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Physical equivalence betvreen nonlinear gravity theories and a general-relativistic
self-gravitating scalar field
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We argue that in a nonlinear gravity theory (the Lagrangian being an arbitrary function of
the curvature scalar R), which according to well-known results is dynamically equivalent to a self-

gravitating scalar field in general relativity, the true physical variables are exactly those which
describe the equivalent general-relativistic model (these variables are known as the Einstein frame).
Whenever such variables cannot be defined, there are strong indications that the original theory is
unphysical, in the sense that Minkowski space is unstable due to the existence of negative-energy
solutions close to it. To this aim we first clarify the global net of relationships between the nonlinear
gravity theories, scalar-tensor theories, and general relativity, showing that in a sense these are
"canonically conjugated" to each other. We stress that the isomorphisms are in most cases local;
in the regions where these are defined, we explicitly show how to map, in the presence of matter,
the Jordan frame to the Einstein one and vice versa. We study energetics for asymptotically Sat
solutions for those Lagrangians which admit conformal rescaling to the Einstein frame in the vicinity
of Sat space. This is based on the second-order dynamics obtained, without changing the metric,
by the use of a Helmholtz Lagrangian. We prove for a large class of these Lagrangians that the
ADM energy is positive for solutions close to Sat space, and this is determined by the lowest-order
terms R+ aR in the Lagrangian. The proof of this positive-energy theorem relies on the existence
of the Einstein frame, since in the (Helmholtz-) Jordan f'rame the dominant energy condition does
not hold and the field variables are unrelated to the total energy of the system. This is why we

regard the Jordan frame as unphysical, while the Einstein frame is physical and reveals the physical
contents of the theory. The latter should hence be viewed as physically equivalent to a self-interacting
general-relativistic scalar field.

PACS number(s): 04.50.+h

I. INTRODUCTION

Metric theories of gravitation, which are based on a
Lagrangian density depending in a nonlinear way on the
scalar curvature [such theories somehow, improperly, are
usually called "nonlinear gravity" (NLG) modelsj, share a
general property, which has been extensively described in
several works: acting on the metric by a suitable confor-
mal transformation, the field equations can be recast into
Einstein ones for the rescaled metric, interacting with a
scalar field. It is therefore claimed that any NLG theory
is equivalent to general relativity (with the scalar field).

A similar phenomenon occurs in Jordan-Brans-Dicke
theory and its generalizations, the scalar-tensor gravity
theories (STG). The original pair of variables (metric +
scalar field) can be replaced by a new pair in which
the metric has been conformally rescaled, and in the
new variables the field equations become those of gen-
eral relativity: the scalar field, which is not adFected by
the transformation, turns out to be minimally coupled
to the rescaled metric. The original set of variables is
commonly called the Jordan conformal frume, while the
transformed set, whose dynamics is described by Ein-
stein equations, is called the Einstein conformal frame.

On leave of absence from Astronomical Observatory, Jag-
ellonian University, Orla 171, 30—244 Krakow, Poland.

A problem thus arises of whether the tensor represent-
ing the phyaica/ metric structure of space-time is the one
belonging to the Jordan frame or to the Einstein kame.

This problem can be traced back to Pauli in the early
1950s (quoted in [1j). In a system consisting of met-
ric gravity and a scalar field there is an ambiguity: the
metric tensor can be conformally rescaled by an arbi-
trary (positive) function of the scalar. Thus, in addi-
tion to the original (Jordan) and Einstein frames, there
exists an infinite number of conformally related frames,
each consisting of a pair (F(y)g~„,y) with a difFerent
F One asks, a. re the metrics in the frames (g„„,y) and

(F(y)g„„,y) also physically equivalent'? The same ques-
tion would clearly arise also for a more general change of
variables g„'„=g„'„(g p, (p), (p' = (p'(g p, y).

NLG and STG theories are in fact deeply connected,
as described in this paper, and can actually be viewed
as diferent versions of the same model. We now define
the notion of Jordan frame and Einstein kame for NLG
theories; the main purpose of this paper is to analyze the
problem of determining which "frame" is the physical

We use here the word "kame" to denote a choice of dy-
namical variables, rather than a choice of a reference kame
in space-time; this terminology is commonly used in the lit-
erature on the subject. Sometimes the term "gauge" (also
abused in this context) is used instead of "frame" [10].
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one. By "physical frame" we mean a set of 6eld variables
which are (at least in principle) measurable and satisfy
all general requirements of classical field theory, e.g. , give
rise to positive-definite energy density (we are aware of
the fact that the term "physical" is frequently abused in
the literature).

We assume, for simplicity, that the space-time is four
dimensional, although all the calculations can be actu-
ally carried out in higher dimension without signi6cant
modifications. The signature is (—+ ++), and we set
A = c = 8+G = 1. Let us consider the Lagrangian of a
vacuum NLG theory,

It is customary to rede6ne the scalar 6eld by setting p =
e')f ) ~; the Lagrangian then becomes

L = R —g" ftf„ftf„—2V($) ~g .

One sees that P is minimally coupled to g„„and is an
ordinary massive self-interacting scalar field with a po-
tential

L = f(R)~g,

which generates the fourth-order equations

f'(R)R„„— f(R)g„-„—V„V„f'(R)+ g„„Clf'(R) = 0,

(This transformation was rediscovered several times and
generalized to the case of Lagrangians depending also on
CI"R [5, 6).) The scalar p is dimensionless, and to ensure
the regularity of the conformal rescaling it is usually as-
sumed that p ) 0 (we will retake this point below). Then
the two metrics g„„and g„„have the same signature. Let
r(p) be a solution of the equation f'[r(p)] —p = 0 (it may
be not unique, and we will consider this problem later);
the 6eld equations for the new variables become

1+ (f("(p)) & "(&))&u )
(1.4a)

whereby G is the Einstein tensor of the rescaled metric
g~~~ and

Gp= p g""p„p„+— 2 r p —pr p . 1.4b

These (second-order) equations can be derived &om the
Lagrangian [3]

(1.2)

where f'(R) = ~&& and 0 = g""V„V„. In the vacuum
case, the Jordan kame includes only the metric tensor
g„„. According to a well-known procedure [2—4], we in-
troduce a pair of new variables (g„„,p), related to g„„
(and to its derivatives) by

which is deterinined by the original Lagrangian (1.1).
The variables (g„„,P) provide the Einstein &arne for the
NLG theory.

In the Jordan kame, gravity is entirely described by
the metric tensor g„„. In the Einstein kame, the scalar
field (t) acts as a source for the metric tensor g„„and for-
mally plays the role of an external "matterfield;" how-

ever, the original theory did not include any matter;
hence, we are led to regard the scalar field occurring in
the Einstein &arne (which corresponds to the additional
degree of &eedom due to the higher order of the field
equations in Jordan &arne) as a "nonmetric" aspect of
the gravitational interaction. From this viewpoint, the
NLG theory, although mathematically equivalent to gen-
eral relativity (GR), is physically difFerent because in the
Einstein kame, where the equations coincide with those
of GR, gravity is no longer represented by the metric ten-
sor alone. However, another viewpoint is possible: one
could assume that the fourth-order picture in the Jordan
frame represents an "already unified" model including a
nongravitational degree of freedom (a minimally coupled
nonlinear scalar Beld), and that the gravitational inter-
action is described only by the rescaled metric in the
Einstein &arne (see Appendix C).

This clearly indicates that the problem of the physical
nature of the fields occurring in both frames should be
addressed prior to any other consideration on the physi-
cal signi6cance of the equivalence between NLG and GR.
From the outline presented above, one might be led to the
following conclusion: if one starts &om a vacuum NLG
theory, there is no way to decide a priori which frame
should be taken as the physical one; the choice of the
physical metric is an additional datum, which afFects the
physical interpretation of the model but is essentially in-
dependent of the formal structure of the theory. On the
other hand, if we formulate a gravitational theory includ-
ing matter 6elds, the ambiguity is broken by the coupling
of the metric tensor with such matter fields. In fact, the
two metric tensors g„and g„„ interact in a difFerent
way with each external field (we will discuss this point
in greater detail below); therefore, one should be able to
single out the physical metric by requiring that matter
fields be minimally coupled with it and that neutral test
particles fall along its geodesic lines.

This viewpoint, more or less explicitly formulated,
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seems to be shared by many authors. However, a crite-
rion based on the coupling of matter with gravity would
be effective only if the total Lagrangian were determined
on independent grounds, e.g. , by string theory. As a
matter of fact, this is not so: the theories we consider
in this paper are commonly viewed as fundamental ones
and constructed by adding usual interaction Lagrangians
to a purely gravitational one. The point, which some au-
thors seem to overlook, is that adding minimal-coupling
terms to the Lagrangian (1.1) already entails that the
Jordan kame is assumed to be the physical one. In
this situation, claiming that the Einstein frame is un-

physical, because the coupling between matter and the
rescaled metric is not the usual one, is a petitio prin-
cipii. It would be equally reasonable to add standard
interaction terms, minimally coupled to g„„, to the La-
grangian (1.6): the resulting coupling with g„„would
then turn out to be unphysical. In other terms, the
frequently repeated argument [7] in favor of the Jordan
kame, namely, that physical measurements are made in
this frame ("atomic frame"), since atomic masses are
physical constants there, can be equally well used in fa-
vor of the Einstein kame because the argument is a direct
consequence of the arbitrary (at this level of reasoning)
choice of the full action for a gravitational theory. Thus,
the ambiguity is still present.

Indeed, this ambiguity is faithfully represented in the
literature. The authors dealing with nonlinear or scalar-
tensor theories of gravity in the context of cosmology or
of high-energy physics can be broadly divided into four
groups. According to the authors of the first group, the
Jordan kame is the physical one and the Einstein kame
merely serves as a practical computational too12 [7—9].
(Barrow and Maeda [7] remark that the Einstein frame
is computationally advantageous only in a vacuum the-
ory. If matter, e.g., a perfect Quid, is included, the con-
formal transformation usually does not lead to simpler
equations, since in the Einstein kame the scalar field is
coupled to the fluid. ) The authors in the second group
regard the Einstein frame as being physical, either be-
cause of its resemblance to general relativitys [10,11],or
since the standard formalism for quantizing the scalar
field Buctuations in the linear approximation does not
apply in the Jordan frame (or at least is suspect there)
[12,13] or because the massless spin-2 graviton in Jordan-
Brans-Dicke theory is described by the Einstein-kame
metric [14], or finally because this is implied by the di-
mensional reduction of a higher-dimensional action [15].
The third group consists of the authors claiming that the
two &ames are physically equivalent, at least at the clas-
sical level, since conformal transformations do not change
the mass ratios of elementary particles and therefore do

However, Kalara et aL [7], while investigating the power-
law in8ation in the Einstein frame, interpret the solutions and
Gt their parameters as if this frame were the physical one.

Gibbons and Maeda [10] admit that there might be an ar-
gument (or merely a someone's prejudice} stating that the
"physically correct" frame is diferent from the Einstein one.

not alter physics ("physics cannot distinguish between
conformal frames" ) [16]. The last, rather inhomogeneous

group, involves authors who either use both conformal
frames without addressing the problem of which of them

(if any) is physical or work exclusively in the original Jor-
dan frame without making any reference to the existence
of the rescaled metric [17].

In our opinion, the strongest arg»ment that exists in
the literature in favor of one of the conformal frames (if
the universe is exactly four dimensional) is the one based
on quantization of field Quctuations. "It appears as if the
quantization and conformal transformation are two mu-

tually noncommutable procedures" [13]. Here we show

that classical relativistic field theory provides another ar-
gument, which points to the same conformal kame.

The main arguments presented in this paper can be
outlined in the following statements.

(i) In contrast with claims raised in the previous liter-
ature, nonlinear and scalar-tensor theories of gravity can
be equally well formulated, as far as formal consistency
is considered, in terms of either one of the &ames; from
this viewpoint, either kame can in principle be assumed
to be the physical one.

(ii) However, the physics described by nonlinear and
scalar-tensor theories of gravity is not conformally in-
variant and using different conformal &ames one finds
inequivalent effects. Therefore, choosing a correct (i.e.,

physical) kame is an indispensable part of theoretical in-

vestigation [18,19].
(iii) The physical metric should be singled out already

in the vacu~~m theory. the coupling of a given metric to
matter fields is, in fact, determined by the physical sig-
nificance ascribed to it, i.e., by its relation to the physical
metric.

(iv) In particular, if the physical metric is assumed to
be the rescaled (Einstein-frame) one, the original nonlin-
ear Lagrangian should include interaction with ordinary
matter in such a way that the corresponding coupling
w'ith the Einstein-kame metric turns out to be mini-
mal. This problem has, to our knowledge, never been
addressed in the previous literature. We provide here a
systematic and unique way to obtain Lagrangians, which
reduce to any given vacuum nonlinear Lagrangian in the
absence of matter, and reproduce upon a suitable rescal-
ing any (with some restrictions) minimally coupled mat-
ter Lagrangian.

(v) Since consistency arguments do not allow one to es-

Garay and Garcia-Bellido in [16] introduce a concept of
physical frame which is din'erent from ours. According to
them the physical frame is one "in which observable parti-
cles have constant masses, since in this frame particles follow

geodesics of the metric. " Then, by the assumption on the
form of the full action, the Jordan frame coincides with the
physical one. We notice at this point that in general relativ-
ity particles (with constant masses) usually do not move along
geodesics: consider for instance a perfect Suid with pressure.
Geodesic motion is rather exceptional, it occurs in the case of
pressureless dust and for noninteracting test particles.
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tablish which set of variables is physical, we investigate a
different criterion. This criterion is purely classical and
is provided by the positivity of energy for small Quctua-
tions of every dynamical variable around the ground state
solution.

(vi) The notion of gravitational energy in NLG the-
ories is inapplicable to this aim, due to the lack of a
positivity theorem for higher-order gravitational theo-
ries. To circumvent this problem, one should compare
two second-order versions of the same theory, namely, the
second-order dynamics obtained in the Einstein &arne
and the "Hamiltonian" formulation of the theory con-
structed, without rescaling the metric, through a Legen-
dre transformation.

(vii) We show that the positive energy theorem for non-
linear gravity, proven by Strominger [20] for a quadratic
case, holds for a larger class of Lagrangians for which the
Einstein frame can be defined around Hat space. Actu-
ally, whether or not the Arnowitt-Deser-Misner (ADM)
energy is positive depends on the potential (1.7). The
existence of the Einstein &arne is in any case essential
for assessing classical stability of Minkowski space and
positivity of energy for nearby solutions. In the Jordan
&arne, the dominant energy condition never holds. For
these reasons, the Einstein &arne is the most natural can-
didate for the role of physical frame in NLG theories.

The paper is organized as follows. In Sec. II, we discuss
in full detail the statements (i), (ii), and (iii) above, using
examples taken &om the literature. We provide there
a global and complete picture of relationships between
NGL and STG theories and general-relativistic models of
a scalar field, while previously only separate connections
were known. Section III is the heart of the paper. We
discuss there items (v), (vi), and (vii). We investigate
there a large class of nonlinear Lagrangians, for which
Hat space (in the Jordan frame) is a solution and the
Einstein &arne exists for it. While the ADM energy can
be de6ned for any asymptotically Bat solution, one is
unable to establish its sign in the Jordan frame. In the
Einstein frame, the relation betwen the interior of the
system and its total energy takes on the standard form
known &om general relativity. This fact convinces us
that the Jordan &arne is unphysical. Section IV contains
conclusions. All technical parts of the paper are moved
to the appendices and the main body of the paper can be
read without consulting them. In particular, Appendix B
provides theoretical background for some results applied
in Secs. II and III. The "inverse problem of nonlinear
gravity" (finding the purely metric nonlinear Lagrangian,
which generates a prescribed potential for the scalar field)
is presented in Appendix C.

II. CONSERVATION LAVE S AND INTERACTION
OF GRAVITY VfITH MATTER

Some authors have tried to solve the problem of deter-
mining the physical metric by showing that only one pos-
sible choice allows one to obtain a divergenceless energy-
momentum tensor for any self-gravitating matter. Brans
used this arg»ment to claim that only the Jordan frame
is physical [18],while in a recent paper [21] Cotsakis was

led by a more detailed investigation of this point to the
conclusion that the Eistein frame is the physical one. Un-

fortunately, an error invalidates Cotsakis' proof. Here
we show that studying the conservation laws for matter
does not allow one to find out which frame is physical:
the equations of motion for matter and gravity form con-
sistent and closed systems for both Jordan and Einstein
frames.

Our basic assumption is that the gravitational interac-
tion of matter should be described by minimal coupling
with the phyaical metric tensor field. In other words, the
physical metric of space-time should be identified prior
to the construction of the Lagrangian for a gravitating
system. Different identifications of the physical frame
will give rise to (mathematically and physically) inequiv-
alent Lagrangians. This assumption is not commonly
accepted; e.g. , the authors of [13] argue that the Einstein
&arne is physical, but nevertheless they assume that mat-
ter minimally couples to the metric in the (unphysical)
Jordan &arne. A similar viewpoint is taken by Alonso et
al. in [11].

The assumption is based on the postulate that the
great advantage of Einstein s general relativity, i.e.,
the universal validity of the minimal-coupling principle,
should be retained in NLG and scalar-tensor theories of
gravity. The principle is partially abrogated in the so-
called "extended Jordan-Brans-Dicke theory, " where the
ordinary ("visible" ) and dark ("invisible" ) matter min-

imally couple to different (conformally related) metric
fields (Damour, Gibbons, and Gundach in [7]). There-
fore, although observationally viable, we do not take this
theory into account in this paper, on theoretical grounds.

In the first part of this section, we discuss the impli-
cation of our assumption in the context of NLG theory,
considering separately the two cases: either the Jordan-
frame or the Einstein-kame metric is regarded as physi-
cal. We show that the two cases describe diferent phys-
ical models of gravitational interaction of matter fields,
and we show that each of the two models can be consis-
tently formulated in both &ames.

The scalar-tensor gravity (STG) theories share with
NLG theories the feature that they can be reformulated
as a general-relativistic model for a self-gravitating scalar
field. As a matter of fact, any NLG theory can be also
expressed in terms of a scalar-tensor theory with nontriv-
ial cosmological function (without changing the metric),
as is explained in detail in Appendix B.Few authors seem

The crucial step of the proof consists in taking the diver-

gence of the fourth-order equation [Eq. (2.2) below]: Cotsakis
claims that it does not vanish in general. Actually its van-

ishing follows from a generalized Bianchi identity valid for

any gravitational Lagrangian depending on the full curvature
tensor and its derivatives.

In principle, we should discriminate between the dynami-

cal equivalence of Lagrangians and equality of the action in-

tegrals; this difference is signi6cant in quantum theory, while

in classical Geld theory it is irrelevant, as physical meaning is

given only to solutions of the Seld equations.
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to be aware of this relation, while many authors estab-
lish a connection between NLG and STG theories via
the equivalence to general relativity. NLG and STG the-
ories thus appear strictly intertwined in the literature,
sometimes causing confusion. There is indeed a phys-
ical difference between STG and NLG theories: in the
former it is a priori postulated that matter couples min-
imally to the Jordan-frame metric. The dynamical equiv-
alence clearly shows that, despite appearances, there is
no deeper diHerence between the two classes of gravity
theories. Nevertheless, for clarity reasons, we also dis-
cuss here interactions with matter and conservation law' s
for STG theories. First we investigate the consequences
of our assumption for the case of NLG theory.

A. NLG theory, case I:
the original metric g„„ is physical

According to the assumption, the Lagrangian for grav-
ity and matterfields (collectively denoted by @) readsr

L = [f(R) + 2E f, (e,g)]~g.

The gravitational field equations are then

(2.1)

[~gf(R)] = f'(R)R„„— f(R)g„—„—V„V'„f'(R)

+g„„Of'(R) = T„„(@,g), (2.2)

where, as usual, T„„=—~—
& „„(~gg &). It follows

&om Noether theorem (which in this case is equivalent
to a generalized Bianchi identity) that V„T""= 0. Us-
ing the general procedure described in Appendix B and
upon conformal rescaling (1.3) of the metric one gets
the Einstein-frame Lagrangian dynamically equivalent to
(2 1) [3]:

Here, as before, P—:~3lnp and the potential V(P) is
given in (1.7). The Beld equations for the xnetric and the
scalar in the Einstein frame can be obtained either by
transforming Eq. (2.2) or directly &om the Lagrangian
(2.3). As the latter contains interaction terms between
P and 4, a variational stress tensor for the matter field
4' alone cannot be derived unaxnbiguously &om (2.3).
Therefore, it is advisable to formulate the gravitational
equations in both frames in terms of the same tensor
T„„already defined in terms of the physical metric. The
metric field equations are then

G»„= t~„(P,g) + e 4 ~ ~T~„(4', e + ~ ~g), (2.4)

The coefficient in kont of E t, is chosen on the assump-
tion that the linear term in the Taylor expansion of f(R) has
coefficient 1.

L(g, g, @) = R(g) —g""Q,„P„—2V(P)

+2e 'v" '~& (@ e ~' '~9) ~g (23)

where

t„„=P „P„—2g„„g P Q P
—V(P)g„„ (2.5)

dV 1 2 f["(&)l "(&) (2 7)
d4 ~sp .p - x =x (4)=~v

The Bianchi identity now implies

V" t„„(P,g)+e ~ ~ &T„„(4',e ~ ~ ~g) = 0, (2.8)

and the two stress tensors are not separately conserved,
since the scalar field interacts with matter, as is explicitly
seen in Lagrangian (2.3).

In this picture the scalar field P infiuences the xno-

tion of any gravitating matter, except for the particular
case in which the interaction Lagrangian E t is confor-
mally invariant (see Appendix A). Hence, this theory is
not physically equivalent to general relativity: in fact,
gravity is completely represented by a metric tensor only
in the Jordan &arne (where it obeys fourth-order equa-
tions), while in the Einstein &arne, where equations of
motion for g„„are formally Einstein ones, there is a non-
geometric gravitational degree of freedom, represented
by the scalar P, which is universally coupled to xnatter.
Nevertheless, conservation laws consistent with the as-
sumption that the original metric g„„is the physical one
can indeed be found.

B. NGL theory, case II:
the conformally rescaled metric g~ is physical

The original metric g„„plays now the role of a vari-
able providing an already unified fourth-order version of
a theory including the gravitational metric plus a non-
linear scalar field (these theories form a basis for infia-
tionary cosmological models). The vacuum Lagrangian
(1.1) should first be transformed into the corresponding
Einstein-&arne Lagrangian (1.6), and then a minimal-
coupling Lagrangian for matter can be added:

I, = R g "y„y„—2V(—y)+2S .,(e, g) ~g. (2.9)

The matter Lagrangian E t is +independent, since there
is no physical motivation to assume that matter interacts
with the scalar. As previously, S ~ is constructed by
defining on physical grounds the form of the Lagrangian
for 4 in Minkowski space, then replacing the Sat metric
by the metric, which is viewed as physical. Therefore

t(@,g) in case I and 8 t(%', g) of case II are the same
fuctions of their respective arg»ments; clearly, for con-
formally related metrics, E t(4, g) g E t(@,g).

The Beld equations resulting &om (2.9) now read

plays the role of the effective stress-energy tensor for 4;
the equation of motion for P is

CI P = + e—~ ~ ~g""T„„(@,e + ~ ~g), (2.6)
dV

dP ~s

with
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G»- = t»-(»g) +T»-(~ g)

U4)=

(2.io)

(2.ii)

(E .,~g) =0,b
(2.i2)

where t„„is given in (2.5), with the potential as in (1.7)
and (2.7).

Here T„=—
& & „„(l~t~g), and due to the ab-

sence of any interaction between P and 4 not only the
total stress-energy tensor t„„+T„„is conserved, but the
stress tensors of each of the fields are also separately con-
served, V'"t„„=V' T„„=0.

To recast the theory with matter interaction in terms of
the original metric g„„,one should not use the relations
p(P) = f'(R) and r[p(P)] = R(g): these ones hold only
in the absence of matter. In fact, let us reexpress the
field equations (2.10) and (2.11) in terms of the variables

(p, g„„),with p = e+ ) ~. These read

G»„(g) = p
' {V„V„p —g»„U p)

JV(p)g.--+ T.-(~,pg),
2p3 dV
3 dp

(2.13)

(2.i4)

Taking the trace of (2.13), eliminating Clp with the aid
of (2.14) and using the explicit forxn of the potential,
V =

2 r(p) —2, f [r(p)], one arrives at the equation

R(g) —r(p) + g»"T»„(4',pg) = 0 . (2.15)

Recall that r(p) is defined by solving the equation
f'[r(p)] = p. Unless the matter is absent or its stress ten-
sor is traceless, p = f (R) is inconsistent with (2.15) and
does not provide the correct conformal rescaling to the
Jordan &arne. Provided that T„„doesnot contain covari-
ant derivatives of 4, (2.15) can be viewed as an algebraics
equation for the scalar 6eld p. Solving this equation for
p provides the correct relation, p = P(R; g, 4'), which al-
lows one to reexpress the scalar Geld p in terms of the
curvature scalar R(g) and obtain higher-order equations
of motion in terms of g and @ only. To avoid confusion,
from now on we shall distinguish between the original
unphysical frame, in which the vacuum Lagrangian takes
the form I = f(R)~g, which we call the vacuum Jor-
dan conformal kame (VJCF), and the (also unphysical)
frame into which the scalar field P can be reabsorbed, in
the presence of the matter term in (2.9), which shall be
referred as the matter Jordan conformal frame (MJCF).
Except for conformally invariant material systems, the
two Jordan &ames are di8'erent. A deeper understanding
of the reason why the two &ames do not coincide is pro-
vided by the Legendre-transformation method. The ex-
plicit construction of the MJCF, the corresponding non-

C. Frames and conservation laws in STG theories

Next we proceed to scalar-tensor theories of gravity
(see [1,24] for recent reviews). These are conceptually
different from NLG theories because these are not purely
metric gravitational models, as the gravitational 6eld is a
doublet consisting of a spin-2 field and a (nongeoxnetric)
spin-0 field, the Brans-Dicke scalar.

The action of a generic STG theory is (we use conven-
tions of Will's book [25])

S = d z~g pR — g»"p, »p,
~(~),.

16m p

+2~) 4 ) ~ ' ~(@ g)) . .(2.i6)

The "cosmological function" A(y) is often omitted, and
accordingly we consider here the models in which A(p)—:
0. If the coupling function ~(rp) is constant, the action is
that of the Thiry-Jordan-Fierz-Brans-Dicke theory (see
[1] and [25) for references). The field variables g„„and y
form the Jordan conformal frame (it is here that the con-
cept originated). By assnxnption, ordinary matter mixu-

mally couples to the metric g„„(and does not couple to
the scalar gravity); thus, by this assumption the Jordan
&arne is physical, i.e., describes measurable space-time
intervals. Proceeding as in the case of NLG theories one
introduces a scalar variable

linear Lagrangian and the resulting field equations are
given in Appendix B.In MJCF, being the already unified
&arne, matter is no@minimally coupled to the metric, and
it is a generic feature that in the absence of gravitation,
in Bat space-time, the nonlinear Lagrangian does not re-
duce to the standard form for a given species of matter.
This fact significantly infIuences conservation laws. As is
shown in Appendix B, it is possible to separate a "purely
gravitational part" in the gravitational field equations in
MJCF; this part satisfies the generalized Bianchi iden-
tity. Four matter conservation laws then follow from the
equations in the same way as in general relativity. These
involve a number of terms mixing the curvature scalar
with the matter variables and consequently do not re-
semble at all the elegant conservation laws T„' = 0 of
Einstein's theory. One can only learn &om them that
in this &arne the matter world lines explicitly depend
on curvature except for massless particles (photons); see
Appendix A.

In the Einstein &arne, on the other hand, the strong
equivalence principle holds; the only possible difference
between this version of gravity and general relativity may
arise &om the physical interpretation given to the scalar
field, whose entire role is con6ned to infIuence the metric
field. In fact, P is assumed to describe a nongeometric
spin-0 coxnponent of gravitation [22,23].

If f is not a rational function, (2.15) may be a transcenden-
tal equation, but in any case it is not difFerential mith respect
to p.

(2.17)

in this case it is not a function of the curvature but it
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coincides (up to a constant factor) with the already exist-
ing scalar field. With the aid of p one defines a new con-
formally related metric g„„=pg„„, the transformation
being already known since 1962 as Dicke trunsfonnation
[26]. In terms of the new variables (g„„,p) the action is
(up to a full divergence term)

moment»m tensor

1
T»u = —(87I —(p)G»u + V»Vup g»u 0 fp

Sx

~(v)+ (V',»Pu 2 g»u P' &Pa) (2.22)

S= dx —g R —~ + —p g&p p„
+p ~-t(@,p 'g -)j,

and after a redefinition of the Brans-Dicke scalar,

(2.18)
and the equation of motion

1 fW (u) yR
OV+ V' V,- I

——
I
+ = 0.

(dp y) 2~
(2.23)

d4 =—[~(&) + -.'1"'3 X 2~'fW
(2.19)

it takes the standard form of the action for the linear
massless scalar field minimally coupled to the metric:

S = d4x —g R —g""

( 16s ) ( 16m.
+

I

(~)
I

& t ~

@
(~)

g (2.20)

(y —8m)R — g»"p, »p „~g . (2.21)
1 (u(y)

16~ p

In the presence of minimally coupled matter the full La-
grangian in (2.16) is thus decomposed as L = Ls + I~ +

t~g. The term I~ generates the variational energy-

In terms of the Einstein-frame variables (g„„,P) the mat-
ter part of the action describes an interaction between
ordinary matter and the scalar gravity. Clearly, it is due
to the use of the unphysical (by assumption) variables for
gravity. As a consequence the variational (with respect
to g„„) "energy-moment»m" tensor for 4' that can be
defined by the Lagrangian rp ~E~ q(@,p ig„„) is difFer-
ent &om the matter stress tensor defined in the Jordan
frame and transformed to the Einstein frame; as already
mentioned, this notion is rather ambiguous and of little
use.

To study conservation laws for a STG theory one
should first correctly identify the energy-momentuin ten-
sor for the spin-zero gravity. First, the purely metric
gravitational Lagrangian L~ should be separated out. To
this end, one formally views the Brans-Dicke scalar as a
test Geld in a given fixed background g„„. The basic
ass»mption of scalar-tensor gravity theories is that the
average value of the field y determines the present value
of the gravitational constant, (p) = &. Therefore, the
situation where the scalar gravity is "switched off" does
not correspond to y = 0, but rather to assuming that y
is constant and equal to the present value of &~ (= 8s'

in our units); notice that p = 8m is actually a solution
of the field equation only if R = 0. Setting p = 8m and

t,
= 0 reduces the Lagrangian in (2.16) to its purely

metric part, Ls = 2R~g. This is the Einstein-Hilbert
Lagrangian of general relativity, as should be expected.
The scalar-gravity Lagrangian is thus defined (in the ab-
sence of matter) as L~ = L, —Ls: i.e.,

The invariance of the action integrals S and S~ under
spacetime translations generates eight conservation laws
(Noether's theorem), V"v»„= 0 and V"T„„=0 [the for-
mer can be directly verified using (2.23)]. r»„explicitly
depends on curvature. In Eqs. (2.22) and (2.23) g„„ is
an external metric field. When the back reaction of y on
the metric is accounted for, an ambiguity arises. Varying
the action (2.16) with respect to g„„one arrives at field
equations for spin-two gravity,

&»-(g) = r»-(~ g) + T» (@ g) (2.24)

and these allow one to eliminate the Einstein tensor &om
the expression for 7„„and the curvature scalar &om
(2.23). After these eliminations the field equations take
the standard form, which is usually applied in SGT the-
ories:

1 (» F g» +'P) + 2('P, »'P, gg» 'P' 'P, )

+ T»„(4',g) —= e»„(rp, g), (2.25)

Oy=
~

SENT — p' y,
( du)

2ld+ 3 ( d(p )
(2.26)

Equation (2.25) defines the effective stress-energy tensor
8„„for y, acting as one of two sources for the metric
Geld; this tensor is curvature independent. Clearly, also
v»„ is a source of metric gravity, according to (2.24).
Thus, two stress-energy tensors are assigned to scalar
gravity. Such ambiguity arises whenever spin-two gravity
is generated by two different sources, since Einstein field
equations alone determine only the total stress tensor,
which can be expanded in various ways into contributions
&om each source separately. The effective stress tensor
is not conserved and the relation

yields

s~)
8»u T»u +

I
1 ——

I
T»u~) (2.27)

gglD Tpv (2.28)

It is worth stressing that H~„appears when the Brans-
Dicke scalar acts as a source of metric gravity, while the
variational definition of ~„„is always valid, and the latter
tensor should be viewed as the correct expression for a
conserved stress-energy tensor (any possible ambiguities
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in the construction of L~ are irrelevant in this respect).
Whether or not ~„„provides a good physical notion of
energy is a separate problem, which will be addressed in
Sec. III.

In studying conservation laws for matter in the Ein-
stein frame we restrict ourselves to the case of Thiry-
Jordan-Brans-Dicke theory for simplicity; i.e., we set
u =const. Transforming (2.25) and (2.26) to the Einstein
frame one finds the following field equations for g„and
for the redefined scalar P = —ln rp, with p = (ur + z )

1
& - =4, 4,- —

2g -g p4, -4,p+8« '~T,.
=—t„„(P,g) + 8ne ~~T„„(@,g), (2.29)

0 Q = 4+pe ~~T„„g"". (2.30)

4 1 1 „1S = d 2:~g —R ——g""y g ——y R—.2
2" ~ - 12

+l .,(e,g), (2.32)

clearly shows that this frame is assumed to be physical. It
is natural to identify the Lagrangians for the metric and
the scalar as Ls =

2 ~gR and Lx ———~g( 2 g""g,„g„+
i2g R), then the latter generates the variational stress-
energy tensor for the scalar, 7„„(y,g). Instead of deriv-
ing it and the field equations from the Lagrangian, one
views (2.32) as a version of STG theory: upon identify-
ing p = 87r —

s y2, we recover the action (2.16) with

&u(&p) =
2 s

~ . Then the explicit form of i.„„(y,g) and
the field equations follow &om (2.22)—(2.24). As de-
scribed for the preceding case, the Einstein tensor and

The notation T„„(@,g) recalls that the matter stress-
energy tensor is defined in the Jordan frame. By taking
the divergence of (2.29) and using (2.30) one arrives at
four matter conservation laws:

V'"T„„pg P(T—„Pp —2T pP„) = 0. (2.31)

Finally, for the sake of completeness, we comment on
the conformally invariant scalar field model [27]. This
theory differs from STG theories in the physical inter-
pretation given to the scalar 6eld. The latter is in fact
commonly viewed as a special kind of matter rather than
being a spin-0 component of the gravitational interaction.
Bekenstein [28] has shown 20 years ago that the confor-
mally invariant scalar 6eld is equivalent to the massless
linear 6eld under a suitable conformal map, but this re-
sult is surprisingly little known to relativists. The form
of the full action in the Jordan frame,

the curvature tensor can be eliminated, giving rise to the
"efFective stress-energy" tensor O~„and to 6eld equations
analogous to (2.25) and (2.26). In the Jordan frame the
Noether theorem implies T"",„=7'"",„=0, while (2.27)
and (2.28) show that the efFective stress-energy tensor

0„ is not conserved in the presence of matter:~2

8"".= —12~(6 —~') -'T&"~. , y' & 6 . (2.33)

The Einstein-&arne Lagrangian is again (2.20), with P =

s ln ~+" or P = s ln ~ ", respectively, if y2 ( 6

or y ) 6. Thus the conformally invariant 6eld y is
nothing but yet another conformal image of the self-
gravitating massless linear scalar P. In general, a confor-
mal map g„„=F(P)g„„with arbitrary nonvanishing F
transforms the Einstein-Hilbert Lagrangian for the scalar
P minimally coupled to g„„ into

L(g &) = v-g F(&)R IF ——( 3

(2.34)

III. FIELD REDEFINITIONS, PHYSICAL
VARIABLES, AND POSITIVITY OF ENERGY

which can be transformed by further conformal maps
and 6eld redefinitions into any version of STG theories
(Alonso et al. in Ref. [11]). The interrelations between
the various gravity theories are depicted in Fig. l.

We conclude this section by emphasizing that the grav-
itational field equations for NLG in the Jordan conformal
frame, (2.2) and (2.9), difFer &om each other in the mat-
ter part, and similarly Eqs. (2.3) and (2.8) in the Ein-
stein frame have different matter source term. Thus, it
is clear that matter dynamics depends on whether the
physical metric is the one forming either the Jordan or
the Einstein (or in any other) frame. Transforming &om
the assumed physical frame to the other (unphysical) one
results in a number of bizarre terms depending on ordi-
nary matter and/or the spin-0 gravity; nevertheless, in
each case one 6nds consistent conservation laws. In par-
ticular, we stress that the divergence of the total energy-
moinentum tensor (the sum of all the terms in the gravi-
tational 6eld equations depending on 6elds difFerent &om
the metric one) does not provide a criterion for establish-
ing which metric is physically acceptable. Accordingly,
in the next section we will revert to a vacuum NLG the-
ory (no ordinary matter), and study the distinguished
role played by energy in gravitational physics; this will
provide a motivation for regarding the Jordan metric as
unphysical.

Actually one can also consider multiscalar-tensor theories
of gravity; see [1].

The Seld equation Cly —6By = 0 is invariant under an
arbitrary conformal map g„„ 1-+ 0 g„„associated with y ~
0 g (i.e. , y is scaled as a particle mass).

Only recently has appeared a work [29] applying the
theorem.

Having shown that, &om the formal viewpoint, NLG
and STG theories can be formulated in either of the two
frames without giving rise to inconsistencies, and having

Madsen [30] makes an incorrect statement on the subject.
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FIG. 1. Relations among NLG theories [the Lagrangian (1.1) is expanded in power series around R = 0], STG theories and
general relativity. Connection (A) is described in Appendix B, (Bl) and (B2); (B) is represented by (2.19) and (2.20); (C)
is outlined in Sec. I, (1.3) and (1.6); (D) and (E) are discussed at the end of Sec. II; (F) represents mappings between STG
theories with different u(y) [and different A(y), if any], being a combination of an arbitrary conformal rescaling and a suitable
field redefinition.

clari6ed the theoretical ixnplications of the choice of the
physical metric, let us revert to our original question: can
one choose the physical metric on arbitrary grounds?

Brans' response [18] is negative: JBD theory is not
"nothing but" general relativity plus a scalar, and the
metric tensor in the Jordan conformal frame has a direct
operational meaning —test particles move on geodesic
world lines in this geometry. This is, however, a free
assumption, and we have seen in Sec. II that there is
no formal method that could determine which &arne is
physical. The problem is further obscured by the fact
that there is no experimental evidence on interaction of
the scalar with known matter. It might, therefore, seem
(and implicit suggestions are sometimes heard) that a
self-gravitating scalar field can be arbitrarily coupled to
the space-time metric. Presumably this is the origin of
the view that physics cannot distinguish between confor-
mal &ames [16], the mere fact that the conformal map-
ping does not affect the particle mass ratios being clearly
insufhcient for proving it.

Let us make the terminology more precise. Different
formulations of a theory in different variables (frames)
will be referred to as various versions of the same the-
ory. This includes not only xnere transformations of
variables, but also transitions to dynamically equivalent
&ames. A theory (expressed in any version) is physical
if there exists a maxixnally symmetric ground-state solu-
tion that is classically stable. Classical stability means
that the ground-state solution is stable against small
oscillations —there are no growing perturbation modes
with imaginary &equencies. A viable physical theory
can be semiclassically ~I~~table: the ground-state solu-
tion is separated by a finite barrier from a more stable
(i.e., lower-energy) state and can decay into it by semi-
classical barrier penetration [31].The ground-state solu-
tion may not exist, e.g. , in Liouville field theory [32], but
in gravitational physics the existence of the ground-state

solution (Minkowski or de Sitter space) hardly needs jus-
ti6cation.

In most versions of a physical theory it is difBcult to
establish whether the ground-state solution is stable or
not and to extract its physical contents. Field variables

(i.e., &ames) are physica/ if they are operationally mea-

surable and if field Quctuations around the ground-state
solution, expressed in terms of these variables, have poe-

itive energy density. Since the energy density cannot be
de6ned for the metric field, the de6nition is directly ap-
plied to all other fields; the metric tensor inBuences the
energy density of any matter and thereby the physical
metric is indirectly deterxnined.

Energy density is sensitive to transformations of vari-
ables, particularly to conformal mappings. In terms of
unphysical variables the energy density is inde6nite and
although the total energy is formally conserved, it loses
xnost of its practical use. The ground-state solution has

(by definition) a total energy equal to zero, and when
the theory is formulated in the physical variables (the
"physical version") the solution represents the minimum
of energy. Thus, stability is closely related to positivity
of energy and instead of searching for growing pertur-
bation modes one can study the total energy for nearby
solutions [33].

These definitions apply to a relativistic classical field
theory (and not to Newton gravity) and are satis6ed by
all known unquantized matter. "For reasons of stabil-
ity we expect all reasonable (though not quantum!) field
theories to have positive energy density, and ere expect
all (classical and quantum) field theories to have positive
mass-energy" [34]. The weak energy condition is vio-
lated in some quantum states [35], while for all unquan-
tized matter the dominant energy condition holds [36].
Whenever the condition is violated one obtains physi-
cally meaningless results [37].

To show how this postulate works, consider a "ghost"
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complex scalar field in Minkowski space, minimally cou-
pled to electromagnetism:

F""F„„+D„Q(D"g) (3.1)

where D„Q = 8„$+ ieA„Q. Mathematically the theory
is acceptable in the sense that the Cauchy problem for
the field equations

B„F""—8n Re(ieg' D"vP) = 0, D„D"g = 0 (3.2)

is well posed. Physically, however, the theory is unten-
able, since the full energy-momentum tensor

1 f 1 p i 1F ~ l

— [D~-&(D-&*)
4+i 4 ) 2

+D„g(D„g') —g„„D g(D Q)'] (3 3)

is indefinite. The candidate ground-state solution, Q =
I"„„=0, has total energy E = 0 and is unstable, since
any other solution with F„„=0 and Im(g) = 0 has
negative energy. The "ground state" decays via a self-
excitation process, where energy is pumped out from
the scalar to the electromagnetic field and radiated away
to infinity. Such a system, which can emit an infinite
amount of radiation (while total energy is conserved) is
clearly unphysical.

We shall show that such effects do not occur for NLG
theories if there is exact equivalence between the Jordan
and Einstein frames. On the other hand, if the equiva-
lence breaks down for some Lagrangians or solutions, the
ground-state solution (Minkowski space) is likely to be
unstable. Before doing so, a few remarks on the prob-
lem of the physical (in)equivalence of the frames and the
notion of energy are in order.

Let us first recall the case of classical Hamiltonian me-
chanics. In phase space, particle positions and momenta
do not form a priviledged system of coordinates (any
choice of canonical coordinates is equivalent, from the
mathematical viewpoint), and the distinction between
positions and momenta is usually lost after a canoni-
cal transformation (e.g. , P; = q' and Q' = —p;). On
the other hand, to construct operationally II(q, p) for a
given mechanical system one usually discriminates po-
sitions and momenta, and kinetic and potential energy.
Once H has been constructed in terms of physical vari-
ables, one has the freedom of making arbitrary canonical
transformations. If the Hamiltonian is not empirically
determined, e.g. , in the case of abstract systems defined
by the action of a symmetry group on a Poisson manifold,
one should introduce some additional criterion to single
out the total energy among all conserved quantities. For
instance, one may require that the energy be bounded
from below and depend quadratically on half of the co-
ordinates. whenever this criterion is efFective, it aQows
us not only to identify the total energy but also to deter-
mine which variables play the physical role of momenta.
Whether or not the latter are»~iquely determined de-
pends upon the system under question.

To determine the physical variables and the Haxnilto-
nian (or Lagrangian) for the systexn, it is, in general,

insufhcient to study the system alone: one should take
into account its actual and possible interactions with its
surroundings. The greater variety of interactions, the
greater confidence that the dynamical variables describ-
ing the system, and its Hamiltonian are correctly de-
fined. One usually pays less attention to this aspect, since
in theoretical physics the physical variables are already
given from empirical data and form a starting point for
theoretical consideration: one is then interested in find-

ing out the largest group of transformations for a given
system, rather than in restricting the class of allowable
frames.

The very possibility that the system can interact with
external agents means that the theory describing it is
"open, " in the sense that the surrounding in not included
in the Lagrangian. On the contrary, in a "closed" theory
the system constitutes the whole universe, and no exter-
nal agent can make an experiment on it; in this situa-
tion, any set of variables describing the system is equally
physical and mathematical equivalence of frames means
the physical one [19]. In a closed theory, in fact, energy
is merely a first integral of motion without the distin-
guished features it has in an open theory. Each accepted
physical theory is open in this sense (there are some im-
plicit trends in quantum gravity to view it as a closed
theory [38]) and for instance in classical electrodynamics
and quantum mechanics one has no doubts which vari-
ables have direct physical meaning and which are merely
a convenient mathematical tool for solving a particular
problem.

In the case of gravity, in order to identify the physical
variables and to formulate a physical version of the the-
ory, one should experimentally study gravitational inter-
actions of various forms of matter: the motion of light
and of charges and neutral test particles, behavior of
clocks and rigid rods, etc. The point is that the presently
available empirical data are too Scarce to this aim.

A theoretical criterion for pure gravity or for a system
consisting of gravity and a scalar field is provided by
energy, owing to its unique status in theories of gravity.
In no other theories is energy effectively a charge. In any
theory of gravity (including string-generated ones) the
ADM energy should provide a good notion of energy [39]
and the positive-energy theorem (see, e.g. , [40]) should
hold.

For a NLG theory one should compare energetics in
the Jordan and Einstein frames. There is no generally
accepted definition of gravitational energy for a higher-
derivative theory, and in search for the physical metric
one should not compare (as is usually done) the fourth-
order version of the theory (1.2) with the second-order
one. It turns out that the Einstein kame does not provide
the unique second-order version of the theory, and it was
shown in [41] that any NLG theory (as well as theories
with Lagrangians depending on Ricci and %'eyl curva-
tures) can be recast in a version revealing a formal equiv
alence with general relativity without changing the met-
ric. [Yet the conformal rescaling of the metric is neces-
sary to have a version of the theory with Einstein-Hilbert
Lagrangian (1.6).] This is accomplished with the aid of
a Helmholtz Lagrangian [41,42] by applying a Legendre
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transformation. The Helmholtz Lagrangian contains the
original unrescaled metric (the Jordan frame), and to get
second-order equations of motion it is necessary to intro-
duce a new independent field variable, a scalar Geld p.
Thus, the field variables are now (g&„,p), and to distin-
guish the frame from the original Jordan frame (consist-
ing of g„„alone) it is referred to as Helmholtz Jordan
conformal frame (HJCF).

It should be stressed that the procedure is not an ad
hoc trick and the scalar is (up to possible redefinitions) a
canonical xnomentum conjugated to the metric g„„,and
represents an additional degree of freedom existing al-
ready in a NLG theory, in comparison to (vacuum) gen-
eral relativity. The HJCF exists if f"(R) g 0 (the R
regularity condition), i.e., if the theory is a truly nonlin-
ear one.

The formalism [41] is outlined in Appendix B. The
Helmholtz Lagrangian, which is dynamically equivalent
to (1.1), is

of these solutions is given by the ADM surface integral at
spatial infinity and the candidate ground-state solution
is stable (classically and semiclassically) if EADM & 0
and vanishes only for (q„„,p ). In general relativity the
positive-energy theorem holds provided the right-hand
side of Einstein equations satisfies the dominant energy
condition for any source of gravity. The efFective stress-
energy tensor 8„„for the spin-0 gravity does not satisfy
the condition. The kinetic part of 8„„is quite bizarre: it
contains second-order derivatives and is a homogeneous
function of order zero in the field. The latter peculiarity
can be removed by a field redefinition, while the forzner
cannot. In fact, setting p = F(y), with F' ) 0, one has
V„V„p= F'V„v„y + F"B„pB„yand the term survives
for any F. By setting p = e~ the effective stress tensor
becomes

cpu(g) v') = vpvvp+ ~pl'~up

L. = p[R(g) r(p)]—v-g+ f [r(p)]v (3.4) --(e 'f[r(")]+r("))g.-.1
(3 7)

where, as previously, r(p) is a solution of the equation
f'[r(p)] = p. The resulting field equations (B3), after
some manipulations, take on the form

a„„=p-'v„v„p —
6

(J-'f[ (p)]+ (J)jg„.1

and

=g, (g p)

2 1
ap = -f[r(p)] —-p r(p);3 3

(3.5)

(3.6)

The fact that an efFective matter source arises &om the
nonlinear part of the Lagrangian eras already noticed and ap-
plied in [48] in the case of a generic quadratic Lagrangian.

We do not consider in this paper other possible ground
states (for A g 0), such as de Sitter and anti-de Sitter spaces,
although our arguments can be suitably extended to deal arith
them.

these are equivalent to (2.14) and (2.15) in the absence of
matter. Equations (3.5) have the form of Einstein field
equations with the efFective energy-moznentum tensor 8„„
of the scalar as a source. Although the scalar is a new
independent variable, the number of degrees of &eedom
remains unchanged: the Lagrangian (1.1) describes a sys-
tem with three degrees of freedom [22,23], while it is ob-
vious from the field equations (3.5) and (3.6) that l~
represents two degrees of &eedom for g„„and one for p.

Assi~ming that the Lagrangian f(R)~g does not con-
tain the cosmological term, f(0) = 0, one finds that
Minkowski space is a possible candidate ground-state so-
lution toi4 (1.2). Then g„„= rj„„and p = p with
r(p ) = R(q) = 0 are the solution in the HJCF. Is
this solution stable? To assess it one considers solutions
(g„„,p) to (3.5) and (3.6), which approach (g„„,p ) at
spatial infinity at sufBcient rate. Then the total energy

The presence of a linear term in the efFective energy-
momentum tensor for any long-range field is undesired
because it causes difBculties in determining the total en-
ergy. The general procedure to couple a field to grav-
ity consists in regarding it at first as a test field on a
fixed space-time background (which we choose, for sim-
plicity, to be Ricci fiat), whereby the energy-momentum
tensor can be gauged by any identically conserved ten-
sor cr„„. In the case of the scalar y, the additional term
0.„„=V„V„y—g„„Cly in8uences the total energy as
measured at infinity. To avoid such ambiguity it is gener-
ally accepted that the energy-moment»m tensor for any
field should be quadratic in the Geld derivatives and con-
tain no linear terms. In the case of Eq. (3.5), this argu-
ment is not crucial because 8„„is uniquely determined by
the original nonlinear Lagrangian and no ambiguity can
arise. A definitive arguznent to regard the linear term
in H„„as unphysical is provided by the fact that due to
its presence the energy density can be of either sign and
be transported faster than light. The appearance of such
linear terms signals that either the theory is unphysical at
all (as is the case of Einstein-Gauss-Bonnet theory with
compactified extra dimensions [43]) or merely that the
field variables are unphysical and one should transform
to another frame. The same terxn also Qaws the energy-
momentum tensors (both variational and efFective ones)
for the Brans-Dicke scalar and the conformally invariant
scalar field in the Jordan kame.

In terms of the HJCF Geld variables one cannot prove
that solutions near the Hat space have positive energy;
on the contrary, the indefiniteness of H„„deceptively sug-
gests that negative-energy solutions exist and Minkowski
space is classically unstable. To establish whether it is
actually stable or not one xnakes the transformation to
the Einstein kame. While the HJCF exists under the R-
regularity condition f"(R) g 0, the Einstein frame exists
if the further condition f'(R) ) 0 is satisfied at all space-
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time points for a given solution. Since one is interested
in solutions which are asymptotically 5at at in6nity and
do not differ too much (in the sense given below) from
the Hat solution in the interior, one requires f'(R) & 0
and f"(R) g 0 for R ~ 0. These conditions hold foris

f(R) = R+ aR + ) ci,R" with a g 0 .
k=3

(3 8)

The existence of the first two terms in the expansion,
R+ aR2, is of crucial importance for the equivalence of
the Jordan and Einstein frames. These ensure the invert-
ibility of the Legendre transformation and yield p 1 in
the vicinity of Hat space. The vicinity consists of all
space-times for which R is close to zero; these include
spaces of arbitrarily large Riemann curvature if, e.g. ,
R„„=0. The quadratic Lagrangian therefore carries
most features of any NLG theory for which the equiva-
lence holds. On the other hand, if (3.8) does not hold,
the background solution, with respect to which the ADM
energy is defined, has no counterpart in the Einstein
&arne, and therefore there is no hope that information
on the total energy can be obtained by ordinary general-
relativistic techniques.

Let us assume that (3.8) holds. Consider now a
spacelike three-surface Z embedded in an asympotically
Hat spacetime (M, g„„). The asymptotic fatness in the
HJCF is de6ned as in general relativity, since the 6eld
equations are of second order; the weakest assumptions
[44] are (in obvious notation)

p = 1+O(R) = 1+O(r '~' ') . (3.10)

Under these conditions one now proves, contrary to what
might be expected from the properties of 8„„,that the
total energy is positive for a NLG theory.

Positive energy theo'-m for NLG theories. Let Z be
an asymptotically Bat, nonsigular spacelike hypersurface
in a spacetime (M, g„„) topologically equivalent to %4.
If (i) the Lagrangian is given by (3.8), (ii) p & 0 and
f"(R) g 0 everywhere on Z, (iii) a solution (g„„,p) to
(3.5) and (3.6) satisfies the condition (3.9) [and hence
(3.10)] on Z, and (iv) the potential V (1.7) for the scalar

Whether the Einstein frame can be defined globally or only
locally is a delicate problem, vrhich deeply affects the struc-
ture of global solutions of NLG models. A detailed discussion
of the problem +rill be given in a forthcoming reviewer article
on metric theories of gravity.

For technical reasons, ere restrict ourselves to the analytic
case.

g„„q„„+O(r ) ) g„„~ O(r ) ) e&0
(3.9)

Then the leading-order contribution to R is O(r 5~2 ').
The HJCF dynamics implies p = f'(R) and the La-
grangian (3.8) yields the asymptotic behavior of the
scalar 6eld:

P in the Einstein frame is non-negative, V(P) & 0, on
Z, then the ADM energy in the Jordan &arne is non-
negative:

EADM[g] = — dS;(g,~z
.—g,~;). & 0 .

+2
(3.11)

Proof T.he proof is a direct extension of that given
by Strominger [20] for f = R+ a R . Consjder the to
tal energy of the conformally related solution (g„„,p) in
the Einstein frame. Because of the falloff rate in the
HJCF, the metric g„„=pg„„ is asymptotically Hat and
the total energy of the solution is 6nite and given by
the ADM integral over a boundary two-surface S2 at
infinity, EADM [g] = —f&, dS; (g, . —g;). If V
the dominant energy condition holds and this energy is
nonnegative [40). Now, replacing g„„by g„„and apply-
ing (3.10) one easily finds that E~DM[g] = E~DM[g] and
hence that EADM[g] & 0.

There is a subtle conceptual difference between our
proof and Strominger's one: the use of the ADM inte-
gral for the total energy is not based on the fact that at
large distances the dynamics is governed by the lower-
derivative terms in (1.2), but rather on the existence of
the HJCF. In the latter the integral is de6ned as in gen-
eral relativity.

It should be stressed that the global equivalence be-
tween the Jordan and Einstein conformal &ames holds if
p & 0 and f"(R) g 0 everywhere on (M, g„„),while to
prove the theorem one needs only to assume that these
conditions hold on the initial-data surface Z, what im-

plies that the frames are equivalent in some neighborhood
of Z. Consider for example the collapse of a cloud of dust.
The exact relation between R and the dust energy den-
sity p depends on the form of the field equations (which
metric is physical, Sec. II); in general one expects that
R grows when p does. On the initial surface Z the dust;

is diluted and R 0, thereby the &ames are equivalent
in the vicinity of Z. Near the singularity p is divergent
and R is unbounded, p may change sign, and thus in this
region of the manifold there may be no mapping to the
Einstein &arne. Yet the energy, being conserved, is still
given by its value on Z.

In the class of solutions for which the two conformal
&ames are at least locally equivalent, Minkowski space is
the unique one having zero energy. In fact, let M contain
a spacelike surface Z on which the assumptions of the the-
orem hold. Then, they hold in some neighborhood Q(Z)
and the space-time region (H(Z), g„„) can be mapped
onto (M(Z), g&„). Let EADM[g] = 0 when evaluated on
Z; then g„„is Hat in Ll(Z) (Minkowski space-time is the
unique zero-energy solution in general relativity) and the
solution (g~„= rI„„,P = 0) is identically mapped back
onto (g„„=q~, p = 1) in M(Z). Then the space-time

(M, g„„)is Hat in the open region M(Z) and this solution

can be analytically extended onto the entire manifold M,
thereby the space-time actually is Minkowski space (%4
topology is always assumed).

Thus the total energy is positive in the Jordan kame
for all solutions to (1.2) containing an open region Q(Z)
where these are close to Minkowski space (R close to zero)
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and where V(P) & 0. The fiat solution is classically stable
against decay into these solutions and is a ground-state
solution for a given NLG theory.

Now we consider a few examples.
(1) f(R) = R+ aR . The Lagrangian is R regular,

since f" = 2a g 0 everywhere. If a & 0 (this is the case
studied by Strominger [20]), using the variable p instead
of P one has V(p) = s, (p —1)z & 0 everywhere, while

p ) 0 for R & —
2 . For all solutions in the Jordan frame

such that there exists a spacelike asymptotically Bat sur-
face Z with R & —

2 on it, the total energy is non-
negative and Bat space is classically stable. Strominger
has also shown that Minkowski space is the unique solu-
tion in the Jordan frame with vanishing energy. If a & 0,
the conformal equivalence holds in the region R &

~ 2
but V(p) & 0 everywhere and the theorem does not hold.
One may expect that in the vicinity of Bat space there
are solutions with negative energy and Minkowski space
is classically»~~table.

(2) f(R) = —(e + —1). This is again a R-regular La-
grangian. Furthermore, the Jordan and Einstein &ames
are globally equivalent since p = e + & 0 for any solu-
tion. The potential V(p) =

2 (lnp+ ——1) is positive
for a & 0 and negative for a & 0 [V(l) = 0]. Thus, for
a & 0, all asymptotically Bat solutions have positive total
energy and Bat space is stable against any perturbations,
small or large (classical and semiclassical stability). On
the contrary, for a ( 0 the dominant energy condition
does not hold, what signals existence of negative-energy
states and classical instability of Bat space.

(3) f(R) = —ln(1+ aR). In this case one has f"(R) =
—

&i+ &l, g 0 for R g ——,and V(p) = i, (inp —p+1).
For a & 0 one finds V(p) & 0 for p g 1 and fiat space
can classically decay into negative-energy states. For
a & 0 the conformal equivalence holds for R & ——and
V(p) & 0 for all p g 1, thus for these solutions the total
energy is positive and Bat space is classically stable.

In all these examples states close to Minkowski space have
positive energy if the coeKcient of the Rz term in the
Taylor expansion of f is positive. This is a generic feature
of Lagrangians (3.8). For R close to zero the two frames
are equivalent and the theorem holds if the potential is
positive. For vacuum the relation r(p) = R(g) holds;
using it in the expression for V(p), given after equation
(2.14), and expanding the potential around R = 0 one ar-
rives at V = 2aRz +O(Rs) for solutions. All R = 0 solu-
tions represent a local extremum of the potential. Hence,
energetics and stability of Bat space are determined by
the R term in the Lagrangian of a NLG theory.

The lowest-order contribution R+ aR to the full La-
grangian is crucial for classical stability of Minkowski
space. Whenever these terms are absent, e.g. , for f = R",
k & 2, the conformal equivalence with the Einstein kame
version is broken at Bat space. In this case as well as when
the Einstein kame is defined for R = 0 but the potential
is negative on Z, the classical decay of Bat space may
occur because the positive energy theorem at null infin-
ity (see [40]) does not hold. While the ADM energy is
conserved, there may be metric perturbations about the

background such that gravitational waves carry away un-
bound amounts of energy and the Bondi-Sachs mass re-
maining in the system decreases to minus infinity.

Whenever the ADM mass is positive for solutions close
to fiat space (i.e., if a & 0), the latter need not be
semiclassically stable. There may exist solutions (in the
Jordan frame) with negative energy, which are far from
Minkowski space. These are space-times so highly curved
(large ~R~) in the interior, that either the equivalence
with the Einstein frame is violated (p changes sign on
each asymptotically fiat Z) or the potential becomes neg-
ative in a region of any Z. The occurrence of any of the
two possibilities depends on the form of the Lagrangian,
e.g. , for the exponential one [example (2) above] there
are no such solutions, while for a cubic Lagrangian,
R+ aR —6 R, the potential is negative for large p
and some values of a. Semiclassical instability of stan-
dard ground-state solutions is a generic feature of higher-
dimensional theories: it was found both in Kaluza-Klein
theory in five [31,45] and in ten [46] dimensions, as well
as in string theory [46]. Although disturbing in itself, it is
not dangerous. Classical instability is a more severe prob-
lem and usually makes the theory untenable. If there is
another possible ground state, which is stable; however, it
is harmless, as in the case of the uncompactified Einstein-
Gauss-Bonnet theory, where d-dimensional anti-de Sitter
space is unstable, while Minkowski space is stable [47].
Minkowski space is classically imitable in a gravity the-
ory with Lagrangian aR+ bRz +cC p„„C»"[48] and in
a four-dimensional theory resulting kom Einstein-Gauss-
Bonnet theory with compactified extra dimensions [43]
(in all these cases there is no conformul mapping of the
theory onto a model in general relativity).

Equality of the total energy in the two conformal
&ames is due to the fact that E~DM, being electively
a charge, is evaluated at spatial infinity (where p ~ 1)
and is rather loosely related to the interior. The only
detailed information about the interior of a gravitating
system that is needed is whether all local matter energy-
fiow vectors are timelike or null. This connection is lost
in the Jordan kame. Also the Bondi-Sachs mass, when
expressed in terms of the Jordan frame, does not satisfy
the correct evolution equations, as is mentioned in [1].
These Baws do not reBect the genuine properties of spin-
0 and spin-2 gravity, these are merely due to an improper
choice of field variables. The efFective stress tensor 8„„
(3.7) does not provide the true physical energy momen-
t»m of the scalar field. As any redefinition of the scalar
cannot help, it is the metric variable, which needs redef-
inition.

Accordingly, the Jordan kame should be regarded as
unphysical not by an arbitrary choice of definition but be-
cause in the second-order version of the theory, whereby
the spin-0 and spin-2 component of gravity are singled
out, these variables are unrelated to the total energy of
the system. On the other hand, the Einstein kame satis-
fies all general requirements of relativistic field theories.
Therefore, it is the physical kame, and g~„determines
the space-time intervals in the real world. It provides the
physical version of a NLG theory. All other conformally
related versions of the theory, including the initial one,
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are unphysical in some aspects. This physical kame
is uniquely determined by the Lagrangian (1.1) and the
physical metric for the vacuum theory is g„„=f'(R)g„„
Physically, this transformation means a transition to the
frame where all fields, including spin-0 gravity, satisfy
the dominant energy condition. Then it is possible to
establish that Minkowski space is a classically stable lo-
cal minim»m of the energy. This holds true, however,
if the potential of the scalar 6eld does not attain a lo-
cal maximum at fiat space, which would destabilize the
latter. The only remedy is to exclude as unphysical all
Lagrangians giving rise to negative potentials near Bat
space, and this amounts to the requirement a ) 0 in
(3.8).

IV. CONCLUSIONS

Our analysis of the physical features of energy in NLG
theories leads to the conclusion that the Einstein-kame
metric should be regarded as the physical one. In this
perspective, whenever a nonlinear Lagrangian L admits
Hat space as a stable ground-state solution, it is physi-
cally equivalent to a scalar field with a potential V (de-
termined by I) minimally coupled to the rescaled met-
ric g„„ in general relativity. Then, any form of matter
should minimally couple to g„„and not to the scalar.
The strong equivalence principle is then retained and the
scalar, which can (though not necessarily) be viewed as a
spin-0 component of »reversal gravity, appears only as a
contribution to the full source in the Einstein 6eld equa-
tions.

Scalar 6elds are now very popular in cosmology. In-
stead of introducing ad hoc a special form of the scalar
6eld potential in order to solve a particular problem, one
can start &om some nonlinear Lagrangian, which pro-
vides the desired potential, provided that one can give a
deeper motivation for the former. Our conclusion does
not mean that any viable nonlinear gravity theory is iden-
tical with general relativity. Although the scalar field has
no impact on motion of ordinary matter (in particular,
free test particles move on geodesic lines), the space of
solutions is different. For instance, for nonconstant scalar
6eld there are no black holes with regular event horizons
since a black hole cannot have a scalar hair [49].

It is amusing to notice that 20 years ago Bick-
nell [2] concluded his study of the phenomenology of
purely quadratic theories with the words: "These results
eliminate gravitational theories based on quadratic La-
grangians &om the realm of viable gravitational theories
and point strongly towards the uniqueness of the Ein-
stein equations. " Our results regarding the Lagrangians
giving rise to potentials which attain a maximum for Bat
space (a ( 0) suggest the same conclusion. However,
a rigorous proof of the instability of fIat space in that

case is not yet available. The case of Lagrangians for
which a conformal mapping onto the Einstein kame does
not exists at Minkowski space (e.g. , R ) is more subtle.
The presently known techniques of investigating energy
and stability fail there, and. it remains an open problem
whether positivity of energy can be shown for a subclass
of these Lagrangians. Another open problem is how to
deal with Lagrangians which are not of class C at R = 0,
e.g. , R+ uR2+ R~~3

Finally, it should be emphasized that our method of
determining the physical metric for a gravity theory, by
studying the energy and stability in the vacuum the-
ory, does not apply when the interaction of matter with
gravity is already prescribed by a more fundamental the-
ory. This is the case, e.g. , of string-generated gravity,
where the string action in the four-dimensional field-

theory limit contains a number of fundamental bosonic
6elds coupled to the metric fields and to the dilaton. The
problem of identifying the physical metric appears there
too [50] and should be dealt with in a separate way.
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APPENDIX A: MOTION OF DUST AND
PHOTONS IN THE JORDAN AND EINSTEIN

CONFORMAL FRAMES

We consider here the explicit forms of the conserva-
tion laws in the cases I and II for NLG theories and in
the Einstein &arne for STG theories. %e show on explicit
examples that the difFerent versions of conservation laws
refIect the known geometrical property that null geodesic
world lines are preserved under conformal rescaling, while
timelike geodesic paths in one kame correspond to non-
geodesic paths in the other &arne: this fact has a physi-
cal counterpart in the different coupling between matter
and scalar 6eld in the two frames. The consistency of the
conservation laws described in Sec. II with the physical
assumptions is thus ensured both in case I and in case II.

1. Case I: the Jordan frame is physical

In Einstein kame the conservation laws for matter are
given by (2.8). Inserting the explicit form of the +field
stress tensor t„„and making use of the equation of mo-
tion (2.6) one arrives at four equations

The need of making all calculations in the Einstein kame
for STG theories is stressed in [1], [8], and [9], aithough these
authors assume the Jordan kame as physical.

= 0. (AI)
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Clearly, as is seen from the Lagrangians (2.1) and (2.3),
only conformally invariant matter does not interact with
the scalar (for this matter g PT p = 0 and the equation
of motion for P becomes 4' independent). This is the case
of electromagnetic field, hence photons travel along null
geodesic lines both in the physical and in the rescaled
geometries. We show that this result also follows froxn
the conservation laws (Al).

Consider the null eletromagnetic field, which is the
curved-space classical representation of the photon,

F„„=k„q„—k„q„, with k"k„=k"q„= 0; (A2)

here, k„are the covariant components of the wave vec-
tor and q„ is a spacelike covector determined up to
q„~ q„+ Ak„. Since F„„=B„A„—B„A„ is metric
independent, the components k„and q„are independent
of the conformal rescaling of the metric. Introducing in
Jordan conformal kame a scalar m =

4 g ~q qp & 0
one finds that the stress tensor for the null field is given
in this frame by T„„(F,g) = iok„k„. Then V„T""= 0
imply that k"V„k" oc k~, the wave vector is tangent to
nuD geodesic curves.

In transforming to the Einstein kame, g„„~pg„„,k„~ k„and q„~ q„, thus T„„(F,Ip ig) = pwk„k„,
with 6 =

4 g ~q qp. Equations (Al) for this stress-
energy tensor reduce to

highly complicated [Eq. (B19) in Appendix B], and the
worldlines are not geodesic.

Massless noninteracting particles move along null

geodesic paths in the physical metric g„„and this prop-
erty is preserved under any conformal rescaling. This
fact can be also explicitly derived kom the matter con-
servation laws valid in MJCF. For conformally invariant
matteris the field equations (B19) and the generalized
Bianchi identity gives rise to the four conservation laws

(A4)

Thus the proof essentially follows the same lines as in
case I.

3. Scalar-tensor gravity theories

By assumption, in the Jordan kame dust particles fol-
low timelike geodesic worldlines and photons follow the
null ones. In the Einstein kame, we can relate the mo-
tion of inatter to the conservation laws (2.31) by the same
procedure used for NLG theories, case I; in fact, equa-
tion (Al) coincides with (2.31) with ur—:0. The calcu-
lations for the general case follow essentially the same
lines, leading to the conclusion that photon worldlines
are geodesic in both &ames, while dust particles move
along nongeodesic curves for the metric g„„:

k"V„k" = P „k"—V„k"—k"8„1n(pw) k"
u"V„u" = 7(P'" + P —„u"u") .

2 'i (A5)

and the wave vector remains tangent to null geodesics
but the parameter 0 defined by k" = "& is not the one
parameter along them.

On the other hand, massive particles do interact with
the P field. Consider a self-gravitating dust. In Jordan
kame its stress tensor is T„„=pu„u„and V„T""= 0
gives rise to motion along timelike geodesics, u"V„u" =
0. Under the conformal rescaling one finds that u„=
@~u„and p = p~p [28], thus the dust stress tensor de-
fined in the Jordan frame and expressed in terms of the
Einstein kame is T„„=ppu„u„. While in the Jordan
frame the density current is conserved, V„(pu") = 0, in
Einstein frame the corresponding density current is cou-
pled to the scalar, V„(pu") = —~pu"P, „. Using this

fact in the conservation laws (A.l) one arrives at the fol-
lowing equations of motion for dust in g„„metric:

1
(PsP + P uPu&)

~6
In particular, the dust worldlines are geodesic for g„„
only if Q„=0.

2. Case II: the Einstein frame is physical

Consider a pressureless dust either being a source in
the Beld equations (2.10) or just a cloud of test particles.
In the Einstein frame its energy-moment»~ tensor is di-
vergenceless, and the particles follow timelike geodesic
curves. In MJCF the interaction with gravity becomes

APPENDIX B:DIRECT AND INVERSE
LEGENDRE TRANSFORMATIONS IN THE

PRESENCE OF MATTER

The equivalence of any NLG theory (1.1) to general
relativity plus the scalar Beld (1.6) is dynamical in the
sense that the spaces of classical solutions for each theory
are locally isomorphic, the isomorphisxn being given by
(1.3). This is directly achieved by the conformal trans-
formation of the field equations (1.2) [2,5], and is suf-
ficient for various purposes. On the other hand, using
this ad hoc procedure it is rather difBcult to establish
the particle contents of NLG theories [22,23] and to rec-
ognize the Beld P as an independent degree of freedom
present in the theory; instead one merely views P as a
function of the curvature scalar R of the original met-
ric [6]. These goals can be easily achieved using a La-
grangian formalisxn. A Legendre transformation allows
to transform the NLG Lagrangian (1.1) into a dynami-
cally equivalent one, linear in the curvature scalar and
including an auxiliary scalar field. This equivalent La-
grangian is named the "Helmholtz Lagrangian" by anal-
ogy with classical xnechanics. In addition to being elegant
and mathematically well grounded, the Legendre trans-

In this case the MJCF coincides with the VJCF.



5054 GUIDO MAGNANO AND LESZEK M. SOKOKOWSKI 50

formation and the related Helmholtz Lagrangian turn out
to be indispensable tools in. dealing with NLG theories:
one would hardly guess how matter 6elds with a pre-
scribed coupling with the Einstein-kame metric inter-
act with the Jordan-frame metric, without relying on the
corresponding Lagrangians. As is mentioned in Sec. II,
a naive approach leads to inconsistencies. In this ap-
pendix we outline of the general setting of the method
[3,4,41] (we refer the reader to [51] for a rigorous mathe-
matical exposition), and then present in detail how mat-
ter interaction terxns should be inserted into the gravita-
tional Lagrangians (both the original nonlinear one and
the Helmholtz Lagrangian) when the matter fields are
assumed to be minimally coupled to the Einstein-kame
metric.

'e= u

u' = a'(t, q~, u'),
(84)

LH = p; (q* —u*) + L(q', u'),

or one defines the Legendre map (q', u*) ~ (q', p, = &., )
and finds the inverse map u' = u'(q~, p~), which trans-
forms the previous first-order system into the Haxnilton
equations in the phase space of the system. An interest-
ing point, which is not always emphasized in textbooks,
is that both 6rst-order systems arise &om a variational
principle, defined by a degenerate 6rst-order Lagrangian,
the Helmholtz Lagrangian [42]

1. Helmholtz Lagrangian

For the nonlinear Lagrangian density (1.1) one intro-
duces the generalized conjugate momentum

1 DL

~g BR (81)

L~ = p[R(g) —r(p)]v-g+ f[r(p)]V (82)

The action functional corresponding to (82) is formally a
degenerate case of the STG action (2.16), with ~:—0 and
nontrivial cosmological function. A basic feature of the
Helmholtz Lagrangian is that it does not contain deriva-
tives of the scalar 6eld p. The Euler-Lagrange equations
obtained by varying the metric g„„and the scalar p in-
dependently in the action defined by (82) are

R(g) = r(p)

G~„(g) = V~V„p —gi,„I-I p

+ rp prp gg (83b)

which are manifestly equivalent to (1.2).
What has been done is nothing but a generalization

of a standard method of classical mechanics. Given a
first-order Lagrangian L = L(t, q', q') for a system of
point particles, the second-order Euler-Lagrange equa-
tions d . , —&, ——0 can be recast into a first-order sys-

~ d 81 81

tern, provided the Lagrangian is regular (det &,&,Bq'Bq~

0). This can be done in two ways: either one writes
the Euler-Lagrange equations in normal form,
a'(t, q~, q~), then one introduces independent velocity
variables u' and writes the equivalent system in the ve-
locity space

The scalar field p is clearly nothing else but the scalar
defined by (1.3). As in Sec. I, let r(p) be a function
such that f'[R]

I
—p; such a function exists ifR=T(P)f"(R) g 0, and in this case we say that the nonlinear La-

grangian (1.1) is R regular. -The Helmholtz Lagrangian
corresponding to (1.1) is then defined as

which can be regarded either as a function over the ve-

locity space, whereby (q~, u~) are the dynamical variables
and p; = p, (q~, u~) or as a function over the phase space,
where the variables are (q~, pz) and u' = u'(q~, p~. ) is the
inverse of the Legendre map defined above. In fact, the
solutions of (84) are the extremal curves in the velocity
space for the action functional

SL, —— p; q~, u~ q' —u' + L q~, u~ dt,

while the Hamilton equations can be derived Rom the
action (in phase space)

SH —— p, q' —u' q~, p~ + L q~, u~ q", pp dt.

The Lagrangian (82) plays the role of the Helmholtz
Lagrangian in phase space for any R-regular NLG La-
grangian (1.1). As in particle mechanics, it is also pos-
sible to define a Helmholtz Lagrangian in the velocity
space: this corresponds to regarding directly the "ve-
locity" R as an independent field u (as is done, e.g. ,
in [6], following [52] and without invoicing the notion of
Helmholtz Lagrangian), and introducing the Lagrangian

L~ = f'(u)[R(g) —u]V-~+ f[ulv (82')

The corresponding field equations are nothing but the
system (83), upon the substitution p m f'(u), r(p) ~ u.
For quadratic Lagrangians, which most &equently occur
in the literature, the two 6elds u and p coincide up to
a constant factor. More generally, since the R-regularity
is still necessary to ensure the equivalence of (82') and
(1.1), the choice of either p or u to represent the inde-

pendent scalar field occurring in the second-order pic-
ture is, Rom the mathematical viewpoint, a mere mat-
ter of convenience. The use of the scalar field u allows
one to bypass the problem of finding explicitly the func-
tion r(p), but then the gravitational equation contains
a rather complicated dynaxnical term for the u 6eld,
V„V„f'(u) —g„„CIf'(u), which depends on the particu-
lar choice of f(R) in (1.1). On the other hand, there is a
physica/ motivation to formulate the theory in terxns the
scalar field P, which can be equivalently defined either by
P oc ln p or by P oc ln f'(u), since this field interacts with
the Einstein-frame metric in the standard way (to this
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purpose, the problem of inverting f' cannot be avoided).
In the sequel of this appendix, however, it will be conve-
nient to write all the equations in terms of the conjugate
momentum p. (~gH) =0, (811)

Variation b@ of the matter fields yields, after some ma-

nipulations, the equations of xnotion for xnatter:

2. Inverse Legendre transformation

So far, we have recalled how a nonlinear Lagrangian
can be recast into a Helmholtz Lagrangian. Now we
present the inverse procedure: how to find a nonlinear
Lagrangian equivalent to a given Helmholtz Lagrangian.
In fact, let

L~(p;g, C) = ~g[pR —H(p;g, C)] (85)

(~gH) = 0, (86)

while variation of it with respect to p yields an algebruic
equation for the canonical momentum:

BH(p; g, 4')

Bp
(87)

Any solution of this "equation of motion" for p is de-
noted by P(R; g, @).Finally, varying the metric one gets
(second-order) gravitational field equations

1
(~gpR)—:pG„„(g) —V„V„p+g„„Clp

1
(~gH); (88)

clearly (87) and (88) are a generalization of (83). One
now defines, with the aid of a solution to (87), a nonlin-
ear Lagrangian for the metric and the matter:

be a generic Helxnholtz Lagrangian. The function H
plays the role of a Hamiltonian 9 for a system of xnatter
(denoted collectively by 4') and gravity g„„;thus it does
not depend on derivatives of the gravitational momentum

p, while it depends on covariant derivatives of @ up to
some order (the semicolon separates the field variables
which are accoxnpanied by their derivatives &om those
that are not). The variation of the action S~ = f L~d x
with respect to 4' yields the equations of motion for mat-
ter,

which are equivalent to (86), since (87) holds identically.
The latter also plays a crucial role in deriving gravita-
tional field equations. In fact, a variation hg"" in (810)
gives rise to the field equations

P(R; g, 4') G„„(g)—V„V„P+ g„„OP
1 b(~gH)

~g hg&"
p—P

(812)

3. Adding matter interaction in the Einstein frame

The starting point is a nonlinear vacuum Lagrangian
for pure gravity. Denoting the metric field in this VJCF
by g„„,one has L, = f(R)~g One ma. kes the stan-
dard transformation to the Einstein frame, p = f'(R)
and g&„——pg&„. Solving the latter equation for R, one

finds R = r(p), and this defines the direct and inverse

Legendre maps, p = &„" and r = r(p) The field. p, in&ST(7 )

the "phase space" of the system, becoxnes an indepen-
dent dynamical variable, and the relation p = f'(R) is a
consequence of the equations of motion generated by the
Helmholtz Lagrangian, or equivalently (after conformal
rescaling) by the Einstein-frame Lagrangian (1.5),

and these are equivalent to (88). The equivalence of the
field equations generated by LH and L„~ holds at least
whenever equation (87) has a unique solution.

One now uses the general formalism described above to
find out a nonlinear Lagrangian, and the corresponding
fourth-order field equations in MJCF in case II of Sec. II,
i.e., when matter is minimally coupled to the rescaled
metric g„„.The inverse transformation &om the Einstein
&arne does not lead back to the original VJCF but to
another (conforinally related) space-time metric. This
makes no surprise since, after adding interaction with
matter in the Einstein &arne, the inverse transformation
is applied to a diferent system. Let us see it in more
detail.

L„„=P(R; g, @)R~g—H[P(R; g, @);g, 4]~g, (89)

where R stands for R(g) (and is not an independent vari-
able). To show the equivalence of the two Lagrangians,
one finds the field equations resulting from the station-
arity of the action

with

L .= ~g R - 2,g""p,~p, - 2&(p)

r(p) &[r(p)l
p p'

(813)

(814)

(810)

This "Hamiltonian" has actually nothing to do vrith the
notion of energy and the ADM formalism in general relativity.

Assuming that the rescaled xnetric g„„ is physical, one
now adds the minimal-coupling term 2E t(g; 4') to the
Lagrangian (813). This clearly affects the equations of
motion, and, therefore, the relation p = f'(R), holding
in vacu»m, fails to be true in the presence of matter.

The present formalism restricts the allowed matter La-
grangians to those that do not depend on derivatives of
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(815)

The usual conformal rescaling g„„=pg„„ transforms
(815) into the following Lagrangian for g„„,p, and the
matter:

L (»'»@) = 9 &(pR-—2J"[I (&) —& ~ (&g'@)B .

(816)

It has the form of a Helmholtz Lagrangian (85) be-
cause the transformation canceled the kinetic term for
the scalar. The information about the original vacuum
Lagrangian L, is encoded in the potential V(p). The
requirement that LH does not depend on derivatives of
p is met provided E t contains no covariant derivatives
(thus, it may contain at most first derivatives of 4). The
Hamiltonian in the present case is

&(p g ~) = p (p) —f[ (&)] —2p'& (W @) (»7)
and the equation for p becomes (2.15), R(g) —r(p) +
g""T„„(4,pg) = 0; the matter stress-energy tensor is de-
fined, as always, in terms of the physical metric g„„and
expressed in terms of g„„.If 8 t, ——0 or T„„is traceless
(e.g. , matter is conformally invariant), then R(g) = r(p)
and p = f'(R) will be a solution; otherwise the solution
P(R;g, 4') g f'(R). The Helmholtz Lagrangian (816)
corresponds to a nonlinear Lagrangian (89) for g„„and
4. The NLG Lagrangian L„L so obtained reduces to the
original vacuum one if the matter fields are set to vanish;
however, in general, it is not equal to the sum of I„,and
a matter term analogous to I t (see the examples be-
low). In the purely metric picture, the relation between
the two metrics is expressed by g„„=P(R;g, @)g„„,
which explicitly depends on matter. For this reason the
MJCF metric corresponding to a given physical metric
g„„does not coincide in general with the VJCF metric

g„„, which is implicitly defined by g„„=f (R)g„„. In
MJCF the equations of motion for matter, (Bll), read

b

~@
~m'& i(pg;@) p=P

(818)

The fourth-order field equations for gravity, (812), can be
put in a number of equivalent forms. Here we recast them
in the form that is closest to that for the vacuum case.
Upon using r(p) = R(g) +g""T„„onefinds that PG„„+
&Pg„„r(P) = PR„„+ Pg„„g~i T p, the—n defining a
scalar M(R; g, 4') as the matter contribution to P, P =
f'(R) + M(R; g, 4), one arrives at the gravitational field
equations

the metric. Although stringent in itself, the restriction
admits the physically important cases of perfect Quid,
pure radiation, fields of spin 0, and usual fields of spin 1.
The full Lagrangian is then

P

I. = ~y R-,g~ p„J „—2v{p)+2e .,(g;e)

Here Q„„=f'(R)R„„—2 f(R)g~ —Vi.V f'(R)+gi.
f'(R) is the left-hand side of Eq. (1.2) and satisfies the
generalized Bianchi identity V Q„„=0. One sees that
matter and gravitational variables are inextricably in-
tertwined in (819), thus these equations do not provide
conservation laws similar to those in general relativity.
Formally, four matter conservation laws arise upon tak-
ing the divergence of (819); then the purely gravitational
part, Q„„, disappears and one is left with interaction
terms. The resulting equations, however, are too com-
plicated to be of any practical use even in the simplest
cases. Below we give two examples of finding L» for a
given form f(R) of the vacuum Lagrangian and for dust
or a scalar field + electromagnetic field as the matter.

4. Example I: quadratic Lagrangian
and charged scalar Seld

Let the vacuum Lagrangian in VJCF be I„,= (aR +
R) i/ —g. Then the vacuum inverse Legendre map is r(p) =
2 (p —1) and f[r(p)] =

4 (p2 —1). In the Einstein-
&ame metric g„„=pj„„oneadds the interaction with a
massive complex-valued scalar field g minimally coupled
to electromagnetic Geld:

g""s,i u, — —g""Dp0(DA')'3 „(J—1)'
2p

'" ' 4'

I"-&I"p-g"—"g ~ ~9.8~
(820)

= J» —
4 (J —1)' pg""D~0(—D 0)'
4a

mp QQ* — —F„Fp„g""g—~ ~g (821)

and Eq. (814) is solved to yield

R —g""D„Q(D„Q)*+ 1/2u
4mz@vp' + 1/u

(822)

The nonlinear Lagrangian (89) in MJCF,

[R —g""D„g(D„Q)' + 1/2a]
4 2~@ +

Here D„Q—:8„$ —ieA„Q. After conformal rescaling
g„„=pg„„ this Lagrangian becomes (up to a full diver-

gence)

Q„„+M(R; g, 4)R„„—V„V„M+ g„„OM
1—2g~-(&[r(p)] —f(R)3

= P(R; g, @)[T„„{Pg;@) —
2 g„„g ~T p] .

Epg g
gsv aP

8m 4a

generates the fourth-order gravitational field equations
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P(R, g; Q)R„„—V'„V„P+ g„„OP —PD(„Q(D„)Q)
'

1 [R —g~"D&@(D„g)'+ I/2a]z 1
g~ 4m'@g' y -' 4a

—(—P „+& g —4g„g g F pF~ ) =0. (B24)

with a potential determined by the function f .The in-
verse problem of nonlinear gravity consists in making an
inverse transformation. Given a scalar field, which self-
interacts via an arbitrary potential U(P), is it possible to
map the Lagrangian

I(g, 4) = ~g R g"-"4,.4,.—2U(4) (Cl)

5. Example 2: logarithmic Lagrangian and dust

Cases where Eq. (B7) for P can be explicitly solved
are quite exceptional. Besides the quadratic Lagrangian
and a simple Inatter source, one of these is provided by
a logarithmic Lagrangian (an exponential one is not the
case) and dust.

In the vacuum Jordan kame (VJCF) one has I
—ln(1+ aR) ~g [for simplicity, we consider only the sec-

tor in which (1 + aR) & 0] and proceeding as in the
preceding case one finds

p= & 0, r(p) =-«+1

L„=~g[pR —2p U(p)), (C2)

where U(p)—:U(~s, ln p). According to (B7), the inverse
Legendre map p = P(R) is a solution of the algebraic
(with respect to p) equation

in the Einstein kame to an equivalent Lagrangian L„L =
J:gf(R) in the VJCF? With one exception, the answer is
"yes," but in most cases the nonlinear Lagrangian cannot
be expressed in terms of elementary functions [even if

U(P) can be]. The procedure is as presented in Appendix
B. First one redefines the scalar by setting P = ~s3 lnp
and then makes the conformal rescaling g„„=pg„„ to
cancel the kinetic term for the field p. After discarding a
divergence term, (Cl) becomes a Helmholtz Lagrangian,

1 1 1f["(p)] = ——lnp, V(p) = —(lnp+ 1) —1
a '

2ap p

and

d
R(g) ——[2p'U(p)] = 0

dp
(C3)

LH = ~g pR ——(lnp —p+ 1) + 2p p
1 2-
a

The corresponding Legendre map is

1 f I ) 16p f 11
P(R) == /R+-

i
+ —IR+-

Ia) a E a)

(B25)

then the function f is determined by the relation f'(R) =
P(R).

An alternative method consists in solving an ordinary
difFerential equation directly for f Compa. ring (C2) with
B16), one sees that U(p) = V(p), where V is given

in (B14) with p = &~"), and r(p) its inverse function.
Then the equation U(p) = V(p) becomes a difFerential
equation for f(r ):

~g ( I'l ( 11 16p ( I &

a) E a) a E a)

16P ( 1~ '
16PIR+ —

~ + —IR+ —
Ia ar

——[2 ln(8p) —1]);8p
a (B26)

[there is another solution, P(R) ( 0, which is discarded]
and the resulting nonlinear Lagrangian is

2(f')'U(f') = rf' —f (C4)

2f' + 2U(f') —,= 0 ., dU

P p ff

Thus f, as a function of p, is given by

(Cs)

Solving this equation, however, is by no means easier
than solving (C3). Moreover, to ensure the consistency
of the Legendre transformation, a solution to (C4) should

also meet the R-regularity condition
&

f g 0. Differenti-
ating (C4) with respect to r and using f" g 0, one arrives
at an equivalent equation, which added to (C4) yields

notice that L„~ = i in(1+aR)~g+2p(l+. aR) z~g+
O(P).

APPENDIX C: THE INVERSE PROBLEM OF
NONLINEAR GRAVITY

dU
f[ (p)l =2p' U(p)+p

dp

while r(p) is determined kom the form of V,

1
(p) = 2pU(p)+ „-f[ (p)]

(C6)

(C7)

By means of the Hebnholtz Lagrangian method and
the conformal rescaling it is possible to map a nonlinear
vacu»r» gravity theory with Lagrangian I, = ~gf (R)
to a dynamically equivalent system consisting of Einstein
gravity and a minimally coupled nonlinear scalar field

In [52j, Teyssandier and Tourrenc present a system of dif-
ferential equations, which is equivaient to (C4).
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To determine f(r) without any integration, one should
compute f [r(p)] from (C6), and then solve (C7) for p(r)
[which is the same as solving (C3)] and insert the solution
back into f[r(p)].

First we note that the method does not apply to the
simplest case of the massless linear field, U(P) = 0. In
fact, in this case (C4) is solved by f = Cr, and this so-
lution is excluded because it is not R-regular. Thus, the
above-mentioned exception is provided by the Einstein-

frame Lagrangian 1(g, g) = ~g R —g" P „P, , for

which the +field cannot be eliminated to yield an equiva-
lent purely metric NLG theory. This Lagrangian, on the
other hand, can be turned into a STG Lagrangian (2.16)
by a suitable conformal rescaling. A constant potential in
(Cl) is interpreted as a cosmological constant, U(P) = A.
Then (C6) and (CV) easily yield f(R) = z&R~. This re-
sult is also obtained as a particular ("singular" ) solution
of (C4), which in this case is a Clairaut equation (and
has also a general solution, which should be excluded as
being linear).

For nonconstant potentials U(P) the solutions do exist,
but these are practically inaccessible, since one is unable
to solve (C3) or (CV). For the most interesting —&om

the field-theoretical viewpoint —potential, U(P) = AgP,
A = const, n = 2, 3,4, one finds U(p) = p(lnp)", with

y, = (-', )' A,

f[r(p)] = 2pp (lnp+ n)(lnp)"

r (p) = 2pp(2 ln p + n) (ln p)"

(C8)

The Liouville field theory [32] provides one of the few

examples where Eq. (CV) can be explicitly solved. In
this case U(P) = Ae ~ (A and cr are constants), and one
finds f[r(p) = 2(l + P)Ag/+2, with P:—~sa; r(p) =
2(2+ p)A +'; then

P(R) = [2(2+P)A] ' ~" R' i'",
f(R) = 2(1+p)A[2(2+ p)A](~+'l~(~+')R(~+'l~(~+'l

(C10)
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