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Three-dimensional initial data for the collision of two black holes.
II. Quasicircular orbits for equal-mass black holes
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The construction of initial-data sets representing binary black-hole configurations in quasicircular
orbits is studied in the context of the conformal-imaging formalism. An effective-potential approach
for locating quasicircular orbits is outlined for the general case of two holes of arbitrary size and with
arbitrary spins. Such orbits are explicitly determined for the case of two equal-sized nonrotating
holes, and the innermost stable quasicircular orbit is located. The characteristics of this innermost
orbit are compared to previous estimates for it, and the entire sequence of quasicircular orbits
is compared to results from the post-Newtonian approximation. Some aspects of the numerical
evolution of such data sets are explored.

PACS number(s): 04.25.Dm, 04.70.Bw, 97.80.Fk

I. INTRODUCTION

The numerical siznulation of binary black-hole systems
begins with the specification of appropriate initial data.
A general method for specifying the initial data of binary
black-hole systems has been described in Cook et al. [1]
(hereafter paper I). Because of the circularizing effects
of gravitational radiation damping, we expect the orbits
of most tight binary systems to have small eccentrici-
ties. Therefore, a method is needed which can discern
which data sets, within the very large parameter space
of binary black-hole initial-data sets, correspond to bi-
nary black holes in a quasicircular orbit. In this paper, I
will describe such a method and explicitly compute the
initial-data parameters necessary for describing the qua-
sicircular orbit of two equal-sized nonrotating black holes.
In addition, this method yields an estimate of the inner-
most stable quasicircular orbit for two equal-sized black
holes.

The general framework being used for de6ning initial-
data sets containing black holes is known as the
conformal-imaging formalism [2—7]. It is based on
the Arnowitt-Deser-Misner (ADM) [8], or 3+1, de-
composition of Einstein's equations, York's conformal
and transverse-traceless decompositions of the constraint
equations, and a method of imaging applicable to tensors.
Application of this approach to the case of two black holes
with arbitrary linear and angular momenta on each hole
has been explored in paper I. In that work, three indepen-
dent numerical approaches were described for construct-
ing initial-data sets. I will make use, in this paper, of
the "Cadez-coordinate approach" for solving the Hamil-
tonian constraint, a three-dimensional (3D) quasilinear
elliptic partial differential equation.

Using numerical initial-data sets, an "effective poten-
tial" can be constructed which consists of the gravita-
tional binding energy between the holes plus the kinetic
energy of the holes, with the restriction that all physi-
cal parameters characterizing the system are held 6xed
except for the separation of the holes. If we 6x the zno-

menta of the holes appropriately, then an initial-data set
occurring at a minimum of the effective potential will rep-
resent two black holes in a quasicircular orbit. For the
case of two equal-sized holes with no intrinsic rotation,
the set of physical parazneters that znust be held 6xed
contains only the orbital angular momentum of the sys-
tem. For this simple case, we have located those initial-
data sets which represent two black holes in quasicircular
orbit at various separations. As expected [9,10], there is
some minimum separation required before a minimuzn of
the effective potential exists. This minimuzn separation
serves as an estimate for the point at which the secular
inspiral of the two holes ends and the final dynamical
plunge to coalescence occurs.

I will begin with a description of the parameter space of
3D initial-data sets, a brief description of how initial-data
sets are constructed, and how the physical parameters as-
sociated with a given data set are computed. I will con-
tinue with a description of the efFective-potential method
as applied to initial data constructed via the conforznal-
imaging approach. Using this znethod, I explicitly locate
the sequence of quasicircular orbits (as a function of sepa-
ration) for equal-sized holes and compare this sequence to
the results obtained via a post-Newtonian analysis. Also,
the characteristics of the innermost stable quasicircular
orbit are coznpared to the results of previous estimates for
this orbit. I conclude with some observations about the
eventual evolution of initial-data sets representing two
equal-sized holes in quasicircular orbits.

II. INITIAL DATA

A detailed description of how binary black-hole initial-
data sets are constructed within the conforznal-iznaging
forznalism is given in paper I and references therein. In
brief, the con6guration is parametrized first by fixing the
locations Cq and C2 of the two holes in a Cartesian Bat
conformal background space along with the radii aq and
a2 of the two holes. If we let aq set the fundaznental
length scale of the problem, then we can parametrize
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the physical locations and relative sizes of the holes in
the background space by two dimensionless parameters
n and P defined by

Qy
A =

G2

in a vanishing dipole moment. Using the de6nition of the
ADM energy and the dipole moment, it follows that the
center of energy is at O = d/E .Therefore, the general
de6nition of the orbital angular momentum is

dl ( dr
Ci

~

x Pi+
~

C2
~

x P2 ~

Er

(2)

In addition to the locatioas and sizes of the holes, we
also specify for each hole both a linear momentum vector
P z 2 and an angular momentum vector S~ 2. The physical
meaning of these momenta is seen in the followiag way.
For a siagle isolated hole, the physical linear and angular
momenta contained in the initial-data set, as measured
at infinity, are given directly by the parameters P and
S. For two holes, the total physical linear momeatum of
the system is simply the vector sum P~ + P2. The total
physical angular momentum is given by the vector sum
S~+S2+J, where J is the orbital angular momentum of
the system which will be described in detail below. With
aq setting the fundamental length scale, we Bnd that the
momenta of two black holes within the initial-data set
is completely speci6ed by the four dimensionless vector
parameters: Pi/ai, P2/ai, Si/ai, and S2/ai.

Aside f'rom the complications of a given numerical tech-
nique used to solve for the initial data, we see that the
speci6cation of a general two-hole con6guration requires
that fourteen dimensionless parameters be fixed. Hav-

ing chosen these fourteen parameters, an initial-data set
is constructed by solving the momentum and Hamilto-
nian constraints of general relativity as outlined in pa-
per I. The particular numerical technique used to solve
the Hamiltonian constraint in this work is the "Cadez-
coordinate approach" described in detail in Sec.III A of
that paper and references therein.

Once the initial-data set has beea computed, various
physical parameters characterizing the data set can be
computed. In particular, the followiag quantities are cal-
culated: the ADM energy of the system E, the proper
surface areas of the marginally outer-trapped surfaces
de6ning each individual hole Aq 2, the dipole moment of
the energy distribution d, aad the shortest proper separa-
tion between the two marginally outer-trapped surfaces 8.
Definitions for the ADM energy and the dipole moment
can be found in Eqs. (24) and (25) of Ref. [7]. Note that it
is actually the dimensionless ratios E/ai, Ai 2/ai, d/ai,
and I/ai which are computed. These quantities, together
with the initial-data parameters, allow us to compute the
orbital angular moment»m 3 of the system. Generalizing
the calculation found in Ref. [11],it is straightforward to
show that the orbital angular momentum for a con6gu-
ration of two black holes is given by

3 = (Ci —0) x Pi+ (C2 —O) x P2,

where 0 is the point in the background space about
which the angular momentum is defined. The only
unique choice for O is the center of energy of the sys-
tem which, if chosen as the origin of coordinates, results

III. THE EFFECTIVE-POTENTIAL METHOD

The de6nitions of the ADM energy, total linear and
angular momenta at infinity, the dipole moment, the
proper separation of the holes, and the areas of the two
marginally outer-trapped surfaces are rigorously de6ned
physical quantities. To define the efFective potential of a
configuration, it is necessary to use the concepts of the
masses and spins of the individual black holes and to have
a measure of the efFective binding energy betweea the two
holes. However, noae of these quantities are rigorously
defined in general relativity for a strong-field nonstation-
ary configuration.

In the limit of large separatioas and small linear mo-
menta and spin on the holes, the following de6nitions
hold. The mass of each hole can be defined via the
Christodoulou formula [12]

S2
M2 M2

4M,.2
'

with the irreducible mass M;, = gA/16m and 8 be-
ing the magnitude of the spin on the hole. As shown
in the Appendix, we can approximate 8 for each hole
by the magnitude of its respective spin parameter ]Si,2].
Though it; seems possible that the linear momentum on
one hole could induce a spin on the other hole, this is,
in fact, not the case. Thus, the quantit;y 3, which we
identified above as the orbital aagular momentum, is not
contaminated by an induced spin on the holes. We are
therefore justi6ed in defining the orbital angular momen-
tum of the system by Eq. (4), and we define the spins of
the individual holes via their respective spin parameters.
Finally, the efFective binding energy Ep between the holes
is de6ned as

Eg = E —Mg —M2, (6)

where Mq 2 are the masses of the two holes as de6ned
above. Note that the efFective binding energy contains
both the gravitational binding energy between the two
holes and their orbital kinetic energies, but not the rota-
tional kinetic energy of the individual holes.

These de6nitions are rigorous only in the limit of
in6nite separation and zero Inomenta on either hole.
The limit of zero momenta on the holes is required be-
cause initial-data sets containing a single black hole con-
structed via the conformal-imaging approach necessar-
ily contain some spurious gravitational wave energy [13].
The same is true of multihole initial-data sets, however,
Cook and Abrahams [14] have shown that the spurious
radiation content for the case of two holes is quite small
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so long as the holes are modestly separated and the mo-
menta are not excessively large. We will find that these
constraints are satisfied for the majority of configurations
of physical interest.

Henceforth, we will take the masses of the holes, their
spins, mutual binding energy, and orbital angular mo-
ment»~ to be defied as given above.

We turn now to the definition of an effective poten-
tial useful for determining the location of quasicircular
orbits. In general, such an efFective potential should be a
function of the separation and sizes of the holes, the or-
bital angular momentum of the system, the spins of the
holes, and the gravitational radiation content of the sys-
tem. Within the conformal-imaging approach, one has no
freedom in specifying the radiation content of the system.
This is fixed by the demands that the spatial three-metric
be conformally fiat and that all fields satisfy an isome-
try condition (cf. Ref. [7]). With this restriction, we see
that the effective potential should be a function of nine
physical parameters but a general two-hole initial-data
set depends on fourteen initial-data parameters.

To reduce the size of this parameter space, we first de-
mand that the configuration be in a center of momentum
frame. This restriction requires

X(n,p/o j ~j/aRj, sg/2. p) —Xo (10a)

correlated with their respective initial-data parameters.
That is, holding eight of the nine initial-data parame-
ters fixed while varying P will not result in an efFective-
potential curve. We see then that, in general, the prob-
lem of determining one quasicircular orbit is quite in-
volved. It requires finding the roots of eight functions,
each of which depends on eight parameters, at each value
of the separation at which the effective potential is eval-
uated.

Fortunately, the size of this parameter space can be
cut in half. The only definition we have available for the
direction of the spins of the holes (see the Appendix) is
the direction of their respective initial-data spin param-
eters. The directions of the spins are then fixed relative
to the separation of the holes and the plane of the orbit,
which are defined by Pq 2 and C2 —Cq. This direction is
independent of the numerical solution of the Hamiltonian
constraint, so only the magnitude of the two initial-data
spin-vector parameters needs to be varied to hold the
physical parameters fixed. As a result, for a fixed value
of P the following four equations must be satisfied:

Pg+ P2 ——0. (7)

A configuration representing a quasicircular orbit should
satisfy

J
. (a,p/a j,sj /a j,s& /a j 'p) p,m

0

(10b)

P1,2 (C2 —C1) = 0.

Together, Eqs. (7) and (8) reduce the fourteen-
dimensional initial-data parameter space to nine dimen-
sions. These parameters are o;, P, the magnitude of the
linear moment»m on either hole P/aq, Sq/a], and S2/az.

The respective dimensionless physical parameters of
the efFective potential are X—:Mq/M2, E/m, J/ym,
Sq/Mz, and S2/M2 where Mq 2 are the masses of the
individual holes, m —= Mq + M2 is the total mass,
y, —:MqM2/m is the reduced mass, and J is the mag-
nitude of the orbital angular momentum of the system.
Finally, the dimensionless efFective potential is given by
the binding energy as Es/y, .

Finding quasicircular orbits is now a conceptually easy
task. We compute Es/y as a function of E/m while hold-
ing the remaining eight physical parameters constant. A
minim»~ in E&/y then corresponds to a "stable" quasi-
circular orbit. In addition to locating the quasicircular
orbits, we can also estimate the orbital angular velocity
0 of the system as measured at infinity. This is given by
taking the derivative of the binding energy with respect
to the orbital angular momentum while holding all other
parameters fixed. In dimensionless form then one obtains

BEs/y
8J/ym'

Though conceptually straightforward, the computa-
tional task of locating quasicircular orbits is difficult.
The main difficulty arises &om the fact that the physical
parameters that must be held fixed are not independently

Sg Sg
M2 ~ ~ M2

(~yp/clj Sj/aj pe /c I 'p) &
O

(10c)

S2 S2
M2 M2

(a p/c j Sj/cj Sg/cLj p) 2 0

(10d)

When these four equations are satisfied, Eq. (6) yields a
value of the efFective potential Es/y at some value of the
physical separation 8/m. Changing the value of P and
resolving Eqs. (10a)—(10d) results in another value of the
effective potential at a different separation.

IV. EQUAL-MASS NONROTATING HOLES

The simplest application of the efFective-potential
method is to the case of two equal-sized black holes with
no intrinsic spin. In this problem, Sq/a~ = S2/a~ = 0
and, because of the symmetry between the holes, we
know that a = 1 ~ X = 1. Therefore, solving for the
effective potential requires solving only Eq. (10b) as a
function of P/aq alone for a given P.

The method used to solve Eq. (10b) is the following.
For a given value of P, the initial-value equations are
solved at a sufficiently large n»aber of values of P/aq in
order to encompass all of the values of J/ym at which we
want to evaluate the efFective potential. Using interpola-
tion, we can estimate new values of P/aq that will yield
solutions near the desired values of J/ym; the procedure
is repeated until any errors introduced by interpolation
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are suHiciently small. The most difBcult part of the prob-
lem is to solve the initial-value equations with sufBcient
accuracy. Typically, both the ADM mass E/ai and the
areas of the marginally outer-trapped surfaces Ai 2/ai
need to be determined to a relative error of 10

Currently, the only numerical method capable of solv-
ing the initial-value equations to this accuracy is the
multigrid-based Cadez-coordinate approach described in
detail in Sec. IIIA of paper I. Such high accuracy can be
obtained through the use of Richardson extrapolation.
As described in paper I, the Cadez-coordinate approach
used to solve the Hamiltonian constraint results in a nu-
merical solution for the conformal factor g"",which has
an asymptotic (h ~ 0) expansion given by

annum y+h2 Q+h4 Q+

where @ is the analytic solution of the Hamiltonian
constraint, 6 is the basic scale of discretization, and

e2, e4, . . . are h-independent functions. In addition, the
numerical integrals for E/ai, d/ai, Ai 2/ai, and f/ai
have all been constructed to yield analogous error ex-
pansions that depend strictly on powers of h2.

One final source of error which must be examined
comes &om the necessity of imposing an approximate
outer-boundary condition (cf. Ref. [7]). In order to min-
imize the effects of this approximation, the outer bound-
ary has been placed at a distance of at least 2000aq from
the holes.

Figure 1 displays a set of effective-potential curves for

0.2
!

a wide range of values for J/pm. The displayed curves
are interpolated results derived from 3000 Richardson-
extrapolated data points, each resulting &om the ex-
trapolation of three separate solutions of the initial-value
equations at resolutions similar to those described in pa-
per I. All solutions were generated on an IBM-SP1 par-
allel computer and required a total computational time
in excess of 3000 CPU hours .The value of J/pm is held
Axed along each of the thin curves which plots the ef-
fective potential Es/p as a function of the proper sep-
aration of the holes f/m. The bold curve crossing sev-
eral of the effective-potential curves represents a sequence
of quasicircular orbits. This can be seen more clearly
in Fig. 2 where the region containing minima in the
effective-potential curves is shown in expanded form. The
bold line representing the sequence of quasicircular orbits
begins at the right at an E/m 14. This line should, of
course, extend to larger values of //m, but data has not
been computed in this regime. Following the sequence of
quasicircular orbits to smaller values of f/m, we find that
the minimum in the effective potential vanishes. At this
point, the sequence of quasicircular orbits terminates at
an innermost stable orbit.

For f/m & 4 we notice that some of the efFective-
potential curves pass through a local maximum and a
second minimum. These additional minima should not
be interpreted as a new sequence of stable quasicircular
orbits. Rather, this behavior indicates that the approxi-
mations outlined in Sec. III, especially the identi6cation
of Eq. (6) as a measure of the binding energy between
the holes, are breaking down. This assertion is justi-
fied on the following grounds. Anninos et at [15] have.

shown that for time-symmetric initial data constructed
via the conformal-imaging approach an event horizon en-
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FIG. 1. The effective potential Eq/p as a function of sep-
aration f/m for the following values of the orbital angular
momentum J/ym: 1.5, 2, 2.5, 2.75, 2.95, 2.976, 2.985, 3,
3.05, 3.15, 3.25, 3.37, 3.5, 3.62, 3.75, 3.85, 4, 4.25, and 4.5.
These values of J/pm label, respectively, curves from the bot-
tom of the Sgure to the top. Also, plotted as a bold line
is the sequence of quasicircular orbits which cross the effec-
tive-potential curves at local minima.

FIG. 2. An enlargement of the section of Fig. 1 which con-
tains the sequence of quasicircular orbits. This sequence be-
gins at the innermost stable quasicircular orbit near f/rn = 5
on the J/pm = 2.976 curve and extends in the direction of
larger separation. In the figure, the sequence terminates at
the minimum of the J/pm = 3.85 efFective-potential curve,
although it should continue.
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e &1+ 2/3'l—= 21n 4.58.
m

I 1 —g2/3)
(12)

This should be compared with a value of //m = 4.88
obtained &om Table I. The ratio of these two values
is 0.94. Kidder et aL [10] obtain an analogous ratio of
0.96, where separation is measured in terms of harxnonic
or de Donder coordinates. Kidder et al. obtain this re-
sult via a critical point analysis of the equations of mo-
tion through (post)3-Newtonian order. After altering the
equations of motion significantly to reproduce exactly the
test mass lixnit, Kidder et al. find that the ratio has
changed to 0.83 and that the innermost stable circular
orbit is characterized by the following physical paraxne-
ters: Es/p —0.0378, J/pm 3.83, and mA 0.0605.
A comparison of these values with Table I shows that
Kidder et al. are finding an innermost stable circular
orbit in which the holes are much farther apart than we
find with the effective-potential method. In contrast with
this, Blackburn and Detweiler [9] have used a variational
principle together with the assuxnption of a periodic so-

compasses both holes on the initial-data slice when their
separation parameter p (not to be confused with the re-
duced mass) is less than about 1.8. This corresponds to
a separation parameter of P 6.2 and to a proper sep-
aration of I/m 3. For the case of orbiting holes, we
expect the eÃects of angular momentuxn to delay the on-
set of formation of a common event horizon based on both
physical intuition and the axisymmetric results of Cook
and Abrahams [14]. Thus, we should expect a common
event horizon for 8/m ( 3 and, further, that the effective-
potential method being used should not be trusted for
1/m & 4.

The characteristics of initial-data sets representing
quasicircular orbits of two equal-sized, nonrotating black
holes are given in Table I. In addition to the physical pa-
rameters characterizing the system (E/m, Es/p, J/ym,
and mA), the table contains the initial-data parameters
P/aq and P required to reproduce these particular data
sets. Note that all initial-data sets described in this paper
satisfy the minus isometry condition of the conformal-
ixnaging approach. Values in this table should be con-
sidered accurate to better than l%%uo with the exception of
mO, which should be considered accurate to a few per-
cent.

In order to gauge the accuracy with which we have lo-
cated the innermost stable quasicircular orbit, note that
in the limit of a test mass orbiting a Schwarzschild black
hole, the proper separation between the event horizon
and the test mass is found to be

TABLE I. Physical and initial-data parameters character-
izing certain con6gurations along the sequence of stable qua-
sicircular orbits. The data sets represented in this table have
been constructed using the minus isometry condition of the
conformal-imaging approach.

e/m
4.880
5.365
5.735
6.535
7.700
8.695
9.800

10.96
12.02
13.16
14.07

E~/I
—0.090 30
—0.088 90
—0.086 84
—0.081 12
—0.072 26
—0.065 34
—0.058 62
—0.052 70
—0.048 10
—0.043 88
—0.041 04

J/pm
2.976
2.985
3.000
3.050
3.150
3.250
3.370
3.500
3.620
3.750
3.850

mO
0.172
0.145
0.130
0.104
0.0774
0.0622
0.0504
0.0414
0.0352
0.0300
0.0270

P/ag
1.685
1.392
1.230
0.9868
0.7752
0.6613
0.5734
0.5066
0.4609
0.4218
0.3960

11.82
13.28
14.43
16.99
20.84
24.21
28.04
32.15
35.93
40.06
43.38

V. THE POST-NEWTONIAN LIMIT

Coxnparison with previous estimates for the innermost
stable quasicircular orbit of two equal-mass nonrotating
black holes is far &om yielding a consensus as to its
proper value. However, we can gain some insight into
the reliability of the results derived in this paper by com-
paring the sequence of quasicircular orbits against the
post-Newtonian description of circular orbits. Based on
the (post)3-Newtonian results of Kidder et al. [16] for
the binding energy, angular momentum, and eque, tions
of motion for a binary system with a circular orbit, it
is straightforward to show that the binding energy and
angular momentum of two compact objects in a circular
orbit must satisfy

lution to Einstein's equations to obtain an estimate for
the innermost orbit for two equal-sized holes. Using a
single trial geometry, which they call "rather unsophisti-
cated, " they obtain an innermost orbit characterized by
Es/p —0.65, J/Ijm 0.85, and mA 2. Such an or-
bit is much more tightly bound than seems possible &om
the effective-potential method. Blackburn and Detweiler
point out that the assumptions of their variational prin-
ciple have been violated by the time this innermost circu-
lar orbit is reached. However, they describe a less tightly
bound circular orbit that should not be in violation of
the underlying ass»mptions of their approach. This or-
bit has a binding energy of Es/IJ, —0.28, which is still
three times larger than the binding energy obtained in
this paper for the innermost stable quasicircular orbit.

Eg 1 pm 2 1 pm 3 (81 7 1 &) /pm 4

p 2 J 4
1+ —9+g + ——-g+ -g +.. .J (8 8 8 ) E J (13)

Eg 1 2(3 1 3/3 (27 19 1 3l 4/3—= ——(mA) 1 ——(9+ rI) (mA) —
~

———rI+ —g
~

(mA) +.. .
p 2 12 q8 8 24

(14)
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= (mfa) I+-(9+v)(mfa) +
~

9 — —n+ n—
~

(mfa) + ",-2/s 2/s &» 1 2l 4/s

q pm) 3 4 9 )

where rl = p, /m. The three terms inside the square brack-
ets represent the Newtonian results for circular orbits
along with the first and second post-Newtonian correc-
tions.

Figure 3 compares the numerical results for binding en-
ergy versus orbital angular momentum for the sequence
of quasicircular orbits against Eq. (13) with ri = 1/4.
The numerical data are displayed as a bold solid line
with cross marks denoting actual data points. The long
dashed line corresponds to the Newtonian result, the
short dashed line to the Newtonian result together with
the (post) ~-Newtonian corrections, and the dotted line to
the full (post)2-Newtonian result. Notice that for large
J/ym (large separation), the post-Newtonian expansion
appears to be converging quite well toward the numeri-
cal result. Figures 4 and 5 are analogous plots for the or-
bital angular momentum versus orbital angular &equency
and binding energy versus orbital angular frequency, re-
spectively. Again, in the limit of large separation (small
mO), the post-Newtonian expansions appear to converge
well with the numerical results. This agreement at large
separations, together with the general agreement in the
shapes of the curves when the separation decreases, con-
firms that the basic premises adopted in the definition of
the effective-potential method are sound. For small sep-

arations, we know that the approximations needed to de-
fine the effective potential as outlined in Sec. III must be
questioned. Unfortunately, the post-Newtonian approx-
imation also breaks down as the separation of the holes
becomes small and, it is impossible to gauge the valid-
ity of the approximations based on the post-Newtonian
results.

VI. DISCUSSION

The most important use of the results obtained in this
paper is to narrow the range of initial-data parameters
which must be considered in setting up an actual numer-
ical simulation of the inspiral and collision of two black
holes. Assuming one is interested in evolving initial data
that represents something similar to a quasicircular orbit,
then the results presented in Table I allow us to estimate
the minimum length of time that the system must be
evolved, as well as some limits on the final state of the
system.

Beginning with the latter, let us assume that the bi-
nary system coalesces and settles down to a Kerr hole
with mass Mf and angular momentum Jf. From Eq. (5)
we know that the Kerr ratio Jf/M& is

Jf Jf /M;,
M& 1+ (J /M. &)''

—0.04—
I & &

f
I I I I I

f

~ —0.06— 3.5—

—0.08 —.
''

3—

3 3.Z 3.4

J/p, rn

1

3.8

FIG. 3. The efFective potential Eg/p as a function of the or-
bital angular momentum J/pm for quasicircular orbits. The
solid line corresponds to the sequence of quasicircular orbits
computed in this paper. The long dashed line is the result
obtained from Newtonian theory. The short dashed line is
the result based on (post) -Newtonian theory, and the dotted
line is the result based on (post) -Newtonian theory.

5 I I I I tX s

0.05
I I I

0.1

rnid

FIG. 4. The orbital angular momentum J/pm as a function
of the orbital angular velocity mO. Lines are as indicated in
Fig. 3.
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—0.06—

to ass»me that the final plunge will occur on a time scale
comparable to that of the innermost orbit. If this initial
data leads to an evolution that begins at the most one
orbit before the beginning of the final plunge and we add
to the evolution time a period suKcient to watch soxne of
the ring-down, then we find that the numerical simulation
must be capable of evolving for 90—130m.
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orbital angular velocity mO. Lines are as indicated in Fig. 3.
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where we now let M;, denote the irreducible mass of
the final Kerr hole. Ass~~ming only that the individual
holes do not rotate, we know that the irreducible xnass is
bounded by

Mzp & My + M2: m 1 —2g,

APPENDIX: THE MOMENTA OF INDIVIDUAL
HOLES

A rigorous quasilocal definition of momentum requires
the presence of a Killing vector field (I&l. The magnitude
of the momentum associated with

g~&l within a given sur-
face contained in a spatial slice is denoted II~I,~, where

where M~, M2, etc. are defined as before. Since we know
that Jy & J, we find that

Jf g J
C

M,, 1 —2g pm
(18)

Examining Eqs. (16) and (18) we find that, so long as
Jy/M2 & 2, the Kerr ratio Jy/M&~ is guaranteed to be
less than unity. For equal-sized holes, this implies that
the Kerr ratio is satisfied as long as J/pm & 4. If we
evolve initial data representing the innermost stable qua-
sicircular orbit, we find that Jy/M2 & 0.958. If we make
the severe assumptions that all of the binding energy "re-
leased" in the coalescence is recaptured by the resulting
black hole and that half of the angular xnomentum is,
nevertheless, radiated away during the final plunge and
coalescence, we find that Jy/M&2 0.4. We see then that
a black hole resulting &om the inspiral and final plunge
of two nonrotating black holes must certainly be consid-
ered to be rapidly rotating, but it will not violate the
Kerr limit.

Now consider the minixnal requirements of a nuxnerical
evolution of binary coalescence in the case of two equal-
sized, nonrotating black holes. If the simulation is to
remotely resemble the final plunge of two holes following
a secular inspiral, then our best guess at initial data is
that for the innermost stable quasicircular orbit. From
the estimate of the orbital angular velocity in Table I, we
find that the orbital period is ~ 37m. It is reasonable

(A1)

Here, X' is the extrinsic curvature of the slice and K
is its trace. A general spatial slice contains no Killing
vectors and only the total momenta of an asymptotically
Hat spatial slice can be defined. This definition requires
integrating Eq. (Al) at spatial infinity using asymptotic
Killing vectors (~&l, which are Killing vectors of the fiat
metric to which the physical metric is asymptotic. Note,
however, that the angular momentum will only be gauge-
invariant if (&&l is an exact symmetry of the physical met-
ric (cf. York [17]).

Now consider the momenta of gravitational initial data
constructed within the conformal-imaging approach. Fol-
lowing this approach, we conforxnally decompose the
physical metric of a spatial slice as p;~ = tP4p;~, where p;~
is the Pat conformal background metric and @ is the con-
formal factor. With the trace-&ee conformal background
extrinsic curvature, defined by A'- = Qs(K' —sb'K) and
with K = 0, we can rewrite equation (Al) as

(A2)

This form of the equation has the adkrantage that it does
not involve the conformal factor g, so we can compute the
moxnentum without having a solution of the Hamiltonian
constraint. Also, I emphasize that we have not used the
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fact that g -+ 1 at spatial infinity in deriving Eq. (A2), so
that if (I&) represents an exact symmetry of the physical

metric, then Eq. (A2) can be evaluated (for that Killing
vector) by integrating over any two-surface containing
the support of the gravitational 6eld.

The concept of the moments (linear and angular) of
an individual hole in the presence of other holes cannot
be rigorously de6ned in general relativity. However, a
reasonable quasilocal definition for the momenta of an
individual black hole is Eq. (A2) integrated over a two-
surface exterior to that hole. For evaluating the com-
ponents of the hole's linear momentum, we use the three
translational Killing vectors of Bat Euclidean three-space,
and for the angular momentum, we use the three rota-
tional Killing vectors with the origin of rotation chosen
to be the center of the hole.

Following the conformal-imaging approach, the back-
ground extrinsic curvature of a spatial slice is constructed
as the linear sum of "single-hole" extrinsic curvature so-
lutions plus image terms that maintain an isometry con-
dition (cf. Cook [7]). The background extrinsic curva-
ture for a single black hole (including self-image terms) is
parametrized directly in terms of the physical momenta
measured at infinity. Evaluation of the black hole's mo-
menta via the quasilocal definition is independent of the
radius of the surface on which the integral is evaluated
and always yields the correct physical result. Now con-
sider evaluating the quasilocal momentum integral over
a two-surface that does not contain the black hole. Using
Gauss' law, we can rewrite the integral as

(A3)

since (I&1 is a Killing vector of p;s and A~ satisfies the
vacuum momentum constraint equation in this volume.

Constructing a multihole extrinsic curvature kom single-
hole extrinsic curvature solutions, including self-image
terms but not including general image terms, we see that
Eq. (A3) implies that the contributions to the extrinsic
curvature from additional holes do not affect the quasilo-
cal momenta of a given hole.

What remains is to examine the contribution of gen-
eral image terms to the quasilocal momenta of a hole. It
seems reasonable that these terms should have no contri-
bution, however, I have so far been unable to prove this
analytically. Fortunately, it is straightforward to show
numerically that general image terms make no contribu-
tion to the quasilocal momenta of either hole in a general
binary conFiguration. More speci6cally, we can construct
a general solution for the background extrinsic curvature,
including any number of image terms. Computing the
quasilocal momenta for either of the holes, we can use
Richardson extrapolation to show that, up to the numer-
ical precision of the computer, the results are identical
to those obtained in the absence of any general image
terms. This is independent of the sizes and separations
of the holes and of the number of image terms included
in the extrinsic curvature, implying that each image term
independently contributes nothing to any of the surface
integrals. I suspect that this result holds for any number
of holes, however, this has not been verified.

We see then that within the limitations of de6ning the
momenta of an individual hole, the momenta used to
parametrize a single hole are the momenta of individual
holes within a multihole con6guration. That is, linear or
angular momenta on one hole do not induce any amount
of linear or angular momentum on any other hole in the
system. In particular, the orbital angular momentum of
a system of holes is well de6ned and does not contain
an induced spin on any of the holes due to the linear
momenta of the holes.

[1] G. B. Cook et aL, Phys. Rev. D 47, 1471 (1993).
[2] J. W. York, Jr. , in Sources of Gravitational Radiation,

edited by L. L. Smsrr (Cambridge University Press, Cam-
bridge, England, 1979), pp. 83—126.

[3] J. M. Bowen, Gen. Relstiv. Grsvit. 11, 227 (1979).
[4] J. M. Bowen snd J. W. York, Jr. , Phys. Rev. D 21, 2047

(1980).
[5] J. M. Bowen, Gen. Relstiv. Grsvit. 14, 1183 (1982).
[6] A. D. Kulksrni, L. C. Shepley, snd J. W. York, Jr., Phys.

Lett. 9BA, 228 (1983).
[7] G. B. Cook, Phys. Rev. D 44, 2983 (1991).
[8] R. Arnowitt, S. Deser, snd C. W. Misner, in Gravitation:

An Introduction to Current Research, edited by L. Mitten
(Wiley, New York, 1962), pp. 227—265.

[9] J. K. Blsckburn snd S. Detweiler, Phys. Rev. D 4B, 2318
(19S2).

[10] L. E. Kidder, C. M. Will, snd A. G. Wisemsn, Class.
Quantum Grsvit. 9, L125 (1992).

[11] J. W. York, Jr. , in Frontiers in Numerica/ Relativity,
edited by C. R. Evans, L. S. Finn, and D. W. Ho-
bill (Csxnbridge University Press, Cambridge, England,
1989), pp. 89—109.

[12] D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970).
[13] G. B. Cook snd J. W. York, Jr. , Phys. Rev. D 41, 1077

(1SSO).
[14] G. B. Cook snd A. M. Abrshsms, Phys. Rev. D 4B, 702

(1992).
[15] P. Anninos et aL, report, 1994 (unpublished).
[16] L. E. Kidder, C. M. Will, snd A. G. Wisemsn, Phys.

Rev. D 47, 3281 (1993).
[17] J. W. York, Jr. , in Essays in General Relativity, edited

by F. J. Tipler (Academic, New York, 1980), pp. 39—58.


