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Two-dimensional Poincare gauge gravity is known to be completely integrable in vacuum. Interac-
tion with matter fields usually destroys the integrability. We give a coordinate- and gauge-invariant
formulation of the matter-gravity dynamics for the general quadratic Poincare gauge model. The
particular cases of massless spinor and scalar field sources are analyzed in detail. Exact general so-
lutions for the chiral boson and fermion matter field configurations are constructed. These describe
the gravitational field of a black hole type and are similar to the vacuum solutions discovered earlier.
Nonchiral solutions are investigated with the help of numerical methods.

PACS number(s): 04.50.+h, 04.20.Fy, 04.20.3b

I. INTRODUCTION

Two-dimensional models of gravity have attracted con-
siderable attention recently [1—4]. Specifically, the string-
motivated theories [5,6] were discussed in connection with
the lower-dimensional black hole physics. The gauge ap-
proach to gravity, which was developed previously in
four dimensions [7—10], underlies now the attempts of
constructing string theories with dynamical geometry
[11—13]. At the same time, two-dimensional gauge grav-
ity is of interest in itself [14—16], since it offers a simple
system with which one can study difficult nonperturba-
tive quantization problems [17].

Recently we have demonstrated [16] the complete inte-
grability of the two-dimensional teleparallelism and the
general Poincare gravity model in vacuum. The coupling
to gauge, scalar, and spinor matter fields was shown to
destroy the integrability, in general. However, some static
type exact solutions were obtained. These turned out to
be of the same black hole structure as the vacuum so-
lutions. In this paper we extend and develop the ear-
lier results, presenting a general coordinate- and gauge-
invariant formulation of the gravity-matter dynamics in
two dimensions. A peculiar but common feature of the
standard matter sources (gauge, scalar, and spinor fields)
in two dimensions is that all of them have a vanish-
ing spin current. Hence the material energy-momentum
current is symmetric and covariantly conserved with re-
spect to the Riemannian connection. Thus, quite gener-
ally the Lorentz connection is explicitly decoupled &om
the two-dimensional matter. We restrict ourselves only
to these standard matter fields, which are otherwise de-
scribed by a general Lagrangian. The absence of the
spin-connection coupling considerably facilitates integra-
tion of the matter-gravity equations of motion. Although
in [16] we proved the integrability of the gauge gravity
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with an arbitrary gravitational Lagrangian, here we dis-
cuss a highly interesting particular quadratic model which
is described by a general action containing squares of tor-
sion and curvature. As before [16], the basic idea behind
the integration of the gravitational Geld equations is to
treat the torsion one-form and its dual as a co&arne basis,
and to choose the local coordinates on a two-dimensional
manifold as directly related to geometrical and mate-
rial variables. Previous attempts in integrating quadratic
gauge gravity with scalar and spinor matter sources were
reported in [18,19].

Using the general invariant formulation of the problem,
we prove its internal consistency and demonstrate that
the only degenerate torsion solutions are purely Rieman-
nian de Sitter (constant curvature) spacetimes with con-
stant matter field configurations. As a particular applica-
tion of the formalism developed, we consider the coupling
of massless spinor and scalar fileds to the two-dimensional
gauge gravity. The chiral solutions are constructed for
both matter sources in the most general case. Relevant
gravitational Geld configurations are again of the black-
hole type, although in general these are nonstatic and
nonstationary. The nonchiral configurations are more
complicated; these are investigated numerically.

The structure of the paper is as follows. In Sec. II
the central notion of invariant energy one-forms is in-
troduced, and we construct the invariant formulation of
the dynamics of quadratic gravity and arbitrary matter
sources in two dimensions. We give the complete de-
scription of the torsion degenerate solution; this reduces
generically to the de Sitter geometry without torsion.
The consistency of the formalism is checked explicitly.
In Sec. III the massless spinor and scalar fiekI models
are formulated in two dimensions. The matter equations
of motion are shown to be integrable on an arbitrary
Riemann-Cartan two-manifold, admitting the chiral so-
lutions. These chiral fermion and boson matter field con-
figurations are considered in Sec. IV as the sources of
the gauge gravitational field. The invariant gravity field
equations are integrated analytically. Finally, in Sec. V
the nonchiral solutions are discussed and the xu~~erical
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analysis of the gravitational field dynamics reveals again
the black-hole-type behavior of geometry.

two-dimensional Poincare gravity with the general La-
grangian quadrutic in torsion and curvature:

The two-dimensional Riemann-Cartan geometry has
rather remarkable properties. These are brieBy outlined
below. The notation and conventions coincide with that
of Ref. [16].

In the Poincare gauge approach, co&arne one-form 8
and a linear connection one-form I' P are considered as
the (respectively, translational and the Lorentz) gauge
potentials of the gravitational field. The correspond-
ing field strengths are given by the torsion two-form
T = D8 and the curvature two-form R P. In two
dimensions torsion is irreducible and contains only the
vector piece T = —t g, where g is the volume two-form
and the vector-valued zero-form of torsion is defined via
the Hodge dualization:

(2 1)

As in the purely Riemannian case, the Riemann-Cartan
curvature two-form has only one irreducible component,
and it can be expressed in terms of the curvature scalar
R = e JepJR p.

The case when the torsion square is not identically
zero, t2:= t t P 0, will be called a nondegenemte
Riemann-Carton geometry. Introducing [16] the new ba-
sic object of the Riemann-Cartan geometry, the torsion
one- jonn,

T:=e JT, (2.2)

II. CENERAL INVARIANT FORMULATION OF
MATTER AND GRAVITY DYNAMICS

A. Preliminaries: torsion as a two-dimensional
coframe

V = —
i

T—'T + —R rj p+ —R p'R ~+Arl.
(a, 1

|,2 2 2 )
(2.5)

Here a, b, and A are the coupling constants. Variation of
the total action f(V + L) (where L is the matter field
@ Lagrangian two-form) with respect to the coframe a,nd
connection yields the gravitational field equations [16]

Dt =-(—Vg +Z ),a
(2.6)

bdR=at q, (2.7)

where

V = t' —-R-' —A
2 4

(2 6)

is the so-called modified Lagrangian function. Notice
that the specific feature of the standard matter (scalar,
spinor, Abelian, and non-Abelian gauge fields) in two
dimensions is that the spin current is zero, and only
the canonical energy-momentum one-form Z enters the
equations of motion. These equations should be solved
together with the matter Beld equations bL/b4 = 0.

Although Eqs. (2.6) and (2.7) have a transparent co-
variant form, it will be more convenient to rewrite them
in terms of simpler variables which are exp/icitly gauge
and coordinate invariarit. With this aim in mind, we in-
troduce, instead of the vector-valued energy-momentum
one-form Z, two scalar-valued one-forms:

we can write a co&arne as
$':= t~Z, S*:=t g pZp. (2.9)

(2.3)

1 p 1g:= —g p8 A8P = —+TAT.
2 t2 (2.4)

The use of the torsion one-form as a coframe in the two-
dimensional Riemann-Cartan spacetime turns out to be
extremely convenient, and, in fact, underlies all the sub-
sequent discussion.

B. Invariant formulation of Poincare gravity Seld
equations

In [16] the general Poincare gauge theory in two
dimensions was formulated. Here we analyze the

Thus, the torsion one-form and its dual +T represent
in fact a specific coframe, and all the geometrical ob-
jects can be expanded with respect to this basis. %hen
t2 g 0, this coframe is nondegenerate, hence the termi-
nology. The volume two-form can be calculated, in the
nondegenerate case, as an exterior square of the torsion
one-form

The notation with the right is borrowed &om the Lie-
dual operator introduced in [16];note that here it is un-
derstood as applied to Z and not to another factor. The
two energy variables are independent, in the general case.
However, a useful relation is discovered with the use of
the Hodge dualization,

S*+eS=e(8 AZ )*T. (2.10)

d(t') = —(VT+ S), (2.11)

(2.12)

Recall, we are considering the matter with vanishing spin
current (all the norxnal matter in two dimensions sat-
isfy this condition), which was used in the derivation of
(2.10). The two-form 8 A Z describes the trace of the
energy-momentum tensor. The latter vanishes for mass-
less conformally invariant matter, and in this case the
energy properties of matter are described by a single one-
form S (and S* = —s S).

Contracting Eq. (2.6) with t, g, and 8, one finds
three equations: respectively,
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(,d*T =
~

t' —-V i&+-V-~Z. .
a j a

(2.13)
(2.20)

while the curvature is determined from the equation
Equation (2.12) is trivially satisfied in view of the field
Eq. (2.7), so this is a good check of consistency.

Furthermore, contracting (2.6) with E and with its
Lie dual, one obtains

2
B—+ 2A —*(8 A Z ) = 0, (2.21)

and the matter p-form 4', besides the equation of motion,
dS=TAS, (2.14)

ds*=T~s*+
i

-v —t ie n, z. +-& z. ~z, .
(1—
(a j a

(2.15)

In derivation of the last, equation the relation (2.10) was
used.

It is worthwhile to compute the differential of the mod-
ified Lagrangian:

bL 01 „ OI
Se ae ( ') @De

satisfies the constraints

~(T~D@)
I
T~( BL)

(2.22)

(2.23)

(2.24)

dv = —Id(t') + zT]. (2.16)

r ~=-~ ~r*. (2.17)

After some algebra, one finds that the above-mentioned
contraction yields the Lie dual connection form explicitly:

t'(I'* + du) = -(V * T + S*).
a

(2.18)

Finally, one can consider the contraction of (2.6) with
the Lie dual of the torsion vector, g ~tp. This gives
the explicit form of the Lorentz connection. Recall that
in two dimensions, the Lorentz connection one-form has
only one component which is expressed most conveniently
in terms of its Lie dual, I'*:= zg pI' ~. We invert to
obtain

Z = (e JL) —(e JD@)
~

(i9L l
(2.25)

In general, one cannot tell more without specifying
the matter Lagrangian I. and using the matter equa-
tions of motion. However, in one physically important
case we can move one step further. This is the case of
massless conformally invariant matter. Then the energy-
momentum trace vanishes, 8 AZ = 0, and the degener-
ate solution reduces to the torsionless de Sitter geometry:

These results (2.21)—(2.24) are direct consequences of
Eqs. (2.11) and (2.13), in which one must put t2 = 0, and
the general expression for the energy-momentum one-
form [20,21]:

Here the auxiliary variable u is defined by the differential
relation

T =0, A=const, 4 =const, (2.26)

t'du:=g ~t dt's. (2.19)

This variable is unphysical and represents a pure gauge
degree of &eedom for the local Lorentz group. As a whole
the right-hand side of (2.18) is gauge invariant.

The complete set of Eqs. (2.11)—(2.16), (2.18) repre-
sents the same information which is contained in the orig-
inal gravitational field equations (2.6), (2.7) and in the
equations of motion of matter. A further analysis of the
integration of the coupled gravity-matter field equations
will be carried out in this invariant formulation.

C. Degenerate torsion solutions

The two cases of the two-dimensional Poincare grav-
ity should be treated separately: degenerate Riemann-
Cartan geometry with the null vector torsion, t = 0, and
the nondegenerate case with nontrivial square of torsion.
In this section we discuss the degenerate solutions of the
quadratic Poincare gravity. Let us formulate the answer
for arbitrary matter sources.

When t = 0, the gravitational (2.6), (2.7), and matter
field equations have the following solution: The torsion
one-form is either self- or anti-self-dual,

where the constant value of the curvature is determined
by Eq. (2.21).

The same turns out to be true also for some conformal
noninvariant matter, e.g. , for massive scalar field with
arbitrary self-interaction [22]. In the rest of the paper we
will always consider the nondegenerate case with t2 g 0.

D. Consistency check of the invariant formulation

I'*+ du = (V*T+S*).
at2

(2.27)

As is clearly suggested by the field equation (2.7), the
Riemann-Cartan curvature Bcan be conveniently treated
as one of the local coordinates on a two-dimensional man-
ifold. However, one has then to check the consistency
of the whole scheme through the explicit calculation of
the curvature constructed &om the local Lorentz connec-
tion obtained from the field equations. In earlier studies
this was done for vacuum solutions [16]. In this section
we will demonstrate consistency in general, for arbitrary
matter sources. Let us consider the nondegenerate case
with t2 g 0. Equation (2.18) gives the general solution
for the Lorentz connection:
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One can straightforwardly prove, by taking the exterior
differential of the left- and right-hand sides of this equa-
tion, that dF* = —2'. A useful identity holds for the
square of energy one-forms:

coordinate-invariant Lagrangian two-form for the mass-
less Dirac spinor Beld is not unique, and one can choose
it either in the form

L = —(Qp A dQ + dQ A pQ),
(2.28)

or in the form

(3.7)

With the help of this relation and Eqs. (2.11)—(2.16) one
finds

L' = -(@~A *dQ + *dQ A pQ).
2

(3 8)

d(V*T+8*) = —,d(t') A(V*T+S*)+ RT -A*T,

(2.29)

and the consistency proof is completed after taking (2.4)
into account.

III. MASSLESS MATTER FIELD SOURCES

A. Massless fermions

It is probably worth mentioning that there are two
types of fermion models in two dimensions. Although
one can clearly establish a correspondence between them,
formally the Lagrangians are different. Dirac spinors in
two dimensions have two (complex) components,

(3 1)

and the spinor space at any point of the space-time man-
ifold is related to the tangent space at this point via the
spin-tensor objects: the Dirac and the Pauli matrices.
These were described in [16]. To recall, everything is de-
fined by a single object, a matix-valued Dirac one-form

(3.2)

which satisfies

1
qAdg —-(dq)g =0.

2
(3.9)

The exceptional degenerate case was analyzed above,
hence we assume that t2 P 0, and the one-forms T and *T
can be treated as the co&arne basis in a two-dimensional
Riemann-Cartan spacetime. As in the preceding section,
we prefer to work with explicitly gauge-invariant objects.
It is convenient then to consider instead of the spinor
(3.1) two Lorentz-invariant complex functions:

(3.1o)

The Dirac equation (3.9) for these variables yields [using
(2 3)]

To recall, in two dimensions there is no interaction of
spinors with the Lorentz connection, and hence the above
Lagrangians contain ordinary exterior differentials and
not the covariant ones. Nevertheless, the theory is in-
variant under local Lorentz rotations. Two Lagrangians
L and L' provide two difFerent models of spinor dynam-
ics in two dimensions. Although it is easy to prove that
the equations of motion for the spinor field g are the
same for (3.7) and (3.8), their energy-momentum forms
are different. Thus the two models are distinguished by
the gravitational interaction. We will analyze in detail
the model defined by (3.7), and will comment on the
possible difFerence for (3.8) later.

The (Dirac) field equation obtained from the variation
of L with respect to g reads

A 7 = —2759)

where p5 is determined by the Hodge dual,

(3.3) 1, /T —*T)
(T —*T) A dpi — t'd

~

-~ pi ——0,
2 g

t' (3.11)

(3.4)

We will use the following explicit realization of the Dirac
one-form:

0

q (i)'+ 8')

or, equivalently, the Dirac matrices

(3.5)

0 11 - t'0 11 t 1 0&
Ol &'=l1 Ol ~s=lO

(3.6)

The Dirac matrices p satisfy the standard relations
~ ~~+~~~ =2~ ~.

It is straightforward to see that the gauge- and

1 2 (T+*T)
(T + *T) A drp2 ——t'd

~2 g
t2 ~

&p2
——0. (3.12)

For nontrivial spinor fields these equations are immedi-
ately transformed into

d ,'(T+ *T) = O. —(3.13)

Combining (3.11) and (3.12) with their complex conju-
gates, one finds similar real equations,

d (T —eT) =0, d (T+*T) =0.

(3.14)

Lemma Poincare tells us that locally there exist real func-
tions; we denote them x and y, such that
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le 2l' (T+ *T) = dy. (3.15)lv il'
(T —*T) = dx,

Introducing the phases of spinor components explicitly,

v i = lv ile', (3.16)

dP = 4i (T —*T) + 4g (T + *T), (3.25)

with some functions 4q 2. Substituting this into the
Klein-Gordon equation (3.24), one finds that locally there
exists such a scalar function z that

we find, using (3.13), that these phases depend only on
one of the above variables:

—Ci(T —*T)+42(T+*T)=dz. (3.26)

~ = ~(x) & = &(~). (3.17)

d pldpl (dpi)yl 0'2dyg + (dp2)y2)2

Iv il'd~—+ Iv 21'dP. (3.19)

It is easy to see, that for the spinor model (3.8) the terms
with y2 and P will have a different sign.

Inserting (3.15)—(3.17) into (3.18), we can write finally

S = Ai(T —*T)+ A2(T + *T), (3.20)

In principle, we have described the general exact so-
lution of the massless Dirac equation in an arbitrary
two-dimensional Riemann-Cartan spacetime. This is the
same for both the fermion models, (3.7) and (3.8). Let us
now turn to the analysis of the gravitational field equa-
tions. We will use the explicitly invariant formulation of
the Sec. II.

The energy one-forms read now

~id' ~
—dpi v i+ v 2dv2 —dv» v 2

= —
Iv il'd~ —

Iv 21'dP (3.18)

4i(T —*T) = dx, 42(T+*T) = dy, (3.27)

in complete analogy with the fermions, (3.15). The new
functions certainly satisfy x + y = z.

It is straightforward to calculate the energy one-forms
for the boson fields. From (3.23),

S = t Z = —[*(dQA T)dg —*(dQ 1), dT) *dQ], (3.28)
1

2

and, as for the fermions, S* = —+ S, since 6 h Z
0. Substituting (3.25) into (3.28), we obtain similar to
(3.20),

S = A, (T —*T) + A2(T + *T), (3.29)

where now

Ag .——-t 4'~, (3.30)

This describes a general solution of the Klein-Gordon
equation. A subcase comprises the field configurations,
which are characterized by

where we denote

d~ Iv il'
A

~& lv .I'
dx t2 '

dy t2 (3.21)

We are in a position now to analyze the solutions of
the gravitational field equations.

IV. CHILL SOLUTION
The one-form S* = —*S, well in accordance with (2.10).

B. Massless bosons

I, = ——dP A'dP.1

2
(3.22)

The sources of the gravitational field are obtained as
the variational derivatives of (3.22) with respect to the
frame one-form 8 and the Lorentz connection one-form
I" ~. One easily obtains

Z = —[*(dPA8 )dP —

*(dpi')7

) *dP), 7. p
——0.1

2

(3.23)

Variation with respect to P yields the field equation of
the scalar matter: i.e., the Klein-Gordon equation

*d*dP = 0. (3.24)

Since we are considering only the nondegenerate case
with t g 0, we can use the torsion coframe basis, and
write, in the most general case,

Let us now consider a gravitationally coupled massless
scalar field P with the Lagrangian two-form

Both the massless Dirac equation and the mass-
less Klein-Gordon equation admit chiral solutions. For
fermions this efFectively means that only one component
of spinor field is nontrivial. For bosons chirality can be
formulated in the sense of self- or anti-self-duality of the
velocity one-form dP. And in both cases the field equa-
tions describe right- or left-moving configurations. In this
section we describe the corresponding gravitational field.
Let us assume that y2 ——Q2 ——0 for fermion field, and
O2 ——0 for boson one. Then A2 ——0 both in (3.21) and
(3.30), and the energy one-form S is anti-self-dual (hence
S* = S).

Equation (2.7) and the integrals (3.15) and (3.27),

t2
T —*T = dx (spinor),

C i(T —*T) = dx (scalar), (4.1)

suggest a natural interpretation of the variables B and x
(B and x) as two local spacetime coordinates. Clearly,
x and x are difFerent in each case, but we can imify the
two problems easily without a risk of conhxsion. This is
described as follows. Equations (4.1) and (2.7) establish
the explicit form of the torsion coframe,
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sT = —
I

d—R+Bdz I, T = —d—R,
ga ) a (4 2) + —A=O.OA b

a
(4.15)

and hence, of the volume two-form,

1 bB
g = —+T AT = dxAdR,

t2 at2
(4.3)

Equation (4.7) is trivially satisfied.
The system (4.12)—(4.15) is integrated without difficul-

ties, yielding

and, finally of the spacetime interval,

1
ds =g p8 8 = —(*T*T —TglT)

1 ( b l b2

I
Bdz+ —dR

I

——dR'
t2 ( a ) a2

Here the unified notation is introduced, with

(4.4)

(4 5)

b
A = f(z) exp

I

—R—I,Ea)
(bB = Bp(z)t exp

I

—R
)

2 ( ) ( b
t = —

I
f(z)dz

I
exp

I

——R
Ia g ) q a

(2A a b

(a b 2a )'

(4.16)

(4.17)

(4.18)

d(t ) = —(VT + 8), (4.6)

for fermions, while for bosons this is function helping to
relate the two "coordinates, " namely, dx = 4&Bdx.

The solution will be complete, provided we find the
functions t2 and B explicitly. For this we should use
the invariant gravitational field equations (2.11)—(2.14)
which now read

with the arbitrary functions f(z) and Bp(z). Without
any loss of generality one can put Bp ——1 (this is al-

ways possible by redefinition of z). The gravitational
field defined by (4.16)—(4.18) has the same form for chiral
fermion and boson sources. The function f (z) is however
different for each particular source.

For fenniona combining (4.17) and (4.5) we find

dT =0,

(, 2-l
d(*T) =

I
t — V

I g

(4 7)

(4.8)

(
a

while comparison of (4.16) and (4.11) yields

f(z) = —
d

(4.19)

(4.20)

dS=Tn, S. (4 9)
Hence, we finally have the solution: chiral fermion field
(invariant component) reads

Equation (2.15) degenerates into (2.14).
From (3.18)—(3.20), (3.28), and (3.29) we have, for the

energy one-form,

( b
yi ——exp

I

——R+ ia(z) I,)2a
(4.21)

S = Adz, (4.10)
while the gravitational field is described by the spacetime
interval (4.4) with the B function given by (4.17), and

with

&:= -Iv il' (spinor), A:= t B@i (s—calar).

(4.11)
(4.22)

~ =2 (t2 = —[cp —a(z)] exp
I

R I——
a

(2A a b
+I +-+ —R'-R I,(a b 2a )'

Substituting (4.10) and (4.2) into (4.6), (4.8), and (4.9)
one finds

where co is an arbitrary integration constant;. The local
Lorentz connection reads

Bt2 2b-
BR a2 (4.12)

1 a (bI'* = du+ — ——R exp
I

—R
I
dz,

2 b
(4.23)

Bt 2

Bx a

1 BB b 2b-
B OR a a2t2

(4.13)

(4.14)

where u is a pure gauge contribution. Although the solu-
tion (4.21)—(4.23) is similar to the one discussed in [19],
these two are different. Namely, our solution does not
admit a matter-&ee limit, and contains a "ghost" case
when nontrivial fermion configuration has zero energy-
momentum (for a =const). These properties are oppo-
site to that of solution given in [19].
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f(x) = —(C'iB)' = —
I

(dP) '
«*) (4.24)

For bosons, combining (4.16) and (4.17) with (4.11)
and (3.25) one finds

1 BB2
B2 Bx
1 BBi

Bg By

1 — 1
VBg + —Bg ——0,at2 2

VB2 + —B2 ——0.
at2 2

(5 8)

while the scalar field P(x) remains an arbitrary function
of x.

Equations (5.6)—(5.8) make (4.6) trivially satisfied.
Using the field equation dB = —

& T, we can eliminate
everywhere the functions By 2 ln favor of the scalar cur-
vature variable:

V. NONCHIRAL SOLUTION 2b BA 2b BB
1 ) 2a Bx ' a By

(5.9)

1T = —(Bidx+ B2dy))
2

1*T = (B2dy ——Bidx),
2

(5.1)

where we denoted

The nonchiral solutions for the scalar 6eld are studied
in [22], so this section is devoted to the massless fermion
matter. Let us consider the general case, when both com-
ponents of a Dirac spinor y q and p2 are nontrivial. The
equations (3.15) suggest that the variables x, y can be
chosen as the two local coordinates on a spacetime man-
ifold. The torsion co&arne takes then the form

Then Eqs. (5.8) are both equivalent to

BR 2b ( 1 — 11 BRBR
BxBy a (at2 2) Bx By

(5.10)

BR Bt' 1 dn, 2b (BR—)
Bx Bx bdx a2 (Bx) (5.11)

In the same manner, we can express Ai 2 from (5.6)
in terms of other functions, and substituting them into
(5.7), find a pair of equations

Bg 2 '
Iv il'

t'
B2 (5.2)

BRBt2 1dp 2 2b- (BRi
By By bdy a2 (By)

(5.12)

Denoting also

2dn — 2dpAi:= —
Iv il' A2:= —

lv ~l' —,
dx dx

(5.3)

we write the energy one-forms as

S = Ag d& + A2dy, S* = Ag d& —A2dy. (5.4)

Now we are in a position to solve the set of invari-
ant gravitational field equations. Equations (4.6)—(4.9)
are the same as in the chiral case, while (2.15) is now
nontrivial [not reducing to (4.9)] and reads

These three last equations (5.10)—(5.12) determine the
dynamics of two basic geometrical variables, curvature
B and torsion t . Solutions then describe the behavior
of matter and the interval of spacetime. To recall, V is
given by (2.8).

In general, like in the chiral case, there exists an am-
biguity'in choosing the functions ii(x) and P(y). It is
not clear what physical conditions should determine these
quantities. Hence, we will con6ne ourselves to a class of
special solutions which do not contain this arbitrariness.
Namely, let us assume that both curvature and torsion,
B and t, depend only on one variable which is a linear
combination of x, y. Without losing the generality we
can choose

dS* = +T A S+ S A S*.
at2

(5.5)

Prom (5.2) and (5.3) we see that the functions

t, B~,2, Aq, 2 are not completely independent:

R = R((), t = t ((), (:=*+y. (5.13)

Denoting the derivative with respect to ( by the prime,
and introducing

Ai Bi da(x)
dx

A2B2
t2

dP(y) (5.6) P:= B', (5.14)

In addition to these algebraic relations, there are some
differential ones. Combining (4.9) and (5.5) one finds

we find, from (5.9),

2b
Bi ——B2 ————P.

a
(5.15)

1 BA2

A2 i9x

1 BAg

A, By

2 — 1
Ag —-Bg ——0,at2 2

2 — 1
A2 —-Bg ——0.

at2 2
(5.7)

Hence Eqs. (5.1) yield, for the spacetime metric,

b2 P2
(5.16)

At the same time (4.7) and (4.8) yield
where (:= x —y. As we see, the sign of t deter-
mines whether the variable ( is "time' (positive t2) or
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"space" (negative tz) coordinate. Th h
' ' e-

tation changes corres ondin 1

a e. e p ysical inte re-rp e-

p n ing y, and solution describes in
e ormer case a homomogeneous cosmology, while in the

latter case a static black-hole-type confi uration.

(5.10)—(
i e e invariant equations of motion

. 0 —(5.12) explicitly in terms of the function

The &unctions 'R, P determine th fie con guration of

itly
matter source. From (5.2) and (5.9) one finds explic-

(5.19)

and thus, finally,
P2'8 .—

7 (5.17) , = Iv, l
exp(xcx), v. = Iv 21 exp(ice) (5.20)

which determines the metric p t' f p . Un-proper ies of spacetime. Un-
der the assumption (5.13) E (qs. (5.11) and (5.12) yield

ssuming for definiteness that the si n of c

variables
e as e sign o .a, we can introduce the normal' dma ize

P = cy, (5.18)

with some constant c. For c = 0 the e
~ ~

or c = t e energy one-forms
~ . ~&are trivial, and hence this is effectivel th

a g os source We. will assume that c g 0.

z:=( br:= —R, p:= P, h:= —'R,
ac ' 2c

(5.21)

p (z)
6

5

4

3

2

j % 5 —0.5 0.5

h (z$~

30

25

20

15

10

5

—1.5 —0.5 0.5

0.5

—0.5

—1.5

2 % 5
—7 5 —2 5 2. 5 7.5 10 Z

FIG. 1. "Soliton"-t- ype solution for A = —1 with stabl awi s a y asymptotically constant p.
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and rewrite the system (5.10)—(5.12) as

dT —pdz

—= h(r +A),
dp

dz
dh ( 1 h—=hl p --+-("+~)

I

p p

(5.22)

where

A:= —A
4b

(5.23)

is the only kee parameter in the system.
Let us analyze Eqs. (5.22). In the general case,

these can be integrated only numerically, however, one
can make certain qualitative conclusions without using a

h, =0, p= po
——const, r = poz- (5.24)

This is apparently an unphysical solution, since via (5.19)
this describes a matter con6guration with constant infi-
nite energy density. However, one should remember that
such states of classical matter are not unusual in grav-
ity: these may occur, e.g. , in cosmological or black-hole
singularities.

Solution (5.24) is stable with respect to small pertur-
bations for z ', oo when

0(po &1 or po & —1. (5.25)

computer. The crucial observation is that the local and
asymptotic behavior of p(z) in fact determines all the
other functions.

To begin with, we notice that we can immediately write
one elementary exact solution of (5.22):

p (z)
10

8

2

1%5 —0.5 0.5

)2 (z)
3 % 5

2 0 5

2

1.5

0.5

1 \ 5 —0.5 0.5

r (z) 0.5

0 25

—0 25

—0.5

—0 75

—1 25

1 % 5 —0 4 —0.2 0 2 0.4 0.6 0.8

FIG. 2. Another "soliton"-type solution for A = —10 with stably asymptotically constant p and positive k.
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h = e exp(mz),

p = po + —exp(~z)
~

A + —[(ez —1) + 1] ~,
e ( pe»

K
)K

r = poz + —exp(~z)
~

A + —[(~z —2) + 2t ~,
po

K

(5.26)

where ~:= (ps ——'), and e is an arbitrary small constant.
PO

The same approximate solution can take place also forz,' —oo, but for another values of po..

The relevant approximate solution is straightforwardly
obtained &om the linearized system (5.22),

p(») =— )z —zo
(5.28)

at some point zo. The two other variables have the lead-
ing order singularities of the form

asymptotic configuration of the system in z .' +oo,
provided the asymptotic value of p belongs to one of the
domains (5.25) and (5.27). Notice that this conclusion
holds for any value of A.

Let us now turn to the analysis of possible singularities
vrhich can occur at certain finite values of z. Again the
behavior of p(z) is crucial. It turns out that this variable
can have only a simple pole singularities

1&po(0 or po &1 (5.27)

Summarizing, the solution (5.24) can be realized as an
r ~-lnlz-z

2

h=
i i

. (5.29)
((» —zs) lni» —zsi)

p (z)

6

5 0

3 0

2

—3
4

—2

h (z) o

-0.2

—0.4

—0.6

—0.8

—1.2

4 Z

—10

—20 —2 4 Z

FIG. 3. "Soliton"-type solution for A = +1 with stably asymptotically constant p and negative h.
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This result is again valid for all values of A.
The easiest way to verify (5.28)—(5.29) is to note that,

provided we assume that p(z) is large in a neighborhood
of some point z = zo [it is not necessary to guess a specific
ansatz for it, just enough to suppose that p(z) )) 1 for
z in this domain], one can write an approximate integral
of the system (5.22):

ln —+r = ro,
p
6

(5.30)

with some integration constant ro. Direct calculation us-

ing (5.22) yields
& (in~&+@) = —= 0 in the neighborhood

of zo. When p ', oo, this integral becomes exact. Now
we can integrate the system (5.22) to the end, determin-
ing the approximate behavior of h, p, r near a singularity.
At first, we make use of (5.30) and express h(z) in terms
of other variables:

)t = p exp(r —ro). (5.31)

Substituting this into (5.22), we find

p = exp{r —ro)[(r —1) + )i+ 1], {5.32)

dr exp(ro —r)
(71)2 + )i + 1

(5.33)

For all values of A, integration reveals the exponential-
integral functions Ei(r) or Ei, and the function r(z) can
be determined only in an implicit form by (5.33). For
example, when (A + 1) ) 0, one finds

and thus finally the equation p = &" can be formally
integrated

p (z),

P

—3

—6

)i (z)

1.75

1 5

1.25

O. 75

0 5

O. 25

o

—2

FIG. 4. Singular solution for A = —1 (singularity is at zs —9.11471). For z

constant.

2 4 2
; oo function p is stably asymptotically
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exp(ro —1)
z Zo Im exp(i/A+ 1)

QA+ 1

xE, (r —1+i/1+1) . (5.34)

The simple singularity properties (5.28) and (5.29) are
now recovered by making use of the asymptotic expansion

Ei(&) = "'g " 1 —
t + o(~g') .

It is probably worthwhile to notice that the behavior
of the energy density (5.19) near a singularity is quali-
tatively the same as in the chiral solution (4.19) (with

:~).
The above qualitative analysis can be supplemented

by the explicit numerical integration. Since the system
is autonomous, we can choose the zero of a z coordinate

freely. It is convenient to integrate, starting kom z = Q,

which coincides with a zero of the curvature r. The "cos-
mological" parameter A was varied in a wide range, both
for positive and negative values (including the specific
value A = —1; cf. the singularity analysis). There are
three difFerent pictures, described as follows.

(A) The "soliton" type solution, when y starts in —oo
at the asymptotically constant value in one of the sta-
ble domains (5.27), and then at +oo it tends to a con-
stant value in the domains (5.25). The "metric" function
h(z) then has a typical solitonic form, while the absolute
value of the curvature function r(z) diverges linearly inz,' koo. The results of numerical integration are given
in Figs. 1—3. Hereafter (a), (5), (c) refer to the graphics of
p(z), h(z), r(z), respectively. The matter density (5.19)
behaves like in a closed cosmological model: starting with
a sort of "big bang" &om an infinite value at z = —oo,

p(z)s

2

P

—3

)i (z)s

5

3

2

r (z)

4

2

—2

FIG. 5. Singular solution for A = —1 (singularity is at zp 3.53894). For z
constant.

0 2 Z

; —oo function p is stably asymptotically
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it then drops to a minimum at the extremum point of
6, and final1y all ends in a "big crunch" with infinite
matter energy density at z = +oo. Notice however that
depending on the signs and values of the coupling and
integration constants this picture can be interpreted ei-
ther as a true two-dimensional cosmological evolution, or
as a static gravity-matter soliton configuration.

(B) The "semisoliton" solution in which p either starts
or ends at an asymptotically constant value, while it di-
verges at soxne finite z = zo. The typical results of nu-
merical integration are given in Figs. 4 and 5. Note that
the matter density (5.19) is zero in singular points in view
of (5.30)-(5.SS).

(C) The solution starts and ends at singularities. The
relevant pictures are given in Figs. 6 and 7.

It is clear that, depending on the values of the cou-
pling constants, a possible "glueing" of the (B) and (C)

pieces can occur at singularities, hence giving rise to a
black-hole-type metric function h(z) with a sort of hori-
zon points. Alternatively, since the energy density (5.19)
vanishes at singularities, it appears that a matching of
"inner" (B) or (C) solution is possible with a vacuum
"external" solution. This matching problem will be dis-
cussed in details elsewhere.

VI. CONCLUSION

We have suggested an explicitly coordinate- and gauge-
invariant formulation of the gauge gravity interacting
with an arbitrary matter in two dimensions. This for-
malism is applied to the study of the integrability prob-
lem for the classical nonvacuum field equations. Massless

20

15

10

5

—5

—10

—15

—2. 5 —1.5 0.5

h (z),
17.5

15

12.5

10

7. 5

2. 5

2 ~
—1.5 —0. 5 0.5

2. 5

2

1.5

0.5

—0.5

—2. 5 —1 ~ 5 —0. 5 0. 5

FIG. 6. Solution for A = 1 with two singularities (at zs —2.64692 and zs 0.886013).
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p (z)4

3

P

—2

3

—4 —6 2 Z

4

3 0

P

—6 —4 2 Z

r (z)

2 Z

FIG. 7. Solution for A = —0.1 with two singularities (at zs —6.50005 and zs 1.56918).

fermion and boson 6elds have similar properties in two
dimensions, which is directly related to the vanishing of
their spin current. Chiral and nonchiral exact solutions
are constructed for both types of matter sources. The
results obtained would have natural applications in. the
string models with dynamical gravity. It is worthwhile
to mention here the recent discussion of canonical quan-
tization of the boson string theory with dynamical gauge
gravity [23]. Generalization to the more realistic fermion

and superstring models appears to be an extremely in-
teresting problem.
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