1.13)—(1.15)
is considerably simplified by the introduction of the de-
formed Euler gamma function I'(z, 8) (see Appendix for
the definition and a list of properties) which extends to
the complex domain the symbol:

sin ~
2

~ gs ~ ~ sjnp=1 2

In particular I'(n + 1,8) = [n]! and I'(z, 8) is a meromor-
phic analytic function of z with poles at z = e (27rr/8), ——
s, r & 0, and integer and zeros at z = s+ (2mr/8), s, r ) 1
and integer.

l~(z) I'~(z)d"
g7s

(2.1)

[y, ys] = 0, [y, ps] = i h g,

[p, ps] = 0, a, b, = 1, 2, 3; (2.2)

it follows by conjugation that

The weight function o(z) can be determined from the
Hermiticity of the a;i (1.7) as follows.

Let p = i(8/Bg ), a —= 1, 2, 3 satisfying the canon-
ical commutation relations (CCR)

II. REPRESENTATIONS
[y.' y~] = o [y.' p~l = 'b-~

[pt, p&t] = 0, a, b, = 1, 2, 3, (2.3)

The a;~ expressed by (1.7) are by definition all Hermi-
tian operators. We denote by P the generic eigenvalue of
the operator y and set P = (Pq, P2, Ps j, z = cos P, z =
(zq, zq, zs) where the z are real and restricted to a do-
main D & R . Let T with T = 1 be the antilinear

T
conjugacy operator @(z):@'(z). A measure o (z)dsz
with o(z) ) 0 and real turns H into a Hilbert space H
with the norm

but also that

y = Ty T, a2~2~ q
——Ta2~2~ qT, a = 1, 2, 3 . (2.4)

The Hermiticity relation between 0, Qt, namely,
(O', Q4) = (Qt@,4) implies (—is )t = —io. ~s, o.
But &

——,. & &&
whereby8 —1 8
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t' . 01 t'. . 8't . , 0
pt =

(
i —

(

=
(

i sing
~

=io o'sinPt
I 8 ~ j ( Bz~ j orz~

8 . . 1 8= io oT.sing T = iT—a o sing T = T—p p pT,
t9Z~ BZ~

(2.5)

where p(P) = Csin/i sin/2 singsa(z), C being a normalization constant, the operator p = p(pi, y2, ys) = p(Ip) is

now to be determined by extending (2.4) to all i, k as a;I, ——a,.& ——Ta;I,T
From (1.16)—(1.18) we obtain, by conjugation,

t
2cos(2)

exp (i8(npt + mpts))
sin 4 2 sin 4

sin A+a sin m p
(2.6)

We apply now (1.17) and reorder the operators in (2.6) by bringing the exponential factor to the right thus finding

1

2 cos(2)

gg n~'+~~, +pt . gg nest +~g, —p.'t nt ~t—
exp[i8(npt + mpts)]U:„'t

sin(n&pt + 8) sin(myst + 8)
b I~

(58 + n&p +rnrpq+y,
)

~ (58 + n~ +rn~q —~,
)1 U„: ~-. . .

)
p['8(np + mp

2cos(8) && sin np +8 sin my5+ 8
(2.7)

We define the maps

y, yb, y,
'" '; "y.+ n8, y5+ m8, y. , (2.8)

where as before n, m takes all values +1 and a, b, c are any permutation of 1,2,3. From a, I, ——a,.& ——Ta;I,T and by
comparing (2.7) with (1.16) we find the recursion relation in the eigenvalues P, z:

4 (na mb)0'(zi z2 zs ) 0'(zi
p z2 y zs ) 58 + + 58sin —+ n~. ~y + sin —+ n~. m~g —~c

4 2

(2.9)

A solution of (2.9) is then provided by

o (zi, z2, zs) = P(P)
1 q~ mipi + m2$2+ msps—-+ —+
4 8 28

m1mg ms ——+1
(2.10)

where q is arbitrary and integer and P(P) is invariant under (2.8), otherwise arbitrary, in (2.10) the product is carried
on all independent sign choices of ml, m2, m3.

By using (A7) we see that

E(P, 8, q + 1) = S(P)E(P, 8, q),

where

S(g) = 2 (2 sin 8)
~ ~

m1, m2, m3 ——kl

( 1 qvr mipi + m2$2+ msps5
sin vr ——+ —+

4 8 28

E($, 8, q) = 1 qvr miq~i + m24'2 + msgrr + +
28 1

m1, rn2, mq ——+1

(2.11)

Since S($) is invariant under (2.8) it can be absorbed into P(rp) hence the appearance of q does not signal any new
arbitrariness. It is, however, convenient in our discussion to have a solution which depends explicitly on q.

The function p(P) is periodic of period 2vr and odd in Pi, $2, Ps if we have [see (2.10) and (A7)]

p(A+ 2~, 42, 42) P(4i+ 2~, 02, 4.)
p(4'1 42 4'2) P(4'1 4'2 4'3)

~ 1 + ~m + P1+nagPg+na3$3
4 8 28 =1.

~ .-- ~ 1 (~-1)~, 4.+~.4.+~343
1 sinu 4

—
& + 28



50 QUANTIZATION OF 2+ 1 GRAVITY FOR GENUS 2 5129

This can be achieved by setting

2q —18= 2m, t is an integer,2t+ 1
(2.12)

and P(y) = 1.
We list here the basic properties of E(P, 8, q).
(1) E(P, 8, q) is even in each of the Pq, Pz, Ps.
(2) E(p, e, q) is periodic of period 2s in each of the

4i, 4z 4s.
(3) E(p, e, q) is real but not necessarily positive for

$3 all real. It follows by analytic continuation that
E(0' 8 q) = E(4, 8 q)'.

(4) E($,8, q) is real and positive if at least one of the
gq, Pq, Ps is imaginary and the others real. This follows
from the possibility of arranging (2.11) in pairs of conju-

I

gate factors.
In this case we may choose o(z) = E($,8, q). The dis-

cussion of the positivity of the function o (z) for arbitrary
z is rather involved. A particular solution is provided by
restricting all z to the hyperbolic domain z ) 1, i.e.,
all P pure imaginary. In this case all at,i from (1.7)
and (1.16) are represented by unbounded Hermitian op-
erators. This, and the inclusion of the other SL(2, R)
component, will be discussed elsewhere [9].

APPENDIX

Here we give the definition and a comprehensive list of
properties of the deformed Euler F function:

e l' " ( e &"-' I(.+",")
I'( 8)= . I'()

~2 sin s
~

" (2sn) I'(1 —z+ s") '

hm r(z, e) =1(z),

r(1,8) =1,
~ HssinI'(z+ 1,8) = I'(z, e) s, I'(n+ 1,8) = [n]!, n is an integer ) 0,
sln—

2

(A1)

(A2)

(A3)

(A4)

. e~-'~'
I'

~

z+ —,8
~

= 2sin(sz)
~

2sin —
~

I'(z, e), (A5)

r(z, e)r(1-z, e) = '." ',
8 sin xz

(Afi)

( ) ( 8) 2—2w/s

I'(z, 8)I'
~

——z, e
~

= s ~

2sin —
~

) csin 2' ( 2)
(A7)

2 ) 2 ( . 81''~
I'(, 8)I'~ 1+ ——,8

~

= —
~

2
'') HE

Setting 8' = 4s 2/8 we have the duality property

(ez, i ( . 8 i'~"-' ( . Hi'- 8
I'( 8) = I'I —8'

l l
2(2s' ) ( 2) ( 2) 2s'

(AS)

(A9)

Equation (A9) is meaningless in the limit 8 m 0 and therefore the standard Euler gamma function I'(z) has no dual
symmetry. From (A9) it follows that the function I'(z, a, b) = aI'[bz, (2sa/b)][2sin(sa/b)]s' is symmetrical, i.e.,
I'(z, a, b) = I'(z, b, a). Duality exchanges (A4) with (A5) and (A6) with (A7).
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