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Tunneling geometries: Analyticity, unitarity, and instantons in quantum cosmology
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We present the theory of tunneling geometries, which describes in the language of analytic
continuation the nucleation of the Lorentzian universe from the Euclidean spacetime. We reformulate
the underlying no-boundary wave function in the manifestly unitary representation of true physical
variables and calculate it in the one-loop approximation. For this purpose a special technique of
complex extremals is developed, which reduces the formalism of complex tunneling geometries to real
ones, and also the method of collective variables is applied, separating the macroscopic degrees of
freedom from the perturbative microscopic modes. The quantum distribution of Lorentzian universes
on the space of collective variables incorporates the probability conservation and boils down to the
partition function of quasi-de Sitter gravitational instantons weighted by their Euclidean efFective
action. The over-Planckian behavior of their distribution is determined by the anomalous scaling of
the theory, which serves as a criterion for the high-energy normalizability of the cosmological wave
function and the validity of the semiclassical expansion. It also provides a calculational scheme for
obtaining the quantum scale of in6ation which was recently shown to establish a sound link between
quantum cosmology, inSation theory, and particle physics in the model with a nonminimally coupled
in8aton field.

PACS number(s): 04.60.Ds, 04.62.+v, 98.80.Hw

I. INTRODUCTION

Quantum cosmology of the past decade developed es-
sentially in the &amework of the new paradigm —the
origin of the in6ationary universe &om the two conceptu-
ally similar quantum states: no-boundary [1,2] and tun-
neling [3,4]. Their invention was followed by a great up-
rise of interest in the Euclidean quantum gravity in con-
nection with the ideas of the third quantization and the
Coleman theory of the cosmological constant [5]. How-
ever, an extensive accumulation of applications in this
field (see the bibliography in Ref. [6]), did not raise the
scope of the gravitational tunneling beyond the semiclas-
sical level. In particular, such a problem as a genera-
tion of chaotic infiationary cosmologies [7] at a prefer-
able grand unified theory (GUT) scale of the effective
Hubble constant (necessary for observationally approved
applications of infiation theory) remained open, having
a negative solution in the tree-level approximation. An-
other important issue, the validity of the semiclassical
expansion, also remained negative, because neither no-
boundary nor tunneling wave functions are normalizable
in the tree-level approximation at over-Planckian energy
scales [8,9], and special assumptions are necessary to es-
tablish a Planckian "boundary" [10] to protect semiclas-
sical inBation physics &om the nonperturbative realm of
quantum gravity.

The key to the solution of these problems, not resort-
ing to the conjectures on a hypothetical over-Planckian
phase of the theory, may consist in the semiclassical h ex-

dsr, —— dt + aL(t)—c qdz dx,
1

aL, (t) = —cosh (Ht), (1.2)

describes the expansion of a spherical hypersurface with
a round three-metric aL (t) c s and the scale factor aL, (t).
Its Euclidean counterpart with the positive-signature de
Sitter metric

pansion and the search for mechanisms that could justify
this expansion. Despite the perturbative nonrenormaliz-
ability of quantum gravity, this approach makes sense in
problems with quantum states peaked at sub-Planckian
energies. In particular, it would work in quantum cos-
mology with the no-boundary or tunneling wave func-
tions, provided they suppress the contribution of Planck-
ian energies and generate the probability peaks at the
lower (preferably GUT) scale compatible with microwave
background observations [ll]. As shown in authors' pa-
pers [12—14], the quantum gravitational corrections for
tn~neling geometries really allow one to reach this goal
and, as a by-product, work out a selection criterion for
viable particle-physics models. One can get a sharp prob-
ability peak with characteristic parameters of GUT and,
thus, provide a numerically sound link between quant»m
cosmology, inBation theory, and the particle physics of
the early universe [14]. Thus, the goal of this work is to
present a formalism of tunneling geometries used in these
papers.

A simple picture of tunneling geometry, demonstrating
the purposes of this work, is shown in Fig. 1. The de
Sitter solution with the cosmological constant A = 3H,

Present address. ds = g„„dx"dx" = dr + a (r) c qdx dx, (1.3)
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(1.4)

describes the geometry of the four-dimensional sphere of
radius R = 1/H with spherical three-dimensional sec-
tions labeled by the latitude angle 0 = H~. Both metrics
are related by the analytic continuation into the complex
plane of the Euclidean "time" v [15,16]

(1.5)

This analytic continuation can be interpreted as a quan-
tum nucleation of the Lorentzian spacetime &ore the Eu-
clidean one and shown on Fig. 1 as a matching of the
two manifolds (1.1)—(1.4) across the equatorial section
7 = vr/2H (t = 0) —the bounce surface Z~.

The first difBculty with this simple picture is that this
idea was never pushed beyond the tree-level approxima-
tion. At best, the quantum fields were considered on a
completely classical tunneling background [17—19]. The
origin of this difficulty can be generally formula, ted as a
controversy between covariance and unitarity. The co-
variant Euclidean quantum gravity has powerful algo-
rithms for the calculation of the loop corrections, but
it is not closed as a self-contained physical theory, for it
lacks good principles of associating the Euclidean ampli-
tudes and, especially, their loop part with physical states,
the physical inner products for the latter being not de-
fined, etc. As a counterpart to it, there exists the quanti-
zation in physical [Arnowitt-Deser-Misner (ADM)] vari-
ables [20], which is equivalent in Lorentzian spacetime
(at least perturbatively) to the Dirac-Wheeler-DeWitt
scheme [21—24] and can be used for constructing the the-
ory of tunneling geometries extending beyond the tree
level.

The second diKculty is that this picture is applica-
ble only to a limited class of real tunneling geometries
[25,26]. In these problems the metric and matter fields
are real on both the Lorentzian and Euclidean parts of
spacetime and smoothly match across the nucleation sur-
face with a vanishing extrinsic curvature and vanishing
normal derivative of matter fields. This requirement is
very strong and in many applications cannot be satisfied.
The most important example is the chaotic inflation [2]
driven by the effective Hubble constant H (&p) which is
generated by the inBaton scalar field y. In this model
the spacetime geometry is approximately described by
Eqs. (1.1)—(1.4) with H = H(y). For large H(rp) the
scalar field is nearly conserved in time, but its deriva-
tive never exactly vanishes for solutions satisfying ap-

FIG. 1. Graphical representation of the I orentxian space-
time I nucleating at the bounce surface Z~ from the Eu-
clidean manifold E of the no-boundary type, having the topol-

ogy of the four-dixnensional ball.

propriate boundary conditions. Therefore, no nucleation
surface exists at which a real Euclidean solution can be
sinoothly matched to the reaL I orentzian one [27]. This
is a general case in contrast to a rather narrow class of
real tunneling geometries [28].

Here we undertake several steps toward the resolution
of the above difhculties. Our starting point, partly for-
mulated in [23,29], will be a manifestly unitary gravity
theory in Lorentzian spacetime. This theory produces
by certain analytic continuation the Euclidean quantum
gravity —the auxiliary tool for describing the classically
forbidden states of the gravitational field [30,31]. The
necessity of such a continuation originates kom the fact
that families of classical solutions may have caustics. In
order to extend these solutions beyond caustics, one has
to continue them analytically into the complex plane
of time. The structure of the caustic surfaces for the
Wheeler-DeWitt equations will be considered in Ref. [32],
while here we develop elements of the general theory and
the one-loop approximation for quantum systems pen-
etrating beyond these caustics, which we shall call the
tunneling geometries.

In Sec. II we present the Euclidean quantum gravity as
an analytic continuation Rom its Lorentzian counterpart.
In Sec. III we discuss this analytic continuation for the
no-boundary wave function @(q,t) in the representation
of true physical variables q. It is intrinsically noncovari-
ant, but this disadvantage is justified by a simplicity of
its inner product

( I I @0 = f ~~&i (~ &) ~~(a&) (1.6)

The one-loop approximation for ijt(q, t) is also simple in
this representation for it involves the functional determi-
nant of the wave operator only on the space of physical
modes. We use a reduction method of Ref. [33] to convert
this determinant to a special form which, together with
(1.6), is used later for the proof of unitarity. Section IV
deals with the separation of physical fields into the col-
lective variables and microscopic modes treated pertur-
batively. Section V contains the method generalizing the
semiclassical expansion to the case of complex extremals.
Its application in Sec. VI shows that the complex met-
ric does not prevent from interpreting the no-boundary
wave function as a special Euclidean vacu~~m of physical
modes. Section VII presents the quantum distribution
function for tunneling geometries on the space of collec-
tive variables, which boils down to the distribution of
the quasispherical gravitational instantons weighted by
their Euclidean effective action. It establishes the link
between the noncovariant manifestly unitary Lorentzian
theory with its covariant Euclidean counterpart —one of
the main purposes of this paper. In Sec. VGI we present
the first application of this theory, brie6y reported in
Refs. [12,23] —the over-Planckian behavior of the distri-
bution function for the chaotic [7,2] infiationary cosmolo-
gies. In contrast to the tree-level approximation [8,9], it
can suppress the over-Planckian energies, depending on
the anomalous scaling of the Euclidean theory, and gen-
erate a sharp probability peak compatible with the needs
of infiation theory and its observational status [14].
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II. EUCLIDEAN QUANTUM GRAVITY AS AN
ANALYTIC CONTINUATION FROM ITS

LORENTZIAN COUNTERPART

C@(q,dq/d7, Ng) = —C, (q, idq/d7, N),
N—:{N,N ) = {N@,i'),

(2.6)

(2.7)

q = (g s (x), P (x) ). (2.1)

Then, the transition amplitude &om the configuration

q at spatial hypersurface E to the configuration q+
at Z+ is given by the path integral over Lorentzian
spacetime geometries and histories of matter fields g =
(g„„(x,t), P(x, t) ) interpolating between Z and Z+

sS [&]
«(Y~ Y )= J IINful -~ (2.2)

Here S [g] is the gravitational action in spacetime do-
main sandwiched between the hypersurfaces Z and Z+,
which takes the form

Let us denote the collection of the three-dimensional
metric g s (x) and matter fields P(x) in the canonical
quantization of gravity by

for arbitrary functions q = q(v) and NE
(Nk(~) Ng(&))-

The quantities labeled by E denote the objects in the
Euclidean spacetime having ~ as a time variable. In par-
ticular, Eq. (2.6) incorporates the Wick rotation which
basically boils down to multiplying the velocities and
lapse functions by i. This procedure makes a formal
transition &om the Lorentzian metric ds~& to the met-
ric of Euclidean spacetime ds&'.

der, —— Ndt—+g s(dx +N dt) (dx + N dt), (2.8)

deE ——N d~ +gGs(dz + Ng dr) (dz + N@dr), (2.9)

the latter being foliated by surfaces of constant v. One
can regard z as a variable in a complex plane of the Eu-
clidean time 7 so that its imaginary part coincides with
t and dz = d7 + i dt in the integral (2.5) over arbitrary
contour C.

We shall consider two choices of such a contour C:
t+

S[g] = dt's(q, q, N)
t

(2.3) CL, : f z = it, Imt = 0, t & t & t+),
C@ '. {z = 7, Imr = 0, 7 & 7 & v+).

(2.io)
(2.11)

—s& [4'(z) ]
X(q+, q ) = Dye[4] e

C
{2.4)

where z, 4(z) and % [4(z) ] are the results of such a
twofold analytic continuation of the time, configuration-
space fields and their gravitational action (2.3)

t w z, g (t) + 4'(z) = (q (z), N@(z) ),
S [g] w Z'[4(z) ]

of the time integral with the Lagrangian 6 (q, q, N) when
spacetime is foliated by the t-parameter family of spatial
surfaces, so that g = (q(t), N(t)) is decomposed into
spatial three-metric and matter fields (2.1) and lapse and
shift functions N(t) = (N+(x, t), N (x, t) ).

The integration measure Dps[ g ] in (2.2) includes
the Faddeev-Popov gauge fixing with the correspond-
ing ghost contribution and implies integration over the
histories g = (q(t), N(t)) matching the fixed fields

q(t+) = q~ at Z~. Lapse and shift functions N are
integrated over at the boundary surfaces and, therefore,
do not enter the argnTTTents of the transition kernel (2.2)
and provide its t~ independence [34].

The analytic continuation of the real Lorentzian quan-
tum gravity implies that the time variable and integra-
tion fields become complex valued, and the expression
(2.2) goes over into the integral over some complex con-
tour C' in the configuration space of the theory

A. The no-boundary proposal

In contrast to the transition amplitude (2.2), the wave
function has one argument associated with the spacelike
hypersurface to which the quant»m state is ascribed. It
can be obtained from (2.2) or (2.4) by shrinking Z to
a point and integrating over all physical fields regular
at this point. In the no-boundary proposal the cosmo-
logical wave function is constructed by integrating over
Euclidean geometries and matter fields g on spacetime
M which has a topology of a compact four-dimensional
ball B bounded by a three-dimensional hypersurface Z+
with the boundary fields q+.

„'I[g]—-
4'(q+) = Dp[ g ] e (2.i2)

The Lorentzian contour CL, generates the Lorentzian
gravitational action (2.3) provided the restriction of
4'(z) to this contour gives real-valued variables of
the Lorentzian gravity theory g(t): —iS [g (t) ]
%[4 (z) ]~c»4 (z)~c = g (t). The Euclidean contour
C@ gives rise to the Euclidean action corresponding to
the metric (2.9), I[g(7 ) ] = X [ 4(z) ] ~, 4'(z)

~

g(v), and generates the basic path integral of the Eu-
clidean quantum gravity.

dz C,@(q (z), dq (z)/dz, N~(z) ). (2.5)
C

The Euclidean gravitational action I [g] in this equa-
tion is a particular case of (2.5) corresponding to the
Euclidean contour C@ (2.11) with 7 = 0

Here C is a continuous curve in the complex plane of time
variable, and the complex Lagrangian Z@(q, dq/dz, NE)
is related to the original Lagrangian by the equation

T+I [g] = d7 C,@(q,dq/d7, Ng),
0

(2.i3)
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FIG. 2. Euclidean spacetime of the no-boundary type orig-
inating from the tubelike manifold Z x [r, r+] by shrinking
one of its boundaries Z to a point. It inherits the foliation
with slices of constant Euclidean time r in the form of quasi-
spherical surfaces of "radius" ~ with the center at 7. = 0.

because the manifold M can be viewed as originating
from the tubelike spacetime Z x [v, r+] by the procedure
of the above type: shrinking Z to a point and inhabiting
it by a positive-signature metric and matter fields (see
Fig. 2). In such a manifold the role of a radial coordinate
is played by the Euclidean time 7. with the origin at v.

0.
The rest part of the no-boundary proposal is the choice

of C. Since the work [35], revealing the indefiniteness of
the Euclidean gravitational action, it is known that in-
tegration cannot run over real four-geometries: to make
the path integral formally convergent one should rotate
the integration contour for the conformal mode into the
complex plane. Unfortunately, at present, there is no
theory which could have uniquely fixed this contour in
the no-boundary proposal. Its choice can be constrained
by a number of compelling but disjoint arguments, in-
cluding convergence of the path integral, the recovery of
quant»m field theory in a semiclassical curved spacetime,
the enforcement of quantum constraints, etc. [36], but
still has essential &eedom demonstrated in several min-
isuperspace models [37]. The general conclusion [36] was
that, in spatially closed cosmology, the unique integra-
tion contour cannot be fixed on the basis of reduced phase
space quantization [38—40], in contrast to asymptotically
flat gravitational systems subject to positive-energy and
positive-action theorems [41,42]. Here we shall not select
this contour and assume that its choice has already been
done by this or that rule, so that we have at our disposal
a fixed class of topologically equivalent contours within
which we can &eely deform C. In particular, we suppose
that we can pass it through the saddle point g of the ac-
tion, which gives the dominant semiclassical contribution
@( ) -'" (—I[ 1/&)

C+ ——C@ U CL, . (2.15)

When the solution on C@ and CL, is real, then these
two segments describe the real Euclidean and Lorentzian
sections of one complex spacetime. They are analyti-
cally matched across the bounce surface 7 = w~ giving
rise to the "beginning of time" [26]. This is the case of
the de Sitter Lorentzian spacetime (1.1) and (1.2) with

the Hubble parameter H = gA/3, nucleating from the
Euclidean four-dimensional hemisphere (1.3) and (1.4)
of radius R = 1/H at its equator 7~ = 7r/2H (see
Fig. 1). For real tunneling geometries, the saddle-point
action is the complex functional X[4'(z) ] = I —iS with
real and imaginary parts contributed, respectively, by the
Euclidean and Lorentzian domains. The resulting wave
function @(q+) exp( —I/h+ iS/5) describes the fam-

ily of semiclassical Lorentzian universes characterized by
the Hamilton-Jacobi function S and weighted by the ex-
ponentiated Euclidean action I. Under certain positive-
energy assumptions for matter fields a real tunneling so-

"sxnall size, " one is granted to have a real solution of
the Euclidean equations. For a theory with the cosmo-
logical constant A = 3H2 and the round three-metric

q+
——a c g with a & 1/H this solution represents the

four-geometry (1.3)—(1.4). However, when the three-
geometry q+ is big enough, such a real solution may not
exist, as it happens in the above example for a ) 1/H.
This is a manifestation of the fact that the solutions
of Einstein equations have caustics in superspace of q
and cannot regularly be continued into its "shadow" do-
mains. But such a solution, which we shall denote by
4 (z), can exist when the Euclidean contour (2.11) is re-

placed, via the procedure of analytic continuation, by
some contour in the complex plane of time z = ~ + it,
C+ . (z = z (o'), 0 & o & 1, z (0) = 0, z (1) = z+), start-
ing at the vanishing Euclidean "radius" and ending at
z+ ——7~ + it+. For reasons of good physical interpreta-
tion it is worth breaking this contour into the union of
the Euclidean (2.11) and Lorentzian (2.10) segments (see
Fig. 3) with ~ = 0, t = 0, and ~+ ——7.~..

B. Nucleation of the Lorentzian universe from the
Euclidean spacetime CL

ds =d~ +r cgdx dx +O(r ), v-m0. (2.14)

When q+ is close to the above three-geometry of

The saddle point of the Euclidean action in (2.12) is a
regular solution of classical equations subject to bound-
ary data q+. In spherical coordinates with the geodetic
radius 7 near ~ = 0 the no-boundary regularity condi-
tions imply the behavior of the four-metric

B

FIG. 3. The contour C+ ——C~UCL, of integration over com-

plex time in the action, corresponding to the splitting of the
whole spacetime into the combination of Euclidean (Ca) and
Lorentzian (Cr, ) domains matched at the nucleation (bounce)
point ~n (t = 0).
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lution is most likely to nucleate only a single connected
Lorentzian spacetime with the topology Rx S3 and the de
Sitter metric [25]. The rest of interpretation is based on
the derivation of quantum 6eld theory of matter 6elds in
curved spacetime kom the semiclassically approximated
Wheeler-DeWitt equations [17—19,43]. Its application
shows that matter fields on such a background are in
the state of the Euclidean vacuuxn [43,16,26] which gen-
erates the large-scale cosmological structure compatible
with observations [7,46].

IIX. NO-BOUNDARY' VVAVE FUNCTION XN THE
REPRESENTATION OF PHYSICAL VARIABLES

A. ADM reduction and path-integral quantisation

The basis of quantization of the physical variables is
the ADM reduction to dynamically independent degrees
of freedom [20,21,23]. It consists in imposing the gauge
conditions on the constrained variables q and p (p is a
set of canonical momenta conjugated to q). The full sys-
tem of the gravitational constraints and gauges can then
be solved for (q, p) in terms of independent canonical co-
ordinates q = q' and their conjugated momenta p = p;
which we shall label by a condensed index i. The con-
servation of gauge conditions also yields the lapse and
shift functions and thus specifies a concrete spacetime
foliation. Substituting q = q (q, p), p = p(q, p) into the
canonical action produces the reduced action in terms of
the unconstrained variables (q, p). It contains the nonva-
nishing, but generally time-dependent, Hamiltonian and
by a standard procedure of the Legendre transform from

p to q = dq/dt generates the Lagrangian C(q, dq/dt, t)
and the Lagrangian action

t+
S[q(t) ] = dt Z(q, dq/dt, t).

t
(3.1)

DIx[q) = dq(t) [deta(t) ]') + 0 (5),
A ~ A

t

cLq =
(3.2)

B~Z
det a = det a;I„a;g, ——

Bq Bq
(3-3)

Here the determinant of the Hessian matrix a;g is under-
stood with respect to condensed indices i and k. They in-
clude, depending on the representation of 6eld variables,

According to Re&. [44,45] the path integral (2.2) over

g = (q, N) with the Faddeev-Popov integration measure
coincides with a path integral over ADM variables of their
exponentiated canonical action [47]. The transition from
this phase-space path integral to its Lagrangian version
amounts to the expression (2.2) with the covariant ac-
tion replaced by its reduced version S [q] and the new
integration measure Dp[q]. The latter accumulates the
result of the non-Gaussian [48] integration over p and has
an h expansion

either continuous labels of spatial coordinates or discrete
quantum numbers labeling some complete in6nite set of
functions on a three-dimensional space. Therefore the
above determinant is functional, but its functional na-
ture is restricted to a spatial slice of constant time t.
The product over time points of det a(t) can be regarded
as a determinant of higher functional dimensionality as-
sociated with the whole spacetime, if we rede6ne a;g as
a time-ultralocal operator a = a;x, b(t —t'). We shall
denote such functional determinants for both ultralocal
and differential operators in time by Det. In view of the
ultralocality of a, the one-loop measure

~ A ~ e

t
[det a]'~'(t) = [Det a]x)

t+
= exp — dtt(0) Indete(t)),

2 t-
(3.4)

B. Ana1ytic continuation technique

The analytic continuation technique in physical vari-
ables is rather straightforward. Mainly it repeats
Eqs. (2.2)—(2.6) with the original variables g = (q, N),
their Lagrangian 8 (q, q, N), and action S [g] replaced
by their ADM counterparts q = q', C(q, dq/dt, t) and
S[q(t)]. In contrast to bold letters for the objects in
the original formulation we shall use the usual letters for
their ADM analogues. In particular, the physical ker-
nel K(q+, t+

~ q, t ) and the wave function 0'(q+, t+) will
replace K(q+, q ) and 4'(q+). For a unitary map be-
tween transition kernels and wave functions in the ADM
and the Dirac-Wheeler-DeWitt schemes see Refs. [22—24].

In the no-boundary construction the contour C+ (2.15)
runs in the action functional &om z = 0 to some com-
plex point z+. In the ADM quantization the wave func-
tion explicitly depends on time, and according to the
above method of analytic continuation real and imagi-
nary ranges of its arg»ment can be associated, respec-
tively, with the classically allowed and forbidden transi-
tions of the system. This makes us to identify the Bnal
point of the integration contour z+ = 7&+ it+ with the
complex time arguxnent of @(q+,z+). Breaking the con-
tour C+ into the TImon (2.15) of the Euclidean C@ and
Lorentzian CL, segments implies that the no-boundary
state is a result of the underbarrier penetration along C@

represents a pure power divergence. This contribution
identically cancels the strongest (quartic) divergences of
one-loop Feynman diagrams [49] —the property which
will be demonstrated in Ref. [33] within the canonical
&amework.

In the representation of q the transition kernel (2.2)
and the wave function (2.12) explicitly depend on time.
Within the ADM reduction the role of time is played by
some functional combinations of the phase-space coordi-
nates q (and/or momenta p), so that the arguments q~ of
K(q+, q ) after the reduction give rise to time variables
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followed by the evolution along the segment of real time
CL, . An obvious choice of the center of Wick rotation
is the intersection point z = v~ of these two segments.
Under this choice the Euclidean Lagrangian of complex
ADM variables 4(z) looks like

measure (3.4) and contribution of the Gaussian func-
tional integration over quantum GeMs around this ex-
tremal. This contribution is given by the functional de-
terminant of E —the kernel of the quadratic part of the
action

l:@(Cs(z), d@(z)/dz, z) E = E (d/dr) 6(r —r') = b I[/]
bPr bPr' (3.i4)

Z[CI (z) ] = dz l:@(4(z), dCs (z)/dz, z)
C

(3 6)

the Lorentzian action (3.1) on the contour CL, and the
Euclidean physical action on the contour C@

i~[q(t)] = -~[~(z) l I q(t) =@(z)
I

I[&(r)] =&[@(z)]l~ &(r) =@(z)l~.
7+

I [P(r) ] = dr L@(P,dP/dr, r).
0

(3.7)

(3 8)

(3.9)

Now we can write the ADM no-boundary wave func-
tion as a path integral

= —2 (4 (z), id@ (z)/dz, (z —r+)/i ), (3.5)

because it generates &om the universal complex action
functional

Because the Lagrangian Z@(P, dP/dr, r) contains at most
Grst-order time derivatives of Gelds, this is a second-
order matrix-valued difFerential operator E (d/d7)
E;i, (d/dr)

d
E(d/dr) = ——a ———b+ b~ +c-,

d7 d7
(3.i5)

where the coeKcients a = a;y, 6 = b,r„and c = c,g

are the (functional) xnatrices acting in the space of field
variables P(r) = P (r), and the superscript T denotes
their (functional) transposition (b );i, = b g;. These
coefficients originate from the second-order derivatives
of the Euclidean Lagrangian with respect to P' and

dP'/dr. In particular, the matrix a;i, is given
by the Euclidean version of the Hessian matrix (3.3):
a;g ——828~/8$' ".

with the complex action (3.6) and a local measure (3.2)
deGned on the contour C+ joining the points z = 0 and
z+. The integration here goes over physical Gelds match-
ing q+ at the boundary z = z+ of complex spacetime
M = Z x C+ and satisfying the no-boundary regularity
conditions in its center z = 0. The wave function (3.10)
can be regarded as a result of the analytic continuation
into the complex plane of time of the Euclidean path in-

tegral which corresponds to z+ ——7+ and the choice of
the contour C+ ——Cg in (3.10). When z+ ——r~+ it+
in @(q+, z+) it makes sense to identify this function with
the Lorentzian quantum state of the system @L,(q+, t+)
evolving in the real physical time t+ and originating from
4' (q+, 7+) by this analytic continuation

Cr, (q+, t+) = C(q+, r~+ it+). (3.11)

The semiclassical expansion of the Euclidean version
of (3.10) is based on the classical extremal P:

t' Det E [I|I] l ~ —
sI [ 4']

0 (q+ r+) =
l D l

e [1+O(h) ],
g Deta

(3.12)

bI[P] P(r) IM = reg,

(3.i3)
&(r) lsM —= &(r+) = q+,

The one-loop factor here is a combination of the local

- s& [C'(z) ]
B(S+,~+) = f&r )B(*)) ~

@'(&+)= 9+

(3.io)

C. The choice of gauge and nature of physical
variables

The general scheme of the above type has a &eedom in
the choice of physical variables q'. This choice speciGes
the way these variables are disentangled from the initial
phase space of q and p and Gxes the spacetime folia-
tion by surfaces of constant t. This freedom shows up in
the physical wave function and its analytic continuation
4'(q+, z) into the complex plane of t. There exist several
requirements which can restrict this excessive freedom.

First of all, it makes sense to define such an ADM re-
duction that yields l:@(P, dP/dr, r) real at real values of
the Euclidean time r and It) (r). Another important prop-
erty is the boundedness from below for the Euclidean
action of physical variables (3.9). It provides the for-
mal (mode by mode) convergence of the Euclidean path
integral over real fields P(7), establishes the normaliz-
ability of the wave function 4'(q, t) on the real section
of the q-configuration space (and, therefore, the possibil-
ity to regard physical variables as Hermitian operators)
and provides a special technique of complex extremals
which we develop in Sec. V. This property of the physi-
ca/ Euclidean action can be a consequence of a successful
red.uction and the properties of the original covariant ac-
tion which, as is known, suffers &om the inde6niteness in
the conformal sector.

The basic approximation to the chaotic inBatioo. —

ary cosmology consists in the minisuperspace model
with the metric (1.1) and (1.2), scale factor a~ (t),
and the effective Hubble constant H generated by the
spatially homogeneous (infiaton) scalar field y, H
H(y). Other inhomogeneous fields of all possible spins
are treated as perturbations on this background and. ,
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therefore, the full set of the initial phase-space co-
ordinates of the theory can be represented as q
(a, (p, P(x), Q(x), A (x), g (x), h i, (x), ...). A physi-
cally meaningful reduction from q to q goes separately
in the minisuperspace sector of the full superspace (a, rp)

and the sector of spatially inhomogeneous modes. There
is only one Hamiltonian constraint which is efFectively
imposed on homogeneous modes (a, rp) in the minisuper-
space model of Bianchi IX type [50]. Therefore, there
can be only one physical degree of &eedom among these
two minisuperspace variables (a, p). The second of these
variables has to be fixed by the gauge condition which si-
multaneously disentangles time. It is useful to choose the
in6aton field y as this physical degree of &eedom and in-
terpret the approximate solution of classical equations of
motion (1.2) with H = H(y) as a gauge which, thus,
plays the role of parametrization of the initial phase-
space coordinates in terms of the physical ones in the
minisuperspace sector of the theory.

This gauge is very convenient because it corresponds
to the choice of cosmic time with the lapse N = 1 in
classical solutions [32] and, what is most important for
our purposes, provides the reality of the Euclidean La-
grangian (3.5). Indeed, choosing 7~ = n/2H (&p) and
analytically continuing the gauge (1.2) along the contour
C+ ——C@ U CL, onto the real axis of 7., one finds that the
scale factor remains real and coincides with the Euclidean
solution (1.4). Therefore, the physical Lagrangian on the
Euclidean hemisphere 0 ( r & 7r/2H (&p) is also real and
even positive-definite in the sector of transverse-traceless
graviton modes [29].

The ADM reduction for other fields can be performed
in very many diHerent ways. In the linearization ap-
proximation it mainly boils down to selecting the trans-
verse (T), transverse-traceless (TT), etc., modes of spa-
tial components of the corresponding tensor fields, so
that the full set of physical variables can be written as

q' = (rp, P(x), g(x), A~(x), g~(x), h i, (x), ...). (3.16)

Here the index i is an element of condensed DeWitt no-
tations which we shall intensively use throughout the pa-
per. It includes discrete spin labels of field components
and also continuous labels of spatial coordinates X. The
functions of spatial coordinates x in (3.16) can be decom-
posed as infinite series in the complete set of some spatial
harmonics, which in view of the compactness of a spatial
section is discrete and countable. Then the continuous
label x in i will be replaced by the discrete quantum
numbers enumerating these spatial harmonics. In both
cases, however, the operations of integration over x or
infinite s»mmation over these numbers will be a part of
contracting the condensed indices.

The no-boundary regularity conditions (2.14) must be
reformulated in physical variables (3.16). Note that the
gauge (1.2) with H = H(y) analytically continued to the
Euclidean time, 7 = n/2H(y) + it, gives the scale factor
aE(7 ) = 7 + 0 (r ) which automatically satisfies (2.14)
[this gauge picks up the unit lapse N@ = 1 and therefore
guarantees that 7 measures the proper radial distance in
the center of the Euclidean ball B free &om the conical

singularity: a~(v) v at 7. -+ 0]. Thus, it remains to
check that all physical fields (3.16) are regular at 7 = 0.
For spatially hoxnogeneous modes y = &p (r) this condi-
tion implies that their radial derivative should vanish at
this point (dy/dv) (0) = 0, while inhomogeneous modes
should disappear themselves. These properties are a di-
rect corollary of the direction independent limit of these
modes or their derivatives at r = 0.

IV. THE METHOD OF COLLECTIVE
COORDINATES

In field-theoretical models the variables q represent the
continuous infinitude of modes (3.16). Their construc-
tive treatment is possible only in certain approximations.
The idea of such approximations consists in disentangling
&om the set of q a certain finite subset which plays the
most important role in the dynamics of the system. and
exactly or approximately decouples from the rest of de-
grees of &eedom. Then these distinguished variables are
treated exactly, while the rest of the modes are either
&ozen out or considered perturbatively. Let us make the
splitting of the argument q+ in (3.12) into the collective
variables rp and the rest of fields f

0 +g) g= (4 1)

F (d/«) & (&) = O (&') n (~+) = 0

q(0) = reg. (4.2)

Thus the perturbation i1 (7+) of the boundary conditions
q = q (w+) generates the perturbation q (v) of the classi-
cal extremal and the perturbation expansion of the action

I [/+ g] = I [P]+hI+ —,
' h'I+ O(g'),

+ bI Ol:~
hI = d7- g(r) +

0 8$

h'I = d~ rt~(Fq) + g~(Wq)
0 T+

(4.3)

(4.4)

(4 5)

The integration by parts in the first-order variation yields
the integral term containing the left-hand side of equa-

Here, in general, p can be regarded as subcolumn of q
of finite dimensionality (as, for example, a finite set of
the scale factor and anisotropy parameters in homoge-
neous Bianchi models). On the contrary, f is an infinite-
dimensional vector (representing, in the same example,
all spatially inhomogeneous field harmonics on a sym-
metric background) .

Let us suppose that P (r) is a solution of the classical
Euclidean equations (3.13) with the unperturbed bound-
ary condition at 7+, q+ ——(y, 0), which is determined
entirely by the collective variables y. Similarly, we de-
note the solution of (3.13) with the perturbed boundary
conditions (4.1) as p(v) + g (v), so that il (v) satisfies
up to quadratic terms the linearized equations of motion
and the condition of regularity at w = 0



5100 A. O. BARVINSKY AND A. YU. KAMENSHCHIK

b = E (d/dr) g(r),
bI

= W(d/dr) q (r).
BZ@

8

(4.6)

(4.7)

Here E = E (d/dr) is a difFerential operator of linearized
equations (3.14) and (3.15), while W' = W'(d/d7) we
shall call the 8'ronakian operator which enters the rela-
tion

(Ev ) —(Ev )'v

tions of motion and the surface term —the contribution of
the boundary at ~ = ~+. In view of the no-boundary pre-
scription the contribution at ~ = 0 is vanishing because
of the regularity conditions. The second-order variation
(4.5), with T denoting the transposition of the cob~~n
il = rl', follows from varying Eq. (4.4) on account of the
variational relations

u~ (u ') i, = ba. (4.11)

u~ (r) = ui («, r), i = «, A = k,

( )
~(k) ~+ikx

~(k) = Qk2+m2

(4.12)

(4.13)

en»~crated by the continuous set of spatial momentum
vectors k. Every square-integrable function of spatial
coordinates h' = h(x) can be decomposed in plane waves
of the above type in the form

To illustrate the use of condensed DeWitt indices in
the functional matrix u(r), consider a simple example
of a scalar field q' = P(x) in flat spacetime, when the
condensed index reduces to the set of continuous spatial
coordinates i = x. The linear equation of motion (4.10)
in this case is the Euclidean Klein-Gordon equation which
has a set of basis functions regular at past infinity ~ +

~i (W(t 2)
—(Wv i)'v 2 (4 6)

h (x) = J d'ke-~~ +'"*h (4.14)

valid for arbitrary test functions yi and y2 and usually
used for the construction of the simplectic inner product.
For E (d/dr) of the form (3.15) this operator equals

which can be rewritten in condensed notations as h' =
u&h+, 6+ = hp. Thus, this equation provides a linear
one to one map between h' and h . The inverse trans-
formation

d
W(d/dr) = a —+ b.

dT
(4 9) d'xe ("l -' h (x),

1

(2z )s
(4.15)

A. Basis functions of linearised field modes

E (d/dr) u(r) = 0, u (0) = reg, (4.10)

which are regular in the Euclideau spacetime ball 0 &

In view of functional matrix nature of the operator
E(d/d7) = E;I, (d/dr) its basis functions also form a
matrix u(r) = u~&(r). The condensed upper index k
(acted upon by indices of the matrix operator) labels the
components of a given basis function and includes its
dependence on spatial coordinates, while the lower in-
dex A enumerates the basis functions themselves. The
infinite ranges and the (discrete or continuous) nature
of these indices k and A can be different dependiug on
the parametrization of basic physical variables (3.16) and
their possible decomposition in spatial harmonics. What
is, however, in co~mon to all field parametrizations is
that there is a one to one map between the sets fk)
and (A), so that the matrix u~& can be regarded as
nonsymmetric but quadrutic and invertible matrix hav-
ing with respect to its infinite-dimensional indices the
inverse m v.

The perturbation rl (r) satisfies the equations of motion
(4.2) which can be solved by iterations in rl (r+) = (0, f)
In the linear approximation this solution can be repre-
sented in terms of regular basis functions of the Euclidean
"wave" operator E (d/dr) They for.m the full set u(7)
of solutions of the homogeneous differential equation

E (d/dr) = E (d/dr) 0
0 E (d/dr)

(4.16)

with E~ (d/dr) and E (d/d7 ) acting, respectively, in sub-
spaces of y and f. This has a simple illustration when

in condensed indices has a simple form h+ = (u i) + h',
where (u i) + denotes the inverse of u& (4.11) with a
kernel given by Eq. (4.15).

It is also possible to decompose a scalar Geld in
spherical-wave basis functions, enumerated instead of a
momentum vector by its continuous norm k = ~k~ and
discrete orbital l = 0, 1,2, ..., and azimuthal m, —l

m & l, quantum n»mbers. In this case the condensed la-
bel A = (k, l, m) will be of mixed continuous-discrete na-
ture. In spatially closed cosmology, the set of harmonics
is discrete and countable. For a general set of liuearized
fields (3.16), the condensed index A includes three dis-
crete quantum numbers and the corresponding spin label
A = (n, l, m, spin) which are again in one-to-one corre-
spondence with i = (x, aT, abTT, ...), and so on. But
the above peculiarities of the "fine" structure of various
Geld models can always be encoded iu the above universal
relations, as (4.11),written in DeWitt s notations which
we shall imply throughout the paper.

In view of the decomposition (4.1) of q', the full set
of u(r) contains the modes of the collective variables
&p and the rest of degrees of freedom f Physically th. e
decomposition (4.1) makes sense when they decouple at
least in the linearized approximation, which me~~~ that
in the basis of y and f the deferential operator E (d/dr)
has a block-diagonal structure
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W(d/dr) = W~ (d/dr) 0
0 W(d/dr) (4.17)

and also allows one to choose the matrix a (r) in the
block-diagonal form with the basis functions u~(r) and
u(r) of the linearized modes of rp and f, respectively,

u(r) =
( ), E~ (d/dr) u~ (r) = 0,

E (d/dr) u (r) = 0. (4.18)

p represents a spatially hoxnogeneous background for in-
homogeneous modes f .The latter are given by spatial
harmonics which are orthogonal to the homogeneous lin-
ear modes of p.

The block-diagonal structure (4.16) implies a simi-
lar form of all the matrix coefficients of the operator
E (d/dr), its Wronskian operator (4.9)

where pg are the roots of the quadratic equation in-

volving only the coefficients of leading singularities p +
(k —1) p —w = 0. In view of the non-negativity of u2

(the eigenvalue of —c V Vs) these roots are of opposite
signs, p p+ ———cu2 & 0, and we can choose p to be
non-negative in order to have m(r) = m (r) as a set of
regular basis functions at v = 0, the rexnaining part of
them m+ (r) being singular. By our assumption the oper-
ator E does not have zero eigenvalues on the Euclidean
spacetime of the no-boundary type (otherwise, its func-
tional determinant and the one-loop prefactor of the wave
function are not defined). Therefore, there are no basis
functions which are simultaneously regular at r = 0 and
vanishing for positive 7 & v+, and their matrix can be
considered invertible everywhere in this range of r except
the origin [52] r = 0. Below we shall denote the regu-
lar basis functions either by u(r) or by u (r), when we

prefer to emphasize their regularity at w = 0.

Finally, let us consider the regularity conditions for ba-
sis functions of the operator E. Due to the no-boundary
nature of M, its point of vanishing coordinate radius

—:0 is a singular point of the radial part of
E(d/dr). Indeed, for physical fields (3.16) of all possible
spins, s = 0, 1/2, 1,3/2, 2, ..., the coefficient a = a;g in
F (d/dr) can be written as

a;g = ( g)' 'g g ' ' g ' "b(x; —xa),
~ = (a&, ...a. , x;), k = (az, ...a2„xg), (4.19)

(dz d ) k+ f +g
~

u(r—) = 0, f = —I + 0 (r'),
gdr2 dr

g = —+0(r ). (421)

and in the regular metric (2.14) has the behavior

a=apr +0(r ), k=3 —28, rwr =0, (420)

where ap is defined by Eq. (4.19) with respect to the
round metric c g on a three-sphere of the unit radius
and the unit lapse g = N 2 = 1. Therefore the coeffi-
cients of Eqs. (4.10) for basis functions have the following
asymptotic behavior

B. Perturbation theory in microscopic variables and
5 expansion

The basis functions of the above type will serve us as a
technical tool for two purposes: the perturbation theory
in microscopic variables f and the reduction method for
the one-loop functional determinants. We begin with this
perturbation theory in powers of rl (r) = 0 (f) and show
how it actually reduces to the expansion in A. Note that
in virtue of the invertibility of u, (r) the linearized solu-
tion of the boundary-value problem (4.2) has the form

(r) = u(r) u (r+) rI(r+) + 0 ( g ), (4.23)

where we suppress the indices of matrices u(r)
u&(r), u (r~) = [u (r+) ]; and columns rl(r)
g (r) implying again the DeWitt rule of summation-
integration over supercondensed labels. After substitut-
ing this solution into the linear and quadratic terms of
the perturbed Euclidean action (4.3), the volume contri-
butions vanish in the quadratic approximation due to the
background bI/bP(r) = 0 and linearized (4.2) equations
of motion. The remaining terms give

Here the leading singularity in the potential term g orig-
inates &om the spatial Laplacian g V V'g entering the
operator F, which scales in the metric (2.14) as 1/r,
and the leading term of f is always a multiple of the
unity matrix I with the saxne parameter k = 3 —28 as
in (4.20). In the representation of the eigenfunctions of a
spatial Laplacian the (functional) matrix gp can be also
diagonalized, gp ——diag( —u2), so that, without the loss
of generality, both singularities in (4.21) can be char-
acterized by simple numbers k and cu = cu,. for every
component of u = u'.

As it follows &om the theory of differential equations
with singular points [51],there are two types of solutions
u (r) and u+(r) differing by their behavior near r = 0:

I[4+v]=I[4]+ n+ -n'(~~)~ '~Bda 1 T

gp 2

+ 0 (q'). (4.24)

In view of the form of the boundary-value perturbation
(4.2), only the quadratic form in g survives in (4.24) and
takes the form

I[/+&] = I[/]+ ,'f D(r+) f+0-( f'),

D (r) = [W(d/dr) u (r) ] u '(r).
(4.25)

(4.26)

This expression can be used in Eq. (3.12) for the
wave function together with the preexponential factor
(DetF [P+ g]/Deta[P+ g]) ~~z expanded in powers

of ay =0(f),
Eu~ = 0, u (r) = U r" +0(r +" ), --

m+(r) = V+ r"+ + 0 ( r +"+), (4.22)
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t' DetE [ItI] 5 1 1
@(q+ r+) =

I( Det a [((s] )
exp -I-[&]— —f'D(r+) f [1+0(f)+0(f'I&)].2h

(4.27)

BI= f D(r+)f)0 (4.2S)

and, thus, provides the positive definiteness of the
quadratic form in the exponential of (4.27). Therefore
one can use the asymptotic bound

The Gaussian exponent suppresses the states with
large f, because of the positive definiteness of the ma-
trix D (r+), which is a direct corollary of the bound-
edness of the Euclidean action kom below. If the ex-
tremal P(r) realizes a minimum of the action, then its
quadratic perturbation (4.5) is positive-definite for arbi-
tmry i1(r), h I ) 0. On linearized solutions with the
boundary data (4.2) specified by f it reduces to

C. The basis-functions algorithm for the one-loop
preexponential factor

As shown in Ref. [33] the regular basis functions u (r)
can be used for the calculation of the one-loop preex-
ponential factor in (4.27). This procedure consists in
the reduction which allows to obtain the functional de-
terminant Det E in terms of the quantity of the lower
functional dimensionality —the determinant of the non-
degenerate matrix of regular basis functions u&(r) taken
with respect to its indices [54]. These basis functions
have the behavior (4.22) and are defined up to linear r
independent recombinations. The latter can be used to
make the coeKcient U completely independent of the
background fields (tI on M and, without loss of generality,
equal the functional matrix unity I. Then this algorithm
for a one-loop prefactor takes the form [33]

e f" = 0(h"i ), 5-+ 0, (4.29) = const [detu (7.+) ]
t'DetE ) -X/2

I, Detu )

valid for a wide class of positive definite quadratic func-
tionals [53]. Thus, the linear 0 ( f ) and cubic 0 ( f /5)
corrections in (4.27) go beyond the one-loop approxiina-
tion.

u (r) = I r" +0(r-+" ). -(4.30)

Combining Eqs. (4.27) and (4.29) with this reduction
algorithm, we finally get the one-loop Euclidean wave
function I' (q+, r+) = 4 ((p, f, r+)

@(V»f r+) = @(y)(f r+) ~ ~( ~

.)

sll[y] (f r~) = coilst ( det u (r+) (~)) exp ——I [ P] — f D (r+—) f 1 + 0 (h ~ )h 2h

(4.31)

(4.32)

In contrast to a Gaussian dependence on f, the variables

(p enter @(y,f, r+) through the functional argument P(r)
of 4'(y) (f, r+), for they parametrize the extremal P(r) =
P(rI &p, r+) of the Euclidean equations with the boundary
data q+

——(&p, 0). @'(r) = ~(r) + i'9(r) Q (t) = q(t) +'"(t)
Q(t) -=~(z) I, = ~(»+'t). (5.2)

Euclidean segments of C+, denote their imaginary parts
by h(t) and q(r), and also introduce the notation Q (t)
for the full complex field on CL, .

V. THE METHOD OF COMPLEX EXTREMALS

A. Matching conditions between the Euclidean and
Lorentsian spacetimes

According to Sec. III the "Lorentzian" wave function
is the analytic continuation (3.11) of (4.31) into the com-
plex plane of the Euclidean time:

O'I ((p, f, t+) = 0(@)(f, z+) @ ~(s( s ), (5.1)

which results in the complex extremal. Here we present
the semiclassical technique that allows one to handle this
case within the scope of real solutions of Euclidean and
Lorentzian equations.

To begin with, we reserve the notations q (t) and ItI (r)
for real parts of Cs (z), respectively, on Lorentzian and

Then the complex action (3.6) on this contour takes the
form

(5.3)

bS . M—i dt hQ+i . bQ
0 i=0

(5.4)

~here I [4(r) ] and S [Q(t) ] are the Euclidean and
Lorentzian actions (3.9) and (3.1) as functions of their
complex functional ar@~ments.

Let us consider the vanational principle for this
Lorentzian-Euclidean action which gives the saddle point
of the path integral (3.10). Its flrst-order variation is sim-
ilar to (4.4)
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hI bS
b'C '

bQ
(5.5)

for fields subject to special matching conditions at the
nucleation point v = 7Js (t = 0)

The fields and their variations satisfy the regularity con-
ditions at ~ = 0 and fixed boundary conditions at t = t+,
whence the total-derivative term survives only at v~. In
view of the analytic continuation (5.2), the Euclidean
and Lorentzian fields satisfy the matching conditions
4 (rgy) = Q (0), which means that b@(Tgy ) = bQ(0) .
Therefore, equating to zero separately the volume and
surface terms in the variational equation bZ = 0, one
gets the system of Euclidean and Lorentzian equations
of motion

Fi ——FL, (d/ck) b(t —t') =
bq t bqt' (5.9)

The expansion of the matching condition (5.6) up to
linear terms in e can be performed with the aid of the
variational equation (4.7) and its Lorentzian version

b = Wl, (d/dt) bq(t),
Bq

(5.10)

which serves as a definition of the%'ronakian operator
WL, = W'g(d/dt) for (5.9). The separation of the real
and imaginary parts of Eq. (5.6) then yields the system of
matching conditions coupling the dynamics of Euclidean
and Lorentzian variables

BEE . M+i
Be BQ i=o

(5.6)
=WLh +0(e ),

i=o

(5.11)

B. Perturbation theory in the imaginary corrections
and the 5 expansion

This perturbation expansion begins with substituting
(5.2) into the classical equations and matching conditions
(5.6) and expanding the result in powers of e = (rI, h).
The separation of real and imaginary parts in (5.5) leads
to the equations

= 0 (vP), F(d/d~) g(~) = 0 (rP), (5.7)

bq (t)
= 0 ( h'), Fl, (d/ch) h(t) = 0 ( h'),

where FL, (d/dt) is the Lorentzian wave operator of lin-
earized equations [at the background of q(t)], analogous
to its Euclidean version (3.14)

(5 8)

These show that the tunneling geometries with real
fields exist only when both the Euclidean BZ@/B4 and
Lorentzian BZ/BQ momenta separately vanish at the nu-
cleation point. The covariant version of this statement
in the gravitational sector of all fields sounds as a van-
ishing of the extrinsic curvature K g of the nucleation
surface [36,25,26]. In the example of the de Sitter uni-
verse generated by the inert cosmological constant this
surface coincides with the equator of the Euclidean four-
dimensional sphere with the vanishing time derivative of
the scale factor (1.4).

In the general case of nonzero momenta at 7 = 7~,
the fields 4 (v) and Q (t) become complex, and the very
notion of the Euclidean-Lorentzian transition becomes
questionable, because complex physical fields generate
complex-valued metric tensors which can hardly be as-
cribed to spacetimes of either Euclidean or Lorentzian
signature. We shall show, however, that the Euclidean-
Lorentzian decomposition still makes sense within the 5
expansion. For this purpose we shall develop the expan-
sion in imaginary parts e = (rl, Ii) of the complex fields
(5.2) and demonstrate that it corresponds to the asymp-
totic expansion in 5 / .

ML, = —Wg
e=o

+ 0 (e2).

Now we can calculate the complex action (5.3) up
to quadratic terms in e. Linear terms follow from
(5.4), while the quadratic ones can be obtained by us-
ing Eq. (4.5) for the Euclidean action and its Lorentzian
analogue. In virtue of Eqs. (5.7) and (5.8) all the volume
terms turn to be 0 (es), so that the quadratic contri-
bution of imaginary corrections reduces to the sum of
surface terms at the nucleation point v = 7+ (t = 0)

~[4']=l[4 ]
—i ~[q] + i. OZE

B4

——A, (WLh)
2

——g (Wg)
1 T
2

C=O

+ 0(e ).

(5.12)

Here we took into account the reality of q+ and the
no-boundary regularity conditions leading to vanishing
surface terms at t = 0 and v = 0. Then the use of
Eqs. (5.11) and the relation h(0) = q(r+) allows us
to rewrite the above expression with e (We') denoting
the full quadratic form in the variables e = Im 4(z) =
(h(t), q(~))

&[@]= I [Q] —i & [q] + 2 e (We) + 0 (e ),
(5.13)

e (We) = g (Wrl) +i Ii (WL, h)

(5.14)

The crucial point of our derivations is that the net
efFect of the Lorentzian-Euclidean matching conditions
(5.11) and linear terms in the expression (5.12) consists
in changing the overall sign of the quadratic form in g
and h. This has a drastic consequence for the asymptotic
5 expansion of the wave function (5.1) with the complex
extremal 4(z l y, z+). Indeed, substituting (5.13) into the
functional 4'[@](f, z+) given by (4.32) and reexpanding

everything, except this exponentiated quadratic form, in
powers of e, one has



A. O. BARVINSKY AND A. YU. KAMENSHCHIK

8'

(y,.f t ) = e "
( 'P) R @)(fz, ) + 0 (e) + 0 (e /5) ). (5.15)

Since g(v) satisfies up to higher order terms the linearized
equations (5.7) and no-boundary regularity conditioas,
the real part of this quadratic form coincides with the
part of the Euclidean action quadratic in g and is positive
de6nite by the assumption of good convexity properties
of the Euclidean action

Re e (We) = b„'I+0()7 ). (5.16)

Therefore, one can use the analogue of the asymp-

totic bound (4.29) to show that exp —~'„e~(We) e" =
0(h"~2), 5 ~ 0, whence it follows that all the pertur-
bation corrections of (5.15) in powers of e actually be-
loag to higher orders of a semiclassical expansion. Thus,
despite the complex nature of 4 (z), the semiclassical ex-
pansion can still be performed on the real-valued back-
ground Re@(z) [~ = (4)(v), q(t)), aad with the corre-

sponding elements of the Feynman diagrammatic tech-
nique —the inverse propagator, its basis functions and
the matrix (4.26) of quantum dispersions for microscopic
variables:

+ [Rec']i DL (t) = D (++ + ~t) [Re@]' (5.17)

Imaginary corrections everywhere except the quadratic
form of the action (5.13) can be treated by perturbations
generating in higher orders additional set of Feynman
dhagrams.

One should emphasize a crucial role of the convexity of
the Euclidean action, which provides the positivity of the
form (5.16). In Einstein gravity theory this property is vi-
olated in the sector of the conformal mode which is widely
believed to enter the set of physical variables in spatially
closed cosmology [55]. The only known procedure of haa-
dling this mode consists in the rotation of its integra-

I

tioa coatour to the complex plane [35]. This means that
the same conformal rotation must be done in the argu-
ment of the wave function, which implies the complexi-
fication of the configuratio-space point q+, h (t+) g 0,
and the corresponding modi6cation of the formalism of
complex extremals [32]. We shall not consider this modi-
6cation here, and in what follows assume good properties
of the Euclidean action. In this paper this will be jus-
ti6ed by isolating the conformal mode into the sector of
collective variables and considering (see Sec. VIII) only
the high-energy behavior of their quantum distribution.
This behavior is unafFected by the tree-level properties
of the classical action and is determined by the quan-
tum anomalous scaling of the theory (see discussion in
Sec. IX).

VI. EUCLIDEAN VACUUM VIA NUCLEATION
OF THE LORENTZIAN UNIVERSE FROM THE

EUCLIDEAN SPACETIME

Combining Eqs. (3.11), (4.32), and (5.15) one obtains
the wave function in the Lorentzian regime. Under the
analytic continuation (3.11) the real Euclidean modes
u (r) go over into complex functions u (z) oa the con-
tour C+ (2.15). Thus, if we iatroduce the notation
(v(t), v'(t)) for the pair of complex conjugated functions
originating from u (z) [@] on Cl„z = r~ +it,

(t) = ( —( + 't) [ ])

v'(t) = u (r~+ it) [@],

then the wave function of the Loreatziaa universe (5.1)
takes the form

%g (&p, f, t+) = const [detv'(t+) ] exp — f Dl, (t+)—f e 1+0(h ~ )
—1/2

—-„'X[4 ]-
X/2 (6.2)

E[@](d/dz) &
= E (d/d7 ) + 0 (e ), E[@](d/dz)

(6.3)Eg (d/dt) + 0—( e ).
Here the Euclidean operator is define in (5.17), while the
Lorentzian operator E~ (d/dt) = —E[R,@] (d/idt)
is calculated at the real background q (t) = Re Q (t) and

where we have reabsorbed the quadratic form in e into
the full complex classical action.

The functions (v(t), v'(t)) satisfy the complex con-
jugated equations —a direct corollary of the equation
for u (z) [@,]. However, the above method allows us to
treat e—:Im 4 (z) by perturbations and consider, instead
of the complex operator E[@](d/dz), the real Euclidean
E (d/d7 ) and Lorentzian operators EI, (d/dt) related to
E[y] (d/dz) by

has the form analogous to (3.15)

TEI, (d/dt) = ——a ———br, + bI ——c.
dt dt d~ d7.

(6.4}

El, 'v = 0, Egv = 0. (6.5)

The Wronskian operator W'r, (d/dt) of (6.4) generates

Its coefBcients a and c are identically related to their
Euclidean versions, while the coefficient Q represents a
Wick rotation of its Euclidean counterpart: bl, = ib.

The functions (6.1) satisfy the inhomogeneous equa-
tions with the operator Er, (d/dt), but the inhomoge-
neous terms 0 (e ) = 0 ( h~)'z) can be again discarded in
the one-loop approximation. With this one-loop accuracy
we, therefore, have the real-valued ¹&Herential equation
for the complex Lorentzian basis functions
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h, (FI, h2) —(FI, h1) h2

h1 (Wj; h2) —(Wj, h1) h2, (6.6)

WL, (d/dt) = a—+ bg,
dt

Wg (d/dt) = iW'(R, s, ) (d/idt) (6.7)

The reality of Lorentzian wave and Wronskian opera-
tors is crucial for establishing the complex structure on
the space of classical solutions, which gives rise to the
"beginning of time" [26]. For a second-order difFerential
equation EL, h = 0 with real coeKcients, the complex
linear space of solutions h (t) can be equipped with the
conserved inner product

the variational equation (5.10) for the canonical momen-
t»~ and also enters the Lorentzian analogue of the re-
lation (4.8) valid for arbitrary test functions h1(t) and
h, (t)

which together with the orthogonality relations (6.10) im-

plies that e (t) and v'(t) can be regarded as a set of
Lorentzian positive and negative &equency modes.

According to the decomposition (4.1) and the corre-
sponding block-diagonal structure of the relevant Eu-
clidean operators and modes (4.16)—(4.18), a similar de-

composition properties hold for their Lorentzian counter-
parts

FI, = diag (F~ L„Fr,)) WL, ——diag (Wl. L„WL,),
(6.13)

& (t) = diag (v& (t), v (t)), A = diag (b,&, b,).

Therefore all the Wronskian orthogonahty relations of
the above type hold separately in the sector of collective
variables and the sector of microscopic ones. The oper-
ators E~ L„W~ g, and their modes e~ (t) determine the
quantum properties of y and of the background Cl (z).

The properties of the microscopic modes f in (6.2) are
determined by the matrix of quantum dispersions DL,
defined by Eqs. (4.26) and (5.17) in terms of WI, (d/dt)
and v'(t):

(h1, h2) = z h1(WL, hz) —(WL, h1) h2 (6.8)
DI, (t) = —i [WL, (d/dt) v'(t) ] [v'(t) ]-'. (6.14)

where ht = (h')+ is a Hermitian conjugation involv-

ing both the transposition and the complex conjugation.
When the functions h (t) are related by the analytic con-
tinuation to their Euclidean counterparts y (~), this in-
ner product reduces to the Wronskian construction of the
Euclidean operator E

+1 (~~2) —(~~1) v z = -(hll h2)l

h1,2(t) = y1 2(7.B+ it).
(6.9)

(v', v) = 0. (6.10)

On the other hand, Lorentzian basis functions of one
"positive frequency" have the conserved matrix of inner
products

Now, if we take as y1z(1) two Euclidean basis func-
tions u (r), having a vanishing Wronskian m (Wu )—
(Wu )+u, = 0 in view of their regular behavior at
7 = 0 (4.30), then the complex conjugated Lorentzian
basis functions (6.1) satisfy the orthogonality relation

In virtue of (6.10) this complex matrix is symmetric and
has a positive-definite real part derivable from the corol-
lary Wr, 11' = (et) ~(Wg11)tu' of Eq. (6.10):

D:-D.=(")-'( ')(")-'=0,
DI +DL, = (ut) 6v

(6.15)
(6.16)

As a consequence, the Gaussian state (6.2) is a vac-
uum of linearized modes f relative to the Lorentzian ba-
sis functions (6.1). Consider the Heisenberg operator of
the linear quantum field f(t) decomposed into a set of

( (&) (t))

f(t) = V (t) a+ V'(t) a':—11A(t) a + VA(t) a' (6.17)

with the operator Hermitian-conjugated coeKcients a =
aA, and a' = a'A. In virtue of (5.10), the canonical
momentum p (t) for this linear field equals

P (t) = WI, (d/dt) f(t) = (WI,u) (t) a+ (WL,11)'(t) a'.

(6.18)

A = (e, e), (6.11)
Then, the orthogonality (6.10) allows one to solve the
system of Eqs. (6.17)—(6.18) for the operators (a, a'):

which can be calculated at the point of nucleation t = 0
(r = TB) where the following matching conditions hold
between the Lorentzian and Euclidean modes: u (7B) =
e(0) = v'(0), (Wu ) (7B) = iWL, e'(0). In virtue of
these matching conditions this matrix

~=2 tF(Wu ) (6.12)

coincides with the kernel of the positive de6nite part of
the Euclidean action quadratic in the fields bP(~)
u(~)g, b2I = 17+ [m~(Wu ) ~ ~] g = 2g Kg & 0.
Therefore, A is a real positive-de6nite symmetric matrix,

a = i b, vip —i 6 (WI,v)~ f,

s' = i b, u+p+i b (WI,v) —f.
(6.19)

[
A eB] g (~—

1) AB (6.20)

Since L is a real positive de6nite matrix, it can be

In view of the commutation relations [f, p] = i hI [»s
llllit matrix in the f sector of I = diag (I~, I), and ail

the other commutators vanish], a and a' have the only
nonvanishing commutator



5106 A. O. BARVINSKY AND A. YU. KAMENSHCHIK

diagonalized by linear transformations of basis func-
tions v(t) making their set orthonormal {v~, v~)

b~~, so that a and a' become the usual
annihilation and creation operators. In particu-
lar, the operator a in the coordinate representa-
tion, f = f, p = M/i Bf, annihilates the Gauss-
ian quantuin state (6.2) of linearized perturbations

the unmeasured degrees of freedom. This procedure rep-
resents a nontrivial step toward quantities having a direct
physical interpretation. Usually the degrees of freedom
which carry the most important information about the
system are some macroscopic collective variables of the
type considered in Sec. IV, that is why the matter of
primary interest within the above method of collective
coordinates is their density matrix

a(f, B/Bf) = hvt —i(WL, v)tf,
t9

u(f B/Bf) @r (v, f, t+) = o.
(6.21)

&(') = T'I@L (t))%1 (t) I.
f

(7.1)

Thus, the Lorentzian universe nucleates from the Eu-
clidean spacetime with the vacuum state, corresponding
to the 6eld decomposition in special positive and neg-
ative frequency basis functions [43,16]. They originate
by the analytic continuation (6.1) from regular modes in
the Euclidean ball. This decomposition and, therefore,
the de6nition of the vacuum is unique, because the only
admissible &eedom consists in unitary rotations of the
positive-frequency subset v (t), preserving its orthonor-
mality and not xnixing v (t) and v' (t). In de Sitter xnod-

els this special vacuum state coincides with the so-called
Euclidean vacuum [56] which has important applications
in the theory of the inflationary universe [46], because it
provides the spectrum of density Quctuations responsi-
ble for the formation of the large scale structure of the
observable universe.

VII. QUANTUM DISTRIBUTION OF
TUNNELING UNIVERSES

In applications, one needs the density matrix which
can be obtained &om the wave function by tracing out

I

This object encodes all the correlation functions of the
collective variables y. In particular, it includes the den-
sity of their probability distribution which is just the di-
agonal element p(y, t) = p(p, y It) of p(t) = p(p, y'lt)
in the coordinate representation of y. In the physical
Hilbert space with the trivial inner product (1.6), this
diagonal element equals

~(~ ~) = f~fl@i(of&) l', (7.2)

The knowledge of (6.2) allows us to calculate the full den-
sity matrix (7.1), but here we shall mainly concentrate
on this quantity. It plays an important role in quantum
cosmology of tunneling universes, for it determines their
probability distribution in the space of such macroscopic
variables as a Hubble constant, parameters of anisotropy,
etc.

Substituting (6.2) into (7.2) and taking into account
Eq. (6.16), one immediately finds the following answer
for the Gaussian integral over f:

detS, '~' —-'„ReX[O]-
p(y, t) = const (det LL) ') e

I
det v, (t) I

1+0 (h')') (7.3)

where the real part of the complex action (5.13)

ReT[C ] = I [p]+ 2 g (Wg) (~~) + 0(h ) ), (7.4)

A. Doubling the Euclidean spacetime

The doubled Euclidean spacetime serves for the inter-
pretation and covariant calculation of the partition func-

must include the positive de6nite real part of the
quadratic form (5.14) damping the contribution of the
imaginary corrections e' = 0 (hi)'2). Here we took into
account the block-diagonal form of the matrices e and
A, detv (t) = detv~ (t) detv (t),

detect

= detb, „detA,
due to which the one-loop preexponential factor of (7.3)
includes the determinant of the full Wronskian matrix
A and the determinant of the Lorentzian modes of the
collective variables v~ (t) normalized by (detA~) ~ to
unity in the inner product (6.8). The emergence of the
full Wronskian matrix in this algorithm in conjunction
with the reduction method for functional determinants
on closed spacetimes [33) make us to consider in the next
section a special geometric interpretation of (7.3).

2M =M uM+. (7.5)

This doubled manifold is closed, has a topology of a four-

dimensional sphere, and admits an isometry 0 mapping
its two halves M~ onto one another

M+ = OM~: (x e M~, Hx e M~ j. (7.6)

I

tion (7.3). It was proposed for these purposes in Ref.
[12] and also used for the general analysis of real tun-
neling geometries in Ref. [25]. To begin with, note that
the matrix A in (7.3) can be represented by Eq. (6.12)
in terms of the regular basis functions on the Euclidean
spacetime ball M—:M = B with the "center" at

This spacetime carries a real Euclidean metric and
matter fields characterized by P (r) = Re 4 (r) and has
as a boundary the nucleation surface Z~, ~ ——7J3. Now

consider its orientation reversed copy M+, which can be
regarded as mirror image of M with respect to this
boundary. One can now construct the doubled xnani-

fold 2M by joining M and M+ across their common
boundary E~ (see Fig. 4)
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FIG. 4. The doubling of the Euclidean manifold, which
arises in the calculation of the quantum distribution func-
tion for Lorentzian universes. The Euclidean spacetime of
the no-boundary type M matched across the nucleation sur-
face Z& with its orientation reversed copy M~ gives rise to
a closed manifold 2M = M U M+ —the gravitational in-
stanton of spherical topology. For generic complex tunneling
geometries the matching of M with M+ is not smooth,
which is shown on the picture by the edge at Z&.

The foliation of M by surfaces of constant 7 can be
continuously extended by this isometry to the whole of
2M with the parameter 7 ranging &om 7 to ~+ label-
ing the "center" of M+ which coincides with the "north"
pole of the doubled manifold. This foliation can be rep-
resented by the continuous one-parameter faxnily of sur-
faces Z (r) which expand from zero volume at the south
cap of 2M and then again shrink to a point at the north
cap after passing the equatorial section Z~ = Z (r~) at
rg = (r + r+)/2

r (z) = 7, x (z) = x, z C M , r + r + rg,
(7.7)

r(8z) = r++r —r, x(8z) = x, 8z 6 M+.

This foliation explicitly demonstrates the reversal of Eu-
clidean time on M+ in contrast to spatial coordinates
x identically related on surfaces Z and 8Z. Obviously,
the coordinate r parametrizing the whole of 2M plays
the role of the latitude angle 8 on the four-dimensional
sphere homeoxnorphic to 2M, ranging from 0 to vr, while
x are the "angular" coordinates on quasispherical spatial
sections Z.

The four-geometry and matter fields on 2M are also a
subject of the isometry map (7.6), which means that on
M+ they are defined as a re8ection ixnage of those on the
original spacetime M = M. In the foliation (7.7) this
fact can be easily represented as a following definition
of the field P (r) for r~ & r & r+ in terms of those for

the whole of 2M as a solution of the equation Eu
0 with continuous zeroth and first order derivatives at
Z~ (the second-order derivatives will generally jump at
Z~, because the coeKcients of E are discontinuous at
this surface). These basis functions are regular at the
south pole w of the doubled manifold, but singular at
~+, because we assume that the Euclidean operator E
does not have zero modes on 2M. There exists another
set of basis functions u+ which are the reBection image
of u defined in the foliation (7.7) by the relation [57]

u+(r) = u (r~+r 7.). — (7.9)

These basis functions are regular at 7.+, singular at ~
and satisfy the following matching conditions at the junc-
tion surface Z~.

u (rg) = u+(rB)) Wu'(rg) = —Wu+(rg). (7.10)

(r) = I (r —r )+ + 0 [(r —r )
~ ],

(7.12)

u+(r) = I(r+ r) + O[( +

(7.13)

with the field-independent coefBcient —the matrix unity
I. This reduction algorithm reads

- —Z/2

Therefore, the set of inner products lk, given by
Eq. (6.12), can be rewritten in the form of the Wronskian
matrix A+ ——(LL+ )~~ of these two sets of Euclidean
basis functions on the doubled manifold [independent of
7 in virtue of the relation (4.8)]

——u++ (R'u ) —(Wu+) u . (7.11)

This property serves for the following important ob-
servation. According to the reduction technique of Ref.
[33] for functional determinants on a spacetime of spher-
ical topology, the one-loop preexponential factor on such
a spacetime can be generated by the determinant of the
Wronskian matrix (7.11) of the two complete sets of ba-
sis functions u~(r) which, in the r foliation of the above
type, are regular, respectively, at r+ and r and have the
asymptotic behavior [cf. Eq. (4.30)]

P(7.) = P(7p+r —r) (7.6) (det LL+ ) ~ = const Det E/Det a
2M 2M

(7.14)

Such fields are continuous but generally nonanalytic at
the junction surface Z~ unless their normal derivative
dP/dr(r~) vanishes there. In case of real tunneling ge-
ometries [25,26] this condition is satisfied as a require-
ment of vanishing extrinsic curvature of Z~, K s ~ &
0, this fact providing the analytic matching of real Eu-
clidean manifold M with its double M+ and with the
nucleating real Lorentzian spacetime ML, . For complex
t&modeling fields this condition is generally violated, be-
cause P(r~) BZa/8$(rgy) = O(e) in view of the
matching condition (5.11).

The lack of smoothness of the background Gelds does
not prevent us from extending the basis function u, (r) to

and implies that the preexponential factor of our parti-
tion function (7.3) in the main boils down to the contri-
bution of functional determinants on 2M. Such deterxni-
nants are calculated on the space of functions regular on
closed compact manifold 2M and constitute the one-loop
effective action of the Euclidean theory on this spacetime.

B. Covariani distribution function: Covariance
versus unitarity

Using the above relation in (7.3) we arrive at the algo-
rithm
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p(y, t) = const exp ——Fg ) p[P] ——q (Wq)~ 1+0(hx/

detv~ t (7.i5)

Here v~ (t) is a set of Lorentzian modes of collective vari-
ables rp which has a matrix of inner products (6.8) and
Fq ~ ~ [P] is the effective action on the doubled Eu-
clidean spacetime:

extremals 4 (z~&p, t+) are parametrized by their bound-
ary conditions y at the 6nal moment of Lorentzian time
t+, but for our purposes it wiB be more convenient to
parametrize them by the value» of their real part at
the moment of the Lorentzian nucleation:

I'„I, (d/dt) v~ (t) = 0, (v~, v~) = A~,

Fg ),p [ P] = I2M [ $] + —Tr ln E ——Tr ln a, (7.17)
2 2M 2 2M

@(z) =@(z»)=4(z»)+i&(z &~)
(7.20)

I2M[4] = 2IM[4] (7.i8)

The background field P(v) on 2M is a real part of the
exact complex extremal 4 (z) = 4 (z~p, t), parametrized
by the boundary data (y, t):

P (~) = Re@(7~y, t), 0 & 7. & r~ (7.19)

The effective action (7.17) includes the classical Eu-
clidean action (7.18) on 2M and the one-loop contri-
bution given by the logarithm of (7.14).

It would seem that the new algorithm (7.15) does not
have any advantages over the original expression (7.3),
for the replacement of detLL by the determinant of higher
functional dimensionality complicates the calculations.
However, the new form of p (y, t) is covariant and, there-
fore, subject to powerful manifestly covariant methods of
calculating Fq ~«& [P]. They allow one to perform a co-
variant regularization of the divergent partition function
and obtain its high-energy behavior, which will be con-
sidered below.

The usual price one pays for manifest covariance is
the loss of xnanifest unitarity. The root of the difBculty
is that, in covariant quantization, the physical sector is
deeply hidden in the full space of the theory including
ghosts, zero and negative norm states, etc. , and very
subtle methods are required to recover unitarity &om
the covariant formalism or, vice versa, render the uni-
tary theory a manifestly covariant form [58,45,49,23]. A
remarkable feature of the algorithm (7.15) is that, being
formulated in terms of the physical degrees of freedom,
it combines both of the desired properties: the covari-
ance of radiative corrections in the Euclidean effective
action (7.17) and its one-loop unitarity encoded in the
preexponential factor.

4B = Q (7B,4B),
B4 (z, »)

Bda
v' (t) =

z=v gy+it
(7.21)

Since 4 (z+, ») = y, the matrix of the above basis func-
tions is real at t+, and its determinant coincides with the
Jacobian of transformation from» to y

&p +», -det v„(t+) = det (By/BP~) . (7.22)

OI OI OH+
+ & & =as/a

3BII
E B'p)

(7.23)

In view of the Euclidean-Lorentzian matching conditions
of Sec. V, BI/Bp = 0 (s) = 0(A~~~), so that the so-
lution of (7.23), I(t, (p(t)) = I(0,P(0)) + 0(fP~ ), is
practically a constant [36] along the real-valued trajec-
tory g (t) evolving according to

BH (g, p)

p=BS(t,g )/Bg
(7.24)

Further proof is based on the above method according
to which the imaginary part e can be treated by per-
turbations in all the terms except the quadratic form in
the total exponential of (7.15). When combined with the
classical action (7.18), this form gives rise to the (dou-
bled) imaginary part I2M[P] + q (Wg) ~ + 0 (rls)
2I(t+, y) = 2lm8[4(z)] of the full complex action
(5.13), 8 [4(z) ]

= iT [4 (z) ] = S (t+, p) +i I(t+, p). As a
function of the data (t+, &p) at the end point z+ of the ex-
tremal, this action 8 [4(z) ] = 8 (t+, y) can be regarded
as a complex Hami&ton-Jacobi function. It satisfies the
Haxnilton- Jacobi equation with the physical Hamiltonian
II (rp, p) which in its turn generates the following equa-
tion for the imaginary part I = I(t+, y):

C. Unitarity and partition function of gravitational
instanions

To prove»~itarity, which is basically the conservation
of the total probability, note that a set of basis functions
v~ (t) in (7.15) can be obtained from the family of classi-
cal extremals by di8'erentiating them with respect to the
constants of motion. The resulting functions satisfy the
linearized equations of xnotion and the same regularity
conditions as these classical extremals. In our case the ~I [4']/b4'(&) = 0 &(~~) = p~(t+ &). (7.25)

The latter differs Rom the real part of the exact complex
extremal at most by 0(s) = 0(h ~z) terms, P(t)
P (~& + it, ») + 0 (s).

Thus, the dependence on t+ in I(t+, y) can be com-
pletely absorbed into the rede6nition of the 6eld variable,

y ~ y~ = P (0). Correspondingly, the tree-level part of
(7.15) can be regarded as the Euclidean action IzM[$]
on a new real classical background P (7) with the bound-
ary condition y~ at ~~, the latter being determined as a
function of (t+, y) from the solution of (7.24):
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With the same accuracy the full one-loop exponential in
(7.15) turns out to be the effective action on this new
background P(v') or can be regarded as a function of its
boundary data yn = P~ + 0(5~~2) at the nucleation
surface

On the other hand, by difFerentiating the e analogue of
the asymptotic bound (4.29) one finds that Be/BP'~ =
0 (5~~2), whence (7.22) takes the form of the following

I

change of variables:

(p m y, [detu„(t )] ' = det(B(p /By)+0(h') ),
(7.27)

absorbing all the dependence of (7.15) on the Lorentzian
time t+.

Therefore, the quantuxn distribution of tunneling ge-
ometries reduces to the partition function p2M (y~) of
the gravitational instantons 2M with a special classi-
cal background field subject to the boundary conditions
(7.25) at the junction surface Z~.

Bpg
p (y, &+) = p2M (y~) det

OQ7 O'a=Pa (v' &+)

(7.28)

p2M (ygy) = const [detb, ~ (y~)) e
" 1+0(h ) ) (7.29)

As a result one has

dip(y, f+) = f dyB p2 (%MB) =collst, (7.30)

which accomplishes the proof of unitarity for the distri-
bution function [59].

The algorithms (7.15) or (7.28) and (7.29) have a good
graphical illustration demonstrating their unitarity. The
partition function, as an inner product of the wave func-
tion with itself, is shown in Fig. 5 as a composition of
the two spacetime manifolds combined of Euclidean and
Lorentzian domains and associated, respectively, with
@L, (y, f, t) and %$ ((p, f, t) Due .to i~r)itarity, which
makes sense only in physical Lorentzian spacetime, the
Lorentzian "brixns" of these two "hats" cancel, because
this portion of the spacetime is described by the unitary
evolution operator. What remains is, in the main, the
doubled Euclidean manifold 2M —the gravitational in-
stanton of spherical topology serving as a support for the
Euclidean action (7.17). This nontrivial remnant can be
explained by the fact that the dynamical "evolution" on
Euclidean spacetime is described by the nonunitary heat
equation rather than the Schrodinger one.

The analytic continuation &om Euclidean spacetime
(Wick rotation) for the matrix elements between difFer-
ent quantum states —in and out asymptotic vacua —is
well known in the asymptotically Bat case and usually
serves as a calculational basis in scattering theory. A
similar technique for expectation values, that is matrix
eleroents of operators with respect to one and the same
state, is xnuch less known because of the obvious difE-
culties with analyticity. In contrast to the wave func-
tion, the corresponding expectation values can never be
analytic for they involve both (1)'I, (q, t) and its complex
conjugate @L (q, t) However, in. the context of a special
quant»~ state —the standard asymptotic in-vacuum—
there exists a special technique relating the expectation
values in Lorentzian spacetime to the Euclidean eGec-
tive action [60]. Apparently, the algorith~ (7.15) is the
first analogue of this tech»que for spatially closed space-
time and with the no-boundary quant»m state of the

I

system. Obviously, this state plays the role of the stan-
dard in-vacuum of asymptotically Hat worlds, its regular
Euclidean modes being the counterparts of the positive
energy plane waves which under the Wick rotation go
over into the modes vanishing in the remote Euclidean
"past." The saxne analogy also transpires in the re-
duction methods for functional determinants of Ref. [33]
where the south and north poles of the compact sphere-
like manifold were associated with the koo of the asymp-
totically Bat spacetime, while the corresponding regular
xnodes u~ were associated with the basis functions of the
in and out vacua.

In the general case the extremals are complex, and in
the one-loop approximation the effect of their complex-
ity boils down to the Gaussian factor in (7.15) damping
the contribution of their imaginary part. Apparently,
this property explains the lack of interest in literature to
complex instantons, the contribution of which is always

FIG. 5. The graphical representation of calculating the
quantum distribution of tunneling Lorentzian universes: a
composition of the combined Euclidean-Lorentzian spacetime
M UL with its orientation reversed and complex conjugated
copy M+ U L' results in the doubled Euclidean manifold 2M
—the gravitational instanton carrying the Euclidean efFective
action of the theory. The cancellation of the Lorentzian do-
mains L and L' re6ects the unitarity of the theory in the
physical spacetime of Lorentzian signature.
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exponentially suppressed compared to real tunneling so-
lutions. However, there are problems lacking the real
solutions, in which case the technique of the above type
becomes indispensable. The important example is the
model of chaotic iaBation driven by the iaHaton scalar
field. We shall consider this model in much detail in a
forthcoming paper [32] and also use it in the next section
to illustrate the issue of the high energy behavior and
normalizability of the no-boundary wave function.

VIII. HIGH-ENERGY BEHAVIOR

As discussed in the Introduction, the validity of a
semiclassical expansion essentially depends on the energy
scale of the problem. The latter is determined by the
quantum state of the system and the location of maxima
of the corresponding partition function for those vari-
ables which play the major role in its dynamics. Thus,
the validity of the loop expansion in quantum cosmol-
ogy can follow &om the behavior of the partition func-
tion of collective variables constructed above. This par-
tition function includes the contribution of these vari-
ables themselves and also of the infinite set of micro-
scopic field modes. Therefore, it suffers &om the ultra-
violet divergences and requires regularization and renor-
malization. In principle, these procedures must be done
at all stages of calculating the wave function and parti-
tion function. Only in this case we would have the con-
sistent and consecutive operutor quantization. However,
at the present state of art in high-energy physics, only
in simple low-dimensional field models such an approach
has been realized and has a well-established status. In
realistic field theories we still have to skip the operato-
rial stage of quantization at the unregularized level and
make regularization only in the final algorithms given by
loop Feynman diagrams. Thus we shall consider the reg-
ularization of a partition function rather than the wave
function itself.

Even apart &om this liberty, there still remains a prob-
lem of whether the properly regularized infinities can be
renormalized by physically sensible procedure. We do
not discuss here this issue which is a subject of a vast lit-
erature on the over-Planckian structure of fundamental
interactions. Instead, we assume that, whatever physi-
cal origin of this procedure is (either it is a fundamen-
tal finite string theory underlying its low-energy effective
limit or the inclusion of the infinite set of counterterms),
the correct renormalization consists in the subtraction of
the covariantly regulated ultraviolet infinities. It is hard
to perform a covariant regularization in the noncovari-
ant ADM quantization. However, our partition function
combines manifest unitarity with the Euclidean effective
action, which can be rendered covariant form and, there-
fore, covariantly renormalized. Here we sketch this pro-
cedure which yields the high-energy behavior of the dis-
tribution function.

ables P to the original set of fields g = (q, N@) taken in
some gauge which has a form of local conditions on g and
its spacetime derivatives

x(g, &g) = o. (8 1)

Such a transformation is identical for the classical part
of the efFective action I [P] = I [g ], where the boldfaced
notation is used for the classical action in the initial vari-
ables (cf. Sec. II). For its one-loop part it is given by the
one-loop approximated Faddeev-Popov ansatz [61]

—Tr ln E —Tr ln a
2

= —Tr ln & —h Tr ln Q + 0 (&I/bg). (8.2)
2

It involves the wave operator of the full set of fields g,
deterinined by the total action Ii q [g ] which includes the
gauge breaking term with the gauge of the above type

~~.

awful

=
& [ a]+J &'*x' (s, &s)

(8.3)

g„„(*)= n'g„„(~), y (~) = n ~ y (&),

I[g] = I[g], 0-+0,
(8 4)
(8.5)

where c~ represents the set of conformal weights of fields

P (x) [65]. On the contrary, covariantly regularized quan-
tum corrections have the anomalous scaling behavior

d x i 2g~~ + ) cy += I

—Trln&[g]

Splat

y 0 j

and the corresponding ghost operator Q which is deter-
mined by the infinitesimal coordinate gauge transforma-
tion of gauge conditions (8.1).

On mass shell, that is on the solution of classical equa-
tions bI/bg = 0 for the background g, the expression
(8.2) is gauge independent [62] and exactly generates the
one-loop efFective action in physical variables [63]. This
freedom in the choice of y(g, Bg) allows us to choose
them as belonging to the class of the background covari-
ant gauge conditions [58,62], in which all the traces of the
noncovariant (3+1)-splitting of the spacetime completely
disappear and W and Q become local covariant difFeren-
tial operators of the second order. The functional deter-
minants of such operators already admit the covariant
regularization and have powerful calculational methods
for their asymptotic scaling behavior [58,64,62].

For any local field theory, the classical action has the
asymptotic scaling invariance under the global conformal
transformations of the four-metric and matter fields g =
(&~-(&) & (&))

A. Covariant renormahsation and anomalous scaling

Converting the efFective action (7.17) into a covariant
form consists in its transformation Rom physical vari-

1
, a, [g ], n -+ o, (8.6)

defined by the coef6cient A2 of the Schwinger-DeWitt
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proper-time expansion for the functional trace of the heat
kernel of the operator W = W[g] [58,66]. It is given by
volume and surface integrals over M and BM of local
invariants constructed out of the coefficients of the oper-
ator 3, spacetime curvature and the extrinsic curvature
of BM. Thus, in the limit of small distances the scaling
behavior of the full efFective action

1r, , , [g] =—,~' [g] innr, , , [g],4z' 2

0 ~ 0 (8.7)

is determined by the total A2 coefficient of both the gauge
field W and ghost Q operators in (8.2). For theories
invariant under local Weyl transformations (8.4) with the
local parameter 0 = 0 (2:) the relations (8.5), (8.6), and
(8.7) hold exactly, and the integrand on the left-hand
side of (8.6) represents the conformal anomaly given by
the volume density of A2 —the coincidence limit of the
DeWitt coefficient a2 (x) = a2 (x, z) [58].

B. Anomalous scaling on the gravitational instanton
and the normalisability of the Hartle-Hawking wave

function

)IMAM (q'Hj
ptree (p~) = const e (8.8)

I2M ((pgy) = Io + Ii/@gal

+0 ( 1/'p~), p (8 9)

This behavior follows &om the fact that the Euclidean
segment of a complex classical history P (r) = 4'(r~y, t),
0 & r & rg has in the large-P limit a simple form of a
practically constant and real scalar field coinciding with
its value at the nucleation point

P(r) ~ const = P~(y, t), P~(y, t) ~ p~. (8.10)

Application of the last equation with due regard for
the algorithm (7.28) and (7.29) is of crucial importance
in the model of the quantum birth of the chaotic in6ation-
ary universe. This model within a wide class of the field
Lagrangians is considered in Refs. [14,32]. However, the
issue of the high-energy behavior of the partition func-
tion, raised above, can be resolved in the universal and
model-independent way.

As is well known [8,9] the tree-level Hartle-Hawking
wave function is not normalizable in this model. As a
function of the in6aton scalar field y, it tends to a con-
stant for y —+ oo and does not suppress the contribution
of the over-Planckian energy scales. This follows &om the
algorith~ (7.28) with the tree-level partition function

y~ -+ oo. The field (8.10) generates an effective cosmo-
logical constant A = 3H2 (y~). For Lagrangians viable
&om the viewpoint of the in8ationary scenario, it grows
monotonically, H(rp~) ~ oo, for y~ -+ oo. The corre-
sponding solution is the metric of the Euclidean de Sitter
space (1.3) and (1.4) with the radius R = 1/H, which
generates the Lorentzian de Sitter universe by the nucle-
ation at r~ = n /2H. The deviation of the full Euclidean-
Lorentzian extremal &om the exactly de Sitter form and
its imaginary corrections are vanishing for large H and,
therefore, in this high-energy limit the doubled manifold
2M is a four-dimensional sphere 8 of vanishing radius
R, carrying the four-geometry (1.3) and (1.4) and con-
stant scalar field (8.10) g& ——(g„„,p~)

g~ = (g„„,&pa), R = 1/H(ya) -+ 0.

(s.11)

The Euclidean action on this instanton has a form
(VIIIB) with the coefficients depending on the model
of coupled gravitational and inffaton scalar field [14,32].
Therefore, the tree-level partition function (8.8), does not
suppress the over-Planckian energy scales y~ ~ oo.

The situation drastically changes in the one-loop ap-
proximation, when the classical action is replaced by
the effective one (7.17). The asymptotic behavior of
I'i i«& follows from Eq. (8.7) with the parameter 0 =
s '/H'(v ~)

I'i i, p [g~] Z ln, H((@gal) -+ oo,
H ((p~)

P
(8.12)

( ) H( )woo
A"'[g ] (s.13)

p (@gal) const [H(p~)],H(p~) m oo, (8.14)

where two extra negative powers of H(p~) come from the
Wronskian normalization (A~) i~2 for the inffaton mode
v~ (t) = [8+ (y, t)/Bp] i (see Refs. [14,32]).

Therefore, depending on the value of Z, this parti-
tion function either suppresses the contribution of the
over-Planckian energy scales or infinitely enhances it and
serves as an applicability criterion for the semiclassical
expansion. In particular, for theories with nonminimally
coupled inQaton field with quartic self-interaction, for
which H(p~) y~, the high-energy normalizability of
the distribution function, j d&p~ p (y~) & oo, implies
[12]

where Z is a total anomalous scaling on the de Sitter
instanton of vanishing size with the background fields
(8.11) and p is a mass parameter refiecting the renor-
malization ambiguity. Thus, the distribution (7.29) of
the de Sitter instantons has the behavior

Z & —1. (8.15)
The value P~(y, t) is parametrized in accordance with
the form of Lorentzian extremal by its final point (p, t)
and always satisfies the inequality P~ & p because the
scalar Beld slowly decreases during the in8ationary stage.
Therefore the limit y ~ oo guarantees large values of

Since the value of Z is determined f'rom (8.13) by the full
field content of the universe [67), this condition serves
as a selection criterion of physically consistent models
[12,13]. Moreover, together with Eqs. (8.9) and (8.12)
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the distribution function can generate the quant»Y» scale
of infiation [14] consistent with observations (see below).

These conclusions are restricted to the one-loop ap-
proximation. But general principles of unitarity and co-
variance, which we have just verified in this approxima-
tion, allow us to conjecture that beyond one loop, and
even nonperturbatively, the basic algorithm (7.28) and
(7.29) will still be valid with I'i

~ ~ replaced by the full
effective action I' calculated at the instanton solution
of the exact efFective equations. Therefore, the condi-
tion (8.15) will still hold with the exact nonperturbatiee
anomalous scaling Z replacing its simple one-loop ex-
pression (8.13).

XX. DXSCUSSXON

Thus, within the 5 expansion the theory of tunnel-
ing geometries generalizes to complex solutions which, in
their turn, can be described entirely in terms of the Eu-
clidean and Lorentzian spacetimes with real metrics and
matter fields. In the calculation of the quant»m distri-
bution function, they naturally lead to the notion of the
gravitational instanton. Despite the underlying complex-
ity, this distribution function features unitarity and, thus,
demonstrates a subtle interplay between unitarity, ana-
lyticity, and covariance, encoded in a partition function
of gravitational instantons weighted by their Euclidean
efFective action.

The technique of this paper essentially relies on the
convexity properties of the physical (reduced) Euclidean
gravitational action. In quantnYYI cosmology of closed
worlds this presents an immediate diKculty in the con-
formal sector which, in contrast to asymptotically Bat
spacetimes [41,42], seems to be ascribed to physical de-
grees of freedom. If there is no way to consistently de-
clare the conformal mode the unphysical one, one is left
with the only option briefiy discussed in Sec. V —to shift
this variable into a complex plane both in the integration
contour of the path integral [35] and in the argument of
the wave function or its quantum distribution p(ip, t)
This begins with isolating this mode in the sector of col-
lective variables &p and modifying the corresponding per-
turbation theory in the imaginary part of the classical
extremal for y. This modification is not critical for the
high-energy behavior of psM (ip)I H (ip) ~ oo, because
the suppression of the over-Planckian scales originates
not from the Gaussian nature of p2M (ip), but from the
anomalous scaling of Fi ~ p(ip), leading to the power
fallofF. In this limit Imip = 0 [H i(p) ], and one can
use the ordinary perturbation theory in Imp unrelated
to the asymptotic bound (4.29). Futher discussion of this
problem goes beyond the scope of this paper. We only
mention that, ultimately, the correct treatment of the
conformal mode might result in merging (at the tec&YIscal
level) the predictions of the no-boundary and tssYI»cling
wave functions [68] recently considered by the authors in
Ref. [14] on the ground of the presented technique.

As discussed in the Introduction, one of the motiva-
tions for a consistent theory of tunneling geometries is the
necessity to justify the semiclassical expansion and ob-
tain the quant»m scale of illation at the sub-Planckian
(GUT) energy scale. Although the paradigm of tunnel-
ing wave function versus the no-boundary one bears un-
doubtful advantages in the low-energy domain [4,9,10],
the implementation of this program for both of these
semiclassical wave functions was not successful. Their
distribution functions are extremely fiat and unnormal-
izable at ip ~ oo, and the only maximum for a semiclas-
sical p2M (ip) found for the no-boundary state generates
insu6icient number of infiationary e-foldings [70], violat-
ing the necessary bound N & 60. It is remarkable, that
the application of the technique, developed above, dras-
tically changes the situation.

First applied in the authors' work [12], this technique
yields the selection criterion (8.15) justifying the semi-
classical expansion and, as a by-product, suggesting the
supersymmetric nature of particle physics models [13].
Moreover, as shown in Ref. [14], the asymptotic behav-
iors (8.9) and (8.12) lead to a sharp probability peak in
the distribution of chaotic infiationary cosmologies driven
by a scalar field with large negative constant of no»mini-
mal interaction [14]. For a tunneling quant»YYI state, the
sub-Planckian parameters of this peak (the mean value
of the Hubble constant 0 10 m~, its quantum width
b,H/H 10 s, and the number of infiationary e-foldings
N 60) turn out to be in good correspondence with the
observational status of infiation theory [11]. Therefore,
this technique generates the quantum scale of inflation at
the neeeded GUT scale and serves as a quant»m gravita-
tional ground for the infiation model of Bardeen, Bond,
and Salopek [69]. This model, in which the infiaton field
coincides with the Brans-Dicke scalar, plays an important
role in the theory of the early universe, for it provid. es a
very efficient resolution of the known difficulties in the
formation of the observable large-scale structure. Thus,
the above theory of tunneling geometries can provide us
with a n»merically sound link between quant»YYI cosmol-
ogy, infiation theory, and the particle physics of the early
universe.
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