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I. INTRODUCTION

Although the lattice formulation has widely been ac-
cepted as one of the most promising nonperturbative
schemes for gauge field theories based on first principles,
the forms of the lattice actions or Harniltonians are not
uniquely determined, and systematic errors are present
even when the theory is formulated.

One of the major sources of these errors comes from the
finite lattice spacing a. The lattice regularization makes
the standard action or Hamiltonian differ &om the con-
tinuum one by O(a"). In the continuum limit a ~ 0 or
equivalently 1/g2 ~ oo in an asymptotically free theory,
these difFerences in principle disappear and the action
or Hamiltonian becomes the continuum one. Practically,
both numerical and analytical calculations can only be
carried out up to the intermediate coupling region (in the

I

numerical simulation, one of the reasons for this is the fi-
nite volume; in our Hamiltonian method, this is due to
the finite-link approximations as will be discussed in Sec.
III and Sec. IV in detail). Then systematic errors due to
finite a will show up. Another problem is in the theory
with Wilson fermions for solving the species doubling,
which differs &om the continuum one already by order of
O(a), explicitly breaks chiral symmetry and induces the
mixing of the corresponding lattice operators with those
of different chiralities or even of lower dimension. Some
examples of mixing are in the chiral order operator

and in four-fermion operators relevant for the weak in-
teractions of the form

ass(1+ ps)d6ps(1+ ps)u' " = Zap'(1+ ps)dugs(1+ ps)u

+ ) Z„aI' d6t„u+ Zsad
n=S, V,T,A,P

+Z38d + Zsso'~~g~ Eg~g~ d) (1.2)

where "con" means continuum, I is the identity matrix,
1b is the fermion field, u, d, and a are those with different
fiavors, Iis, s, is the lattice definition of the gauge field

strength tensor, C@~,C, Z, Z;, Zs, Zs and Zs are the
mixing coefEcients, and S, V, T, A and P stand for the
scalar, vector, tensor, axial vector and pseudoscalar index
of the quark bilinear respectively. In (3+1)-dimensional
QCD, the mixing coefficients of the additional operators
cannot be reliably calculated in lattice perturbation the-
ory if the bare coupling cannot be reached weakly enough,
which would again result in large uncertainty or lattice

Present address.

artifacts in the computation of hadronic matrix elements.
One possible way to tackle these problems is to use

the improved theory. Inspired by the success of the
Symanzik's improvement program in pure gauge theory,
Hamber and Wu proposed an improved action [1] for Wil-
son fermions by adding next-to-nearest neighbor interac-
tion terms so that the O(a) efFects due to the Wilson
term become higher order. Similar [2,3] and difFerent

[4] proposals on this subject were off'ered too. Recently,
there has been increasing attention paid to this direc-
tion [5—11],and a noticeable reduction of the finite spac-
ing effects and improvement in the chiral behavior of the
hadronic matrix elements have been observed.

In the analytical investigation of the theory's local
structure, the Hamiltonian formulation is of most inter-
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est. Motivated by this, we propose in parallel, several
improved Hamiltonians for lattice gauge theory (I GT)
with fermions in Sec. II, test our improved approach to
the Schwinger model in Sec. III, and discuss their appli-
cations to QCD in Sec. IV. The main results are sum-
marized in Sec. V.

II. IMPROVED HAMILTONIANS

H„' ~' "' = —) @(x)@(x)—cg—
2G 2a

x ) Q(x) U(x, k) Q(z + k)
x, A:

—c2 —) Q(z)U(x, 2k)@(z+ 2k),
2G

x,k

(2.2)

The conventional Hamiltonian of LGT with Wilson
fermions is

H =Hf+Hg,

Hf ——H + Hg+ H„,

H =m) y(z)y(z),

Hg = —) g(z)pgU(x, k)g(z+ k),
2G

e,k

H. = —).[&(x)@(x)—&(z)U(* k)&(z+ k)]
2 -,.

2

Hs ——) E, (y)E, (y) — ) Tr(Up+ Ut —2),
9~2 p

(2.1)
where U(x, k) is the gauge link variable at site z in the
direction k, with k = +j, and p ~

= —p~, H, H~, H„,
and H~ are, respectively, the mass term, kinetic term,
Wilson term and pure gauge energy, and G is some con-
stant depending on the gauge group. In [12,13],some im-

proved Hamiltonians for the pure gauge sector Hg were

proposed. The advantages and existing problems have
been discussed in [14,15].

In this paper, we concentrate on the improvement of
the fermionic Hamiltonian. As discussed in Sec. I, the
O(a") terms in Hy lead to systematic effects if a or g is

not small enough. We propose some improved Hamilto-
nians to reduce these eH'ects. The 6rst one is

~improved H, Himproved, Himproved
LX f YA,

where U(z, 2k) = U(z, k)U(z + k, k) and the coeffi
cients bq, 62, cq, and cq are determined by requiring that

H&
' "' recovers the continuum one in the a ~ 0 limit, .

Here we choose

4 1 4 1
3' 6' 3 3' (2 3)

with ~0) being the bare vacuum and

&/2

~
- ~(sinful

)

so that the p3 term of H„' P' ', p and p2 terms of
H„' P' ' in the momentum space are eliminated at the
tree level, and the improved theory is expected to reduce
the finite spacing effects. Similar to the action of Hamber
and Wu [1],our improved Hamiltonian is the mixture of
the nearest neighbor and next-to-nearest neighbor inter-
actions.

A unitary transformation e ' '-H' ' "' e' '*", like

that in [16], which diagonalizes exactly H&
~' "' with

kee fermions, gives the vacuum state of H&
' ' as

H„' P' "' = —') g(x)pgU(x, k)vP(x+ k)"*,k
A„(bq + b2cospj a)tan28„= m+ —"(1—cq cospaj —c2 cos2paj)

' (2.5)

+—) Q(x)ggU(x, 2k) vP(z + 2k),"*,k From the vacuum energy or dispersion relation,

- 2 l/2

E~q — K~Ny ) 7D —+ —(1 —cycospog —c2cos2pog) + [Ap(by + b2cospgo)]
a

(2.6)

one sees that there is no species doubling if r g 0.
The same arguments can be applied to LGT with Kogut-Susskind fermions. The improved Hamiltonian is

IIimproved 0, H improved
f m, ~
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&P'""' = —') n~(z)[W(z)U(z i)&(z+i) —&(z)U(» &—)&(z —
&)]

+2 ).& ( )[&( )U(* »)@(*+»)—@(*)U(*-»)0( +»)]2a
(2.7)

where ib(x) is the Kawamoto-Smit phase factor in the Hamiltonian version and the coefficients are given by

3 1
bg

——-) b2 ——--.2' 6

It is easily shown that the p3 term in the momentum space is canceled.
To reduce the higher-order O(a") effects, Eq. (2.2) can be generalized to be

(2.S)

II@~""' = —' ) Q(z)pi, U(z, k)g(z+ k)"-,k
+—) Q(z) pi, U(z, 2k)g(z + 2k)

~ Jg

+—) g(z)pi, U(z, 3k)g(z+ 3k),
2G

e, ic

H„' '""' = —) @(z)@(z)—c,—) y(z)U(z, k)y(z+ k)
2G 2G

x,k a, k

—c2 —) g(x) U(z, 2k) g(z + 2k) —cs—) g(z) U(z, 3k)g(z + 3k),
2G 2G

a,k e,k

(2.9)

where the coeKcients can be obtained by solving the
equations

cy + 2 c2 + 3 c3 = 0)

cy + 2 c2 + 3 c3 = 0. (2.10)

bg + 2b2 + 3b3 ——1)

by+2 b2+3 b3 ——0

The results are

3 3
bg ———, b2 ————,2' 10'

1 3
b3 ———,Cg

———,
30 2

(2.11)

by+2 b2+3 b3 ——0,

Cy + C2 + C3 = 1)

3 1
C2 ———-) C3

5 10

At this level, it is necessary to improve Hg as well.
Hamiltonians of the form (called "clover" Hamiltonian)

~improved ~ + ~ + ~improved
f m, k

I„'~&""~ = —) @(z)g(z) —ci —) $(z)U(z, k)4(z+ k) —&c22 ). @(z)&~,~,+~». (z)@(z)
2G 2G' -,k

' -,k &ill F22

(2.12)

4

+' ( ) = 8, ) [U.(*)—U'. (*)l (2.13)

have aroused some interest [4—10] because the additional
term, representing the Pauli interaction of fermions with
the 6eld strength tensor, contains only the nearest neigh-
bor interactions. The Beld strength tensor can be defined
on the lattice as 1

Cy = 1) C2 = 2' (2.14)

By rede6ning the fermion 6eld

I

where the summation is over four plaquettes in the jk
plane with a corner at x. A similar improvement condi-
tion leads to
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(2.i5)
III. THE IMPROVED SCHWINCER MODEI

where

making a small a expansion

(2.i6)

The exactly solvable massless Schwinger model is a
good laboratory for the improved theory. In 1+1 di-

mensions, there is no plaquette term in Hg so that the
calculations are much simpler.

In the same way as in [18], the vector meson state IV)
of the improved Schwinger model

U(z, k) = 1+igaAi, (z) +

and using the identity

(2.i7) Iv) = ) A„[v„-(AIv„IA)]ID) {3.1)

[D~,D~, —. D~, D~, ]Q =igF, ,~, @, (2.18)
is a superposition of some operators V„with the given
quantum numbers

it can be shown that Eq. (2.2) is equivalent to Eq. (2.12)
up to O(a).

With the above improved Hamiltonians (2.2) or (2.12)
while coefficients are fixed at the tree level, the O(a) er-
rors in the %ilson term are corrected. Furthermore, the
lattice Feynman-rule argument [5,6] indicates that such
an improved theory obtained by the tree level calcula-
tions is beyond the tree level, leading to the cancellations
of terms of order (g2)"aln" a in the matrix elements which
deviate Rom the continuum theory. To further elimi-
nate terms of order (g )"aln" a in the matrix elements,
one has to include the g dependence of the coefFicients
consistently order by order. Again in [S], it is argued
that these corrections, which would be less important in
the weaker coupling regime, are finite and comparatively
small. In fact, the numerical simulations in [7—Q, ll] were
carried out by using the improved actions determined at
the tree level.

Concerning the coefBcients in the improved theory, it
should be mentioned that there has been another inter-
esting way [10] of estimations based on the mean field
ansatz (evaluations of the efFective coupling constant)
proposed by I epage and Mackenzie [17]. This is a good
direction, but it is still under debate in the lattice com-
munity whether it has better control of the systematic
errors of order O(a) than the order by order improved
theory mentioned above.

How does the modified theory described by the Hamil-
tonian (2.2), which is free of errors of the discrete lat-
tice at least up to order O(a), improve the physical val-
ues &om lattice nonperturbative calculations? The re-
sults for the mass spectrum to be presented in the fo1.-

lowing sections will indeed give a positive answer. For
the spectrum computations in this paper, we use the
improved Hamiltonian (2.2) with coefficients determined
at the tree level. In the /CD calculations to be pre-
sented in Sec. IV, we will only use the improved theory
with naive fermions, where chiral symmetry is explicitly
maintained. Although the wilson term is absent in the
improved Hamiltonian (2.2) with r = 0, it does appear
in the transformed Hamiltonian, which is favorable for a
reasonable p-u splitting. This may again imply that such
an improvement is beyond the tree level, and there could
be an interplay between the variational unitary trans-
formation approach and the determination of the coeK-
cients.

V& ——i ) g(z)p, g(z),

V, =i) y(x)»U(x, k)@(z+k),

V2 ——i ) g(x)»U(z, 2k)Q(x + 2k),

~ 4 ~
) (3.2)

acting on the vacuum state IO):

IA) = exp(iS)I0),

S = HgSg+ 6I2S2+

= ioi) gt(z)pi, U(z, k)g(z+ k)
x,k

+i82) @t(x)pi,U(z, 2k)Q(z+ 2k) +. (3.3)

where Oq and 82 are determined by minimizing the vac-
uum energy. The bare vacuum is IO) defined by

&(x) Io) = &(x) Io) = E, (x) Io) = o (3.4)

where ( and qt are, respectively, the up and down com-
ponents of @. The upper bound of the vector mass is the
lowest eigenvalue of the equations

R

) (H„",„, -E„U„",„,)~„, =0,
ni ——0

detIH" —E U"
I
= 0, (3.s)

where the coefBcients A„, are determined by solving the
equations, and the matrix elements H", and U„", , are
defined by

U."... = (V-, IV-, )". (3.6)

2

H„",„,= V„, I
HP~' ' + —) E, (y)E;(y) I

V„, .
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Here the superscript N means only the matrix elements
proportional to the lattice size N are reserved. A detailed
description of the method can be found in [18].

Practically, not only the superposition (3.1) has to be
truncated to finite B, but also Eq. (3.3) and. the matrix
elements do to 6nite orders of Hq and 82. Therefore, the
Hamiltonian cannot be exactly diagonalized and the re-
sults are reasonable only for a finite range of 1/g2. Might
the use of the improved Hamiltonians reduce these sys-
tematic errors? For simplicity and illustration, in this
section we consider the application of Eq. (2.2), with only
the first three operators in Eq. (3.2) and the first term of
8 in Eq. (3.3) taken into account. For r = 0, M„a/g as a
function of 1/g with difFerent choices of the coefficients
is shown in Fig. 1. Those for r = 0.1 and 1 are, re-
spectively, plotted in Fig. 2 and Fig. 3, where the exact
value (the dashed line) is also included. By dimensional
analysis, M a/g should be a constant for large 1/g2.

For naive fermions (r = 0), with the kinetic term in the
Hamiltonian improved (bi —4/3, b2 ———1/6), the result
(the triangles in Fig. 1) is certainly better than that (the
circles) from the unimproved Hi, (bi ——1, bq ——0) at least
in the region 0 ( 1/g & 2. The improved data enter
faster the scaling region from 1/g = 1.0 (the plateau
extends to at least 1/g2 = 2.0) and are closer to the
exact value. Then the improved and unimproved data
approach each other. For larger 1/g2 (& 2.5), the triangle
is a little bit higher. This is another systematics which
may not be due to the use of the improved Hamiltonian,
but due to the finite terms we considered in Eq. (3.1) and
Eq. (3.3). As discussed in detail in Ref. [18), when the
continuum limit 1/g2 ~ oo is reached, we have to include
in6nite number of terms in the wave function. Because
the motivation of the improved Hamiltonian is to reduce
the finite spacing efFects in the intermediate (1/g2 1) or
stronger region, its virtue has already been seen at least
in this region. It remains to be done for both numerical
and analytical methods to extend the calculations to the
weaker coupling region.

For Wilson fermions, as shown in Fig. 2 and Fig.
3, with the unimproved Hamiltonian (bi —— 1,b2

0, ci ——1, c2 ——0) or only the kinetic term Hi, improved
(bi ——4/3, b2 ———1/6, ci ——1, c2 ——0), the deviations of

2
r=0. 1

1.6 b =1, b =0, c =1, c =0
1 2 1 2

b =4/3, b =-1/6,
1 2

c=1, c=0
1 2

0.8
b =4/3, b =-1/6, c =4/3, c =-1/3

1 2 1
'

2

0.4 &&

0 w ~~ J
0.5 0.9 1.3 2 1.7

1/g
2.1 2.5

FIG. 2. M„a/g as a function of 1/g for r = 0.1. The
dashed line is the exact value in the continuum model.

IV. IMPROVED +CD

Another interesting topic is the application of the im-
proved theory to lattice /CD in 3+1 dimensions. The

the value of M„a/g from the exact one are increased as
1/g2 and r. In this situation, the efFect of the Wilson
term becomes more and more important, and the im-
provement of the Wilson term (bi ——4/3, b2 ———1/6, ci ——

4/3, c2 ———1/3) should be taken into account. For r &( 1,
the contribution of H„' i" "'s in Eq. (2.2) is so small that
the unimproved data (the circles) are under the improved
ones (the diamonds) as in Fig. 1. Nevertheless, for in-
termediate Wilson parameter (r = 0.1) as in Fig. 2,
the unimproved ones coincide with the improved ones,
showing no obvious improvement. This is not surprising,
and may give us an insight into the delicate interplay of
H' ' "' and H' ~' " . For a larger Wilson parameter
(r = 1), the individual terms in H„' i" "'s are large and
the importance of the improvement of the Wilson term
is evident just in this case. As shown in Fig. 3, the im-
proved ones (the diamonds) are under the unimproved
ones and are closer to the exact value, which indicates
that the results for the improved Hamiltonian with larger
Wilson parameter are better than the unimproved one.

r=0
1..5 I I I

I
I I I

I
I I I

I
I I I

I
I I

I I I
I

I I I
I

I I2

0.5

o b=1, b=0
2

b =4/3, b =-1/6
1 2

0 0

1.6

co 1.2
05

b =4/3, b =-1/6,
2

o b =4/3, b =-1/6,
1

' 2

c =1, c =0
1 2

c =4/3, c =-1/3
1

' 2

o b=1, b=0, c =1, c =0
2 1 2

I & i i I i & i I I I i I0
0.5 0.9 1.3 1 ' 7 2.1

1/g
2.5

0.4

0.5 0.9 1.3 2 1.7
1/g

2.1

s I I I & & I & & a I » s I a0
2.5

FIG. 1. M„a/g as a function of 1/g for r = 0. The dashed
line is the exact value in the continuum model.

FIG. 3. M„a/g as a function of 1/g for r = 1. The dashed
line is the exact value in the continuum model.
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method discussed in Sec. III can be directly employed to
calculate the mass spectrum of /CD as well.

LGT with massless naive fermions is considered in this
section, mainly because there is explicit chiral symmetry
in the Hamiltonian. Of course, the disadvantage is its
species doubling problem. As is well known, even in LGT
with Kogut-Susskind fermions, this problem still exists.
However, it is argued that the Qavor doubling sects sub-
stantially physical results only through the quark loops,
which might play an important role in the thermody-
namical quantities such as the chiral condensate. The
unitary transformation and the variational method could
efBciently suppress the effects of these quark-antiquark
pairs. Mathematically, the purpose of this approach is to
diagonalize the Hamiltonian. Physically, it is to relate the
sea quark picture where there are a lot of quark-antiquark
pairs in the vacuum, to the valence (or constituent) quark
picture where the hadrons can be described by only a few
quark-antiquark pairs in the wave functions. In the va-
lence quark representation, we expect that the spectrum
evaluations are not greatly inauenced by the Bavor dou-
bling, which is indeed conlrmed by our results as well as
in the Monte Carlo simulation.

Using the unitary transformation and the variational
approach to fermions, the vector mass in the Schwinger
model with naive fermions [18] agrees well the exact one
in the continuum. Using the same approach, in the strong
coupling regime we have obtained satisfactory results [15]
for three- and four-dimensonal LGT (LGTs and LGT4)
with naive fermions, such as the PCAC (partial conser-

vation of axial vector current) relation. It has been ob-
served that a few gauge-link approximations to the oper-
ators in Eq. (3.2) and Eq. (3.3) are good enough in lower
dimensions, while in higher dimensional theories, how-
ever, the validity of the approximations is limited to the
strong coupling regime. The reason is that as the cou-
pling g decreases, fermion-antifermion pairs connected by
gauge links of longer distances are created in the vacuum
and more and more operators of these kind are required
to better diagonalize the Hamiltonian and to extend the
domain of validity &om the strong coupling regime to the
weaker coupling one. The secondary eH'ects of the one-
gauge link approach are that the p-ur mass difference (see
below), 6-% mass difference and p ~ xw [20,21] cannot
be produced.

A similar problem exists in the strong coupling ex-
pansion result [19] obtained by using Kogut-Susskind
fermions, where there are no appreciable mass splittings
among the 8-wave mesons. One solution is the introduc-
tion of the Wilson fermions, which leads to mass splitting
already in lower orders of the strong coupling expansion
series [22], but chiral symmetry is broken explicitly, and
a fine-tuning is required to restore this symmetry. A bet-
ter way out is to use the improved theory to evade this
problem.

For r = 0, the improved fermionic Hamiltonian is
given by Eq. (2.2) with bq ——4/3 and b2 ———1/6 with-
out the Wilson term. The transformed Hamiltonian
e '~H' P' '~e'~ in the strong coupling regime is

) g(z)pI„pg, U(z, kg, k2)g(z+ kg + k2)a
X,k1 gk2

+ ) ([ ~I~ 1S1)Ej ] + [ ~~2S2& Ej ] + 2[ ~~2S2& [ &~ 1S1)Ej ]))

2 ) ([—i8gSg, E, ]+ [
—i&S E2],E }+ +Hs+HP~' "' . (4.1)

The derivations of the commutators and anticommuta-
tors are straightforward, and the variational parameters

H, = —) lP(z)y(z) + —) y(x)U(z, k)y(x + A:)'*,k

bg 62
Hg —— , 82 ——

g K~ 2g Kpg
(4.2)

are fixed by minimizing the vacuum energy, with K~, ——

K,(N, —1)/(2N~) being the Casmir invariant. In the
strong coupling regime 1/g (& 1, by neglecting the pure
magnetic energy in Hg and using the condition Eq. (4.2),
the transformed Hamiltonian (4.1) is simplified as

2

+2' ).(» —& —&') + 2, ).@~(~)&'(~)2a' -,k 9~2

(4.3)
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d

AN (2b2+ b2)'

2bgb2
A2 =

g2Kpg

and those for the u meson,

0!3
M~a = 0!y + 60!2B~+ —A~)3

Cl'3
M aA = —agA —6o.2C~ ——

)3'

(4.9a)

(4.9b)

and

1
$2

g Kpg
(4.4}

M aB =
~

ai+ IB +a2+ (B —C ),
2g i 4a,
3 ) 9

1P = (~t, ( ) spat, , (z+ k)re, (z+ k)os$c, (z),
C

v'=('( )r '( )+A '(*)r&'(*)
+Bgt(*)rU(*,k)i)t(*+ k)

+C~t(*)rU(*, k) L.t(*+k), (4 6)

1
Q = ric, (z)oi, (c,(z+ k)rid, (z+ k)os(c, (z), (4.5)

C

with the color indices specified. In deriving Eq. (4.3),
the two-link or more-link terms in the final step have
been omitted (so the above approximation is referred as
the one-link approximation), and as in [15,20] a linear
approximation to the four fermion operators has been
made. The first two terms in Eq. (4.3) are, respectively,
the induced mass term and Wilson term. This is a very
nice result of the improved theory: the original Hamilto-
nian is chiral invariant, while the Wilson term is induced
by a unitary transformation and the addition of the next-
to-nearest neighbor interactions. Based on this effective
Hamiltonian, the decay of hadrons [21],mass splittings of
p-u and b;N would appear [20] even in the stronger cou-
pling regime by means of one-link approximation. Here
we pay special attention to the mass splitting of p-u, and
discuss in detail why the one-link approximation to the
naive Hamiltonian fails in this case and how the one-link
approximation to the improved Hamiltonian solves the
problem.

We choose the creation operators for the mesons as

(4.9c)

M aC =
~

—ai+
~

C —a2A — (B —C ).
2g'l 4a,

(4.9d)

B, = B.= 0, C, = C. = 0,
M

' M
(4.10)

It is obviously seen that the consistency condition of the
eigenequations forces the p and a meson masses to be
degenerate. The mass ratio M~/M is plotted in Fig. 4,
where the experimental value (0.98) is represented by the
dashed line and the result from the unimproved Hamil-
tonian with the one-link approximation by the circles.

It is known what contributions actually cause such mass
splittings in the real worM: the valence-quark —antiquark
pair can annihilate in the w meson but not in the p meson
because of the isospin matrix 7 in Eq. (4.7). If we com-
pare the above eigenequations for the p and ~ mesons, we
find that the differences between Eqs. (4.8c) and (4.9c)
and those between Eqs. (4.8d) and (4.9d) come from the
w meson's nonvanishing matrix elements of such terms
as P, Q, and Qt in the Hamiltonian (4.3), which can
produce the p-~ mass splitting since for the p meson,
T(~;) =0.

However, for the unimproved theory (bi ——1 and bs ——

0), a2 vanishes identically. In this case, according to Eqs.
(4.8) and (4.9), the consistent solutions are

with

(4.7)

0!3
Mpa = o.g + 6n2Bp+ —Ap,p) (4.8a)

By evaluating the matrix elements as in Eq. (3.6), we
obtain the eigenequations for the p meson in the one-link
approximation,

1.05

1.03

s 1.01

0.99

r=O
I

b =1,b =0

b =4/3, b =-1/6
2

A3
MpaAp ck] Ap 6&2Cp App) (4.sb) 0.97

2g
MpaBp A] Bp + A2 + Bp3

(4.Sc)
0.95

0.2 0.4 0.6
1/g

0.8

2g2
MpaCp ———o.gCp —a2A p + Cp, (4.sd)

FIG. 4. M~/M as a function of 1/g fort = 0. The dashed
line is the experimental value.
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With the improved Hamiltonian (bq ——4/3 and bz ——

—1/6), a2 is nonzero, and therefore the mass splitting
indeed appears. Our numerical data are shown by the
triangles in Fig. 4. One sees that even in the one-link
approximation the results &om the improved one are in
good agreement with the experimental one in the strong
and intermediate coupling regions.

Of course, these results should be regarded as prelim-
inary ones, because it is still not clear about the efFect
of the magnetic Buctuations and scaling behavior of M~a
and M a beyond the strong coupling regime.

V. DISCUSSIONS

In this paper, we have proposed some improved Hamil-
tonians for lattice gauge theory with fermions to reduce
the finite spacing effects in the strong or intermediate
coupling region and then employed them to compute the
mass spectrum of the Schwinger model and QCD. Some
major results may be recapitulated here.

(1) Even for the Schwinger model with naive fermions
(r = 0) in which only the kinetic Hamiltonian is mod-
ified, M„a/g shown in Fig. 1 enters the scaling region
faster than that with the unimproved one, and the ad-
dition of the next-to-nearest neighbor interaction to the
conventional one seems enough for naive fermions in the
intermediate coupling region.

(2) In the Schwinger model with Wilson fermions, for
r = 1, Fig. 3 tells us that the improved Hamiltonian
gives much better result.

(3) Most apparently in Fig. 4, one can see the im-
portance of using the improved Hamiltonian in (3+1)-

dimensional QCD. With the unimproved Hamiltonian,
the result (the circles) would completely disagree with
experiment and there would be no mass splitting be-
tween the p and ~ mesons in the one-link approximatioa.
Therefore, the validity of the one-link approximation in
this case is limited to the strong coupling regime and
it requires more-gauge links to extend the validity of the
approach to the weaker coupling. With the use of the irn-

proved one, the result (the triangles) is in agreement with
experiment at least from I/g2 = 0.6 through 1/g = 1.0
even by means of the one-link approximation.

To summarize, &om the test of the Schwinger model
and preliminary applications to QCD, we see that the
improved Hamiltonians indeed lead to better results.
Therefore, the use of the improved theory is a more eco-
nomical and efBcient procedure for significantly reducing
the major source of systematic errors due to the finite
a. Even &om the naive fermion model, the successful
improvement of the mass spectrum implies that the im-
proved theory with Kogut-Susskind fermions would also
work better than the original one.
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