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We develop a Bexible computer code to study axisymmetric black hole spacetimes. The code
is currently set up to evolve the fully nonlinear Einstein equations in azimuthal and equatorial
plane symmetry. The initial data for this code generally consists of a combination of one black hole
and an arbitrary amplitude, time symmetric gravitational wave. We present a discussion of the
mathematical framework for the problem, various coordinate and time slice choices, and a battery
of code tests.
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I. INTRODUCTION

A. Overview

In this paper we report on a computer code developed
to study the fully nonlinear Einstein equations for ax-
isymmetric spacetimes. This code represents an essen-
tial step in a longer term program to develop codes for
solving the Einstein equations in the absence of any sym-
metries. The motivation for such a project is severalfold.
(1) Such codes will be required to perform calculations of
fully relativistic sources of gravitational waves. Calcula-
tions of this nature will be important for a theoretical
understanding of gravitational wave astronomy, which
promises to provide a new window on the astrophysi-
cal Universe [1]. Currently there exist no analytic tech-
niques for computing waveforms expected &om promising
sources of strong gravitational waves, such as the coales-
cence of rotating black holes. Computational methods
are currently our only recourse for computing such wave-
forms. (2) The study of general relativity itself as a fun-
damental theory of physics is a difficult undertaking, due
in part to the complicated, nonlinear nature of the equa-
tions. Of all the analytic solutions found in the past 75
years of study only a relatively small number correspond
to astrophysically interesting situations and these are
usually very idealized, e.g. , the Schwarzschild and Kerr
solutions. The study of these solutions and their pertur-
bations has been extremely fruitful, helping to shape our
understanding of the theory as a whole. However, not be-
ing strongly dynamical, they represent only a small part
of the "solution space" of general relativity. The study
of the strongly dynamical regions should provide new in-
sights into the nature of the Einstein equations. (3) In
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the past decade the power of the fastest single proces-
sor vector computers has increased by perhaps an order
of magnitude, while the next 5 years should witness an
increase of 1000 times in overall power due to the de-
velopment of massively parallel machines. If the current
state of numerical relativity is used as a guide, this ac-
celeration in the power of supercomputers should make
possible the computation of complex, strongly dynami-
cal, astrophysically realistic spacetimes. It is hoped that
the study of the Einstein equations, a complicated set
of hyperbolic and elliptic equations, can act as a driving
force to develop accurate numerical techniques suitable
for this new generation of machines.

In this paper we discuss a suite of codes which has been
developed at NCSA over the past 5 years. The codes are
specialized for the computation of axisymmetric, equato-
rial plane symmetric spacetimes and have been applied to
systems consisting of a single oscillating black-hole and
the head-on collision of two equal mass black holes. Over-
all the metric, numerical methods, and spacetime analy-
sis tools used to compute and analyze the data for these
two systems are exactly the same. Where the codes dif-
fer is in the boundary conditions, initial conditions, and
the computational grid used to match the geometry of
the diff'erent topologies. Here we will refer to this suite
of codes as "the code" with the understanding that the
results obtained by one code are not signi6cantly diH'er-

ent from those obtained by the other codes. (A mod-
i6ed version of this code has been used to evolve the
collision of two equal mass black holes, as described in
Ref. [2].) The emphasis in this paper is on the numerical
algorithms used and various tests of the code's accuracy,
convergence, and stability. Companion papers [3,4] are
devoted to other aspects of this system. In [3,5,6), we

discuss many details of the initial-value problem for this
system, which consists of a time symmetric gravitational
wave superimposed on a black hole. For completeness,
some details of the distorted black hole initial data are
provided in Secs. IIC and IID, but a full discussion ap-
pears in Refs. [3,5]. In another paper [4] we discuss the
evolution of low and moderate amplitude gravitational
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waves in the black hole spacetime. An overview of the
project, details of the numerical code, and a complete
version of the code itself are being published in [7].

The paper is organized as follows. In Sec. II we de-
scribe the mathematical &amework of the calculation, in-
cluding a brief review of the 3+1 forxnalism used to evolve
the Einstein equations, the metric form we use, bound-
ary conditions, and choices of time slicing and spatial
gauges. In Sec. III we discuss the numerical algorithxns
we use for both the hyperbolic and elliptic equations in
the system. In Sec. IV we present a series of code tests,
including stability and convergence tests, and comparison
with a carefully tested code which coxnputes the solution
assuming spherical symmetry. In Sec. V we summarize
and outline future work planned for this code.

II. MATHEMATICAL DEVELOPMENT

In this section we describe the xnathematical &ame-
work for the calculation of our black hole spacetixnes,
including a brief sumxnary of the 3+1 formulation of gen-
eral relativity, the specialization of this formalism to our
axisymmetric system, the boundary conditions provided
by the symmetries in our systexn, a discussion of the ini-
tial value problem, and coordinate conditions used in our
code.

A. The 3+1 formalism

The 3+1 [or Arnowitt-Deser-Misner (ADM)] formal-
ism of general relativity is a common starting point for
many numerical relativity calculations. The formalism is
reviewed in many places [8] and we refer the interested
reader to those references. In this section the essential
features of the formalism are summarized. We use ge-
ometrized units, in which Newton's constant 0, and the
speed of light c, are equal to unity. Greek indices will
run &om 0 to 3, latin indices &om 1 to 3.

The central idea is to view spacetixne as a foliation
of three-dimensional spatial hypersurfaces, called slices,
each labeled with a unique value of a parameter t, which
xnay be identified as a time coordinate. Each hypersur-
face inherits a positive definite three-xnetric &om the sur-
rounding spacetime and is endowed with an extrinsic cur-
vature tensor K g, which describes the expansion of the
unit normal vector field to the slice. The full spacetime
metric is written in the ADM form [9]

ds = —(o. —P P )dt +2P dx dt+p sdx dz, (1)

where the lapse function n deterxnines the foliation and
the shift vector P determines how the slices are threaded
by the spatial coordinates. These functions essentially
determine the spacetime coordinate system and thus can
be chosen &eely. Various choices used in our code are
discussed in Secs. IIE2 and IIE3.

As with any other tensor, the Ricci tensor of the space-
time may be decomposed into its spatial and timelike
components, and when the vacu»m Einstein equation is

imposed these reduce to the four constraint equations

R+(trK) —K K s=0, (2)

Ds(K —p trK) = 0,

and the 12 evolution equations

@was = —2o'Kas+ D+Ps + DsPn) (4)

BqK s = D—Dsn+ o. [R s+ (trK)K s —2K,K's]
+P'D, K s+ K,DsP'+ K,sD P'. (5)

Here R g is the Ricci tensor, R the scalar curvature, and
D the covariant derivative associated with p ~. The Ein-
stein equations are contained in (2), (3), and (5), while
Eq. (4) follows from the definition of the extrinsic cur-
vature. In our work the initial-value problem is time
syxnmetric and the Hamiltonian constraint is solved on
an "initial" hypersurface using the well-known conforxnal
decomposition method developed by Lichnerowicz [10],
studied by Brill [11], and Misner [12] in special cases
and described in detail by York [8]. The initial data is
then evolved forward in time using the evolution equa-
tions (4) and (5).

If the constraints are satisfied on any hypersurface the
Bianchi identities guarantee that they remain satisfied
on all subsequent hypersurfaces. In a numerical solution,
this may not be the case and the constraints have to be
monitored carefully in order to ensure that the space-
times generated are accurate. Traditional alternatives
to this approach involve solving the constraint equations
on each slice for certain metric and extrinsic curvature
components, and then simply xnonitoring the "leftover"
evolution equations. This issue is discussed further in
this paper in Sec. IV, by Choptuik in Ref. [13], and in
more detail for the Schwarzschild spacetime in Ref. [14].
New approaches to this problem of constraint vs evolu-
tion equations are currently being pursued [15,16].

B. Form of the metric

In general relativity it is comxnon practice to assume a
special form for the metric components in terms of other
functions of the spacetime coordinates in order to facili-
tate or simplify calculations within the theory. In m~mer-
ical relativity, where one is attempting to find general so-
lutions with few or no spacetime symmetries, lengthy cal-
culations are difficult to avoid no matter how one writes
the metric. Here we choose to write the spacetime met-
ric in a general form so that a number of special gauge
choices can be tested easily. For a nonrotating, axisyxn-
metric spacetime one may write the three-metric in the
most general form in spherical polar coordinates as

dl2 = Adr + 2Crdrd8 + Br de + Dr sin Hdg, (6)

where A, B, C, and D are functions of r, 8, and t. The
metric functions pep and p„y must vanish because a non-
rotating axisymmetric metric must not change under the
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operation P -+ —P. For numerical reasons (discussed
below) we introduce the coordinate q by

where m is a general length scaling parameter and r is an
"isotropic" radial coordinate. In the (g, 8, P) coordinates
the spatial line element becomes

dt = e "(Adrj + 2Cdrjd8+ Bd8 +Dsin 8dg ) .
4

In solving the initial-value problem we use the confor-
mal decomposition method mentioned above and we have
chosen to leave the three-metric in conformal form for the
entire calculation, giving it the final form

dl2 = @ (AdrI +2CdrId8+Bd8 +Dsin 8dg ) (9)

(the factor e2"m2/4 has been absorbed into 4').
The full spacetime metric thus appears as

( -~'+ p*p*

p,
pe
0

P„ Ps 0
/'A C 0

44 CB 0
(0 0 Dsin 8) )

(io)

For numerical reasons we have chosen to write the ex-
trinsic curvature tensor K g in similar conformal form

( H„ e. 0
K& —C4i H H 0

0 0 H sin8)

This choice simplifies the evolution equations slightly.
(It is, however, not the standard form used in the York
method. Fortunately this is unimportant since we are
not solving the momentum constraint. )

This leaves us with eight dynamical variables A, B,
C, D, H~, H~, H~, and HD and three gauge quantities
n, P", and P . The conformal factor iII is chosen to be
time independent. It could be absorbed into the initial
data for the three-metric p g, and then it would not ap-
pear in the evolution equations. However we have chosen
not to do this, evolving the conformal three-metric and
extrinsic curvature components instead. Because of our
use of the g coordinate, the spatial interval between ra-
dial grid points gets quite large at large radii, and this
is reflected in steeply increasing metric components far
&om the black hole. All of this information is encoded
into the conformal factor 4', leaving the conformal met-
ric functions A, B, and D to approach unity far &om the
hole. We have found the numerical solution to be better
behaved if we evolve functions that asymptotically ap-
proach unity, such as A, B, and D, instead of evolving
the full three-metric variables that have the conformal
factor 4 absorbed into them.

For our problem the Einstein equations are broken into
11 equations for the 8 dynamical variables; 8 evolution
equations and 3 constraint equations. In this work the

constraints will be solved only on the initial slice, after
which the evolution equations alone will be used to corn-
pute the solution. The three gauge quantities (i.e. , the
lapse and the two shift vector components) wi11 usually
be determined from two elliptic equations (Secs. IIE2
and II E3).

C. Boundary conditions

For practical reasons we have given the spacetimes
equatorial plane symmetry as well as axisymmetry, hence
the region m/2 & 8 & m is identical to the region
0 & 8 & z/2. (The details of this section apply mainly
to the black hole plus gravitational wave spacetimes.
The boundary conditions for the two black hole space-
times are very similar, but not identical, and will be dis-
cussed in Ref. [2].) As discussed in detail in Ref. [3],
we have used the Einstein-Rosen bridge construction to
form a black hole from pure geometry, as in the textbook
Schwarzschild solution, but it has been generalized to a
nonspherical, nonconformally flat black hole. However,
the Einstein-Rosen bridge topology still allows the use of
an isometry which maps the metric exterior to the isom-
etry surface onto the interior, providing boundary condi-
tions for the metric components at the isometry surface.
The boundaries of the computational grid are, therefore,
the axis of symmetry (8 = 0), the equator (8 = vr/2), an
"outer" boundary in the asymptotically flat region of the
spacetime, and the isometry surface. The isometry sur-
face may be chosen to lie on a constant radial coordinate
surface which we have designated as g = 0.

On the axis, equator, and isometry surfaces, boundary
conditions for the three-metric and extrinsic curvature
components can be determined kom symmetry condi-
tions. As an example consider the boundary condition
at the throat. Here we assume that the region g & 0
is isometric to the region g & 0 and hence that there is
a transformation g'(rj, 8) and 8'(q, 8) which preserves the
form of the three-metric, where g' is the radial coordinate
in the region g & 0. If we assume a form for this trans-
formation then boundary conditions at the throat on the
three-metric components will result. The simplest such
transformation is g' = —g, 8' = 0 and this combined
with the usual tensor transformation rule and continuity
of the first derivative gives (e.g. , for pii)

(&2)

Since pqq
——O' A we may evidently choose the boundary

conditions for 4 and A independently as long as they
satisfy (12). We have chosen the simplest possible con-
ditions whereby 4 is symmetric through the throat (as
in the Schwarzschild solution) and this requires A to be
symmetric through the throat as well. It can easily be
seen that the components B and D are also symxnetric,
while the off-diagonal component C is antisymmetric.

The same reasoning can also be used at the axis and
equator (due to axisymmetry and equatorial plane sym-
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metry 8 ~ —8 and P ~ z. —P are also isometry op-
erations) and thus the boundary conditions on all three
surfaces for the metric components are

of the isometry surface. Similarly Pe is antisymmetric
across 8 = 0 and x/2 preserving the coordinate position
of the axis of symmetry and the equatorial plane. Hence

(13) P .=. —P .=./. = P"I.=o = ' (23)

BgAlg o: BgAlg /2: BoAI p: 0 (14)
It can also be seen that

Belle=o = BeP"Ig= (24)

BeBle=o = BeBle=~/2 = Bp+lp=p = 0

BgDle p
—BgDle /z

—B„Dl„p—0,

+le=o = +le= /z
—+l„=o— (17)

The symmetry of the extrinsic curvature is not com-
pletely determined by the isometry of the upper and
lower sheets; one can choose the "isometry sign" of the
extrinsic curvature (note that the constraint equations
do not determine the isometry sign of K g, see [17]).
However an inspection of the evolution equations, specif-
ically (4), shows that the lapse function must have the
same isometry sign. For example, if one specifies that
Kqq be antisymmetric through the isometry surface then
so must the lapse function. Requiring the lapse to be
antisymmetric through the isometry surface will prevent
any evolution of the three-metric there (in the absence of
a shift vector). This choice has been made in the study of
two colliding black holes [2,18,19]. Here we have chosen
a positive isometry sign for the extrinsic curvature. This
choice, together with the conditions above, gives the con-
formal components of K p the same symmetry behavior
as their three-metric counterparts:

bAn+1 An 2) (25)

At the outer boundary one would like to have an out-
going wave condition, assuming the boundary is placed
far enough away &om the source that an insignificant
amount of radiation is expected to be incoming there
(e.g. , from backscatter off of the background curvature).
In this work we have usually chosen the outer boundary
of the grid to be further &om the isometry surface than
radiation propagating off the initial slice could reach at
the time the code is stopped. However, the spatial coor-
dinates we use can cause the waves to backscatter off the
grid well before they approach the outer boundary (see
Sec. IIE 1). As discussed in [4] this effect can be reduced
by running the code with a larger number of radial zones.

Because of this situation the outer boundary condition
has not proved crucial. We have used two types of outer
boundary conditions, "static" and. "outgoing. " For both
types one finite differences the metric and extrinsic cur-
vature components at the grid edge in the usual way by
using a set value for the variable one zone off the edge
of the grid. In the static condition these values are unity
for A, B, and D, and zero for C and all of the extrinsic
curvature components. For the outgoing condition these
values are updated according to the scheme

BgH„lg p
——BgH„lg /2

——BoH„I„o= 0,

BeHjy Ig p Bevy Ig /z BoHjy I p 0)

BeHD le—p BeHD Ig— /2 Bo+& I —o

le —p
—~le— /2

—H
I

—o

(18)

(20)

(21)

where A"+
~ is the value of the variable A located radi-

ally one Ag &om the grid edge and at angular grid point
j to be used on time step n+ 1. We therefore take the
value of A on the grid edge at time step n and use this
in forming the spatial derivative of A at the grid edge
on the next time step. To account for the wave propa-
gation on a curved spacetime background we have also
experimented with an outgoing wave boundary condition
which should allow us to move the outer boundary in sig-
nificantly. This will be discussed in a future paper.

These imply

Beckle p Be(1le /2 Bp(xl p 0 (22)

Note that, because of the simplicity of the isometry
transformation, not only are the two sheets isometric
but also that their respective metrics are written in the
same form. Hence the components of p~g and K g are
identical functions of g and 8 on all eight patches of the
Einstein-Rosen bridge (up to sign for the off diagonal
components). This naturally leads to boundary condi-
tions on the components of the shift. The radial compo-
nent Po is antisymmetric across the throat guaranteeing
that it vanish there, preserving the coordinate position

f. 2 black hole collisions

An extensively modified version of this code has also
been used to study the collision of 2 black holes [2,19,20].
The initial data set of Misner [12] for two time syrn-
metric, axisymmetric Einstein-Rosen bridges connecting
two identical asymptotically Bat spacetimes can be writ-
ten directly in our coordinate gauge. Unfortunately, the
usual spherical-polar and cylindrical (p,z) coordinate sys-
tems are not ideally suited to the symmetries present in
the two black hole system, so a coordinate system devised
by Cadez [21,22] to match the surfaces of black holes and
to be spherical far &om the holes can be introduced. We
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have been able to evolve the collision and to extract the
normal mode oscillations of the final black hole, but these
calculations are considerably more diKcult than the dis-
torted black hole calculations. Full details of the colliding
black hole system are presented in Ref. [2].

824' 824 84 1 1 t~q 8q t

(29)

This equation is written as a finite difference equation
and solved using techniques described in Sec. IIIB.

In this work we have given q the form
D. Initial data

q = f(8)q(n) (30)

The initial data for the black hole plus gravitational
wave spacetime are described extensively in Refs. [3,5]
where many of its properties are discussed. In this sec-
tion we give a brief overview of the treatment of the
initial-value problem and the form of the initial data.
The essential feature of the data is that they consist
of a time symmetric gravitational wave overlaid on an
Einstein-Rosen bridge. In doing this we have superim-
posed two well-studied vacuum time symmetric space-
times: the Schwarzschild solution, whose properties are
completely known and for which several numerical stud-
ies in the 3+1 formalism have been done [23,14], and the
Brill wave spacetime for time symmetric gravitational
waves in which the initial-value problem has been ex-
tensively studied by Brill [11]and others [24,25], and its
evolution studied by Eppley [26], Miyama [27], and Abra-
hams and Evans [28].

The initial-value problem consists of finding a three-
metric and extrinsic curvature which satisfy the con-
straint equations (2) and (3). To date we have confined
our research to the study of spacetimes which contain a
surface of time symmetry. As is well known, the extrinsic
curvature must vanish on a time symmetric surface and
hence the momentum constraint will be satisfied identi-
cally on it.

This leaves us with only the Hamiltonian constraint
R = 0, to be satisfied by p b. Using a conformal de-
composition technique for finding an appropriate three-
metric and writing p b in conformal form, p b

——4 j b,
gives

where g is an "inversion symmetric Gaussian"

e
—(g+)' + e

—(a-)'

with

g + QO g QO

g+ =
tO

(32)

and

f =sin" 8 (33)

=0

or using the radial coordinate g

with n an integer. The angular function f must vanish
on, and be symmetrical through, 0 = 0, hence n must be
even. The radial function g has three independent pa-
rameters a, g„and m which specify its amplitude, range,
and width.

As mentioned above we have chosen the conformal fac-
tor to be symmetric through the the axis, equator, and
throat. On the outer boundary we employ the Robin
condition [29], which eliminates the monopole term in
the asymptotic expansion of @, so that the error on the
outer boundary is only of order r . The condition is

R= 4' 4R-8C 'AC = 0, (26)

(27)

where R and 4 are the scalar curvature and I aplacian
associated with the conformal metric j b. The Hamilto-
nian constraint becomes the linear equation

Note that in spherical symmetry the Hamiltonian con-
straint has the exact solution

4 = v 2m cosh(i7/2),

which is just the standard Schwarzschild solution written
in these coordinates [14]. For numerical reasons we will

usually factor 4 into the form
At this point one may choose the conformal metric and
solve (27) for the conformal factor. We work in the

(g, 8, P) coordinates, in which the line element is chosen
to take the "Brill wave" form

4 = i/2m cosh(q/2) 4',

and solve the Hamiltonian constraint for 4'.
(37)

dl = @4 Ie ~(drI y d8 ) + sin 8d(P]. (26)

As discussed in [3,4], the function q(r1, 8) can be cho-
sen freely, up to certain boundary and size conditions.
The choice q = 0 produces the Schwarzschild solution,
while a nonzero, nonspherical choice for q produces a
distorted black hole. The Hamiltonian constraint (2) is
transformed into

E. Kinematics

In numerical relativity there are two rather distinct
aspects to the construction of spacetime coordinate sys-
tems. The first is the problem of how to lay down spa-
tial coordinates on the initial slice, and the second is
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the construction of subsequent slices and the mapping of
these spatial coordinates onto them. The two problems
are somewhat intertwined in the sense that both involve
physical as well as numerical and computational consid-
erations.

Spatial coonhnatee

Despite the freedom inherent in the shift vector, the
choice of spatial coordinates on the initial slice is impor-
tant because often one does not employ a shift or because
the shift is used for other reasons, not directly related
to the kinematics (as is, in fact, the case in this work).
Hence these coordinates must be chosen with some care.

As an example we look at two possible choices for
the spatial coordinates in the black hole plus Brill wave
spacetime. The first are the usual spherical polarlike co-
ordinates in which the spatial line element appears as

dl = 4" (A'dr + B'r d8 + 2C'rdrd8
+D'r sin 8dg ),

and the second are the coordinates (g, 8, P)

dl2 = 4'4 (Adr12 + Bd8 + 2CdrId8 + D sin 8' ) . (39)

These systems both have the numerically desirable prop-
erty that the isometry surface is a constant coordinate
surface, r = m/2 and rl = 0, respectively. Reflection
through the isometry surface is assumed to be of the form
r ~ m2/4r and g ~ —g. The isometry operator deter-
mines the inner boundary condition for the three-metric
components (as discussed in Sec. IIC) and for a con
formally flat three-metric in the (r, 8, P) coordinates the
boundary condition on @ [determined in the same way
as Eq. (12)] turns out to be

overcome by the use of the logarithmic coordinate g in
which the proper distance between points evenly spaced
in g increases exponentially as g increases. Hence a grid
covered with such evenly spaced points will have a larger
proportion of the total n»mber of points in the dynam-
ically interesting region than a grid evenly covered with
points in the r coordinate.

This in turn suggests a drawback to the g coordinates.
Evans [30] has cited a figure of 50 zones per wavelength
needed to accurately propagate a wave. Since the grid
zones are being stretched in proper length as g increases,
there will be a critical value of g at which the number of
grid zones spanning a wavelength will drop below 50. The
specific three-metric of a particular slice will determine
exactly where this happens, but for an asymptotically Bat
three-metric we may make an approximation as follows.
In the wave zone the number of zones per wavelength,
n = A/Ar, in the r coordinates will be constant no matter
where the wave is and on a grid evenly spaced in Ag we
have n = A/rAg The.refore the r value where the wave
spans exactly n zones over a grid evenly spaced in g is
A/nag. Currently our "high resolution" runs are done
with 200 radial zones with an outer boundary at g = 6
hence Ag = 0.03. If we desire 50 zones per wavelength
the outer limit for very accurate propagation of a A =
17M wave (roughly what we expect from a black hole of
mass M) is about 15M. By r = 50M, we are down to
15 zones per wavelength. This loss of resolution at large
radii can lead to poor propagation and re6ection of the
waves, as noted in Ref. [4] and shown here in Fig. 1. In
practice, at this resolution, good propagation is seen out
to about 50M, where degradation of the waveform begins
to occur. See [4] for more details.

Another disadvantage of the concentration of zones
near the isometry surface in the g coordinates is con-
nected with the phenomena of "grid sucking" associated
with most singularity avoiding lapse function choices.

$8@
(Br m) (40)

Resolution Study

This "anti-Robin" condition. causes problems in solving
the Hamiltonian constraint [29]. It is "anti-Robin" be-
cause the "outward" pointing unit normal is pointing into
the computational domain (unlike the situation on the
outer boundary).

Another issue is associated with the finite difference
solution of hyperbolic equations. It is a general rule of
thumb that in order to propagate the solutions most ac-
curately the computational grid zones should be of uni-
form size. That is, the zones should be as near to square
as possible and all of the same area in the computational
domain. In abiding by this rule we should choose Ar
or Ag to be as close to LO as possible. Now, on an
asymptotically Hat slice both 4' and A' will tend toward
unity at the outer edge of the grid and so points evenly
spaced in r will also be evenly spaced in proper distance.
This means that a relatively large number of zones will
be used to cover the region near the grid edge and if the
grid points are evenly spaced in r this coverage comes
at the expense of coverage in the interior where we ex-
pect most of the interesting dynamics to occur. This is

0.10-

0.05-

0.00-

-0.05-

High Resolution (200x53)
Low Resolution (100x27)

-0.10—

I
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I
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I
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FIG. 1. This Sgure shows the same waveform as the pre-
vious Sgure but at 100 and 200 radial zone resolution. The
lower resolution calculation suffers from oscillations at late
times, as discussed in the text.
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This is the problem whereby zones are pulled through
the event horizon due to the gravitational focusing of
timelike geodesics. The problem is that in the q coor-
dinates more zones as a percentage of the whole will be
sucked through the event horizon than if the hypersur-
faces were evenly covered in the r coordinates. These
zones are efFectively gone from the calculation as far as
the exterior of the horizon is concerned. For the max-
imally sliced Schwarzschild solution with P = 0 about
40%%uo of the zones fall through the horizon in an evolution
to t = 80M if the outer boundary is at g = 6. If the
initial slice is covered in the r coordinates with the same
number of zones this figure is reduced to 2%%uo. This prob-
lem may be circumvented by using an apparent horizon
boundary condition, where a shift is used to maintain a
fixed coordinate position for the horizon [31]. This ap-
proach has worked well in spherical symmetry, and work
is underway to extend this technique to more general
spacetimes.

Slicing conditions

Given the absence of rotation and electric charge, we
expect that the black hole plus Brill wave spacetimes each
have the same singularity structure as the Schwarzschild
spacetime. That is, they contain a spacelike singularity
in the future of the initial slice. The initial slice always
contains a trapped surface [3] and so it will also contain
an event horizon assuming cosmic censorship holds [32].
A singularity avoiding slicing condition is essential if we
allow the slicing to intersect an event horizon and we
insist on computing the region of spacetime inside the
horizon.

We have used maximal slicing almost exclusively to
foliate the spacetimes. Maximal slicing has been used
extensively in numerical relativity for several reasons:
considerable analytic work has been done delineating its
singularity avoiding properties [23,10,33—36], it was used
in early numerical work which centered on computing
black hole spacetimes with Einstein-Rosen bridges, and
it is conveniently computed from the three-metric and
extrinsic curvature. Finally it can be encoded into a sta-
ble numerical algorithm. Here we give only a brief sketch
of its use.

Maximal slices (i.e. , hypersurfaces with maximal vol-

ume) are characterized by the vanishing of their mean
curvature

The properties of equations of this type have been ex-
plored at length elsewhere [37] and for our purposes it is
su8icient to point out a few elexnentary things. K K g

is a positive indelnite quantity in the spacetimes con-
sidered in this work. When this is the case it is known
that solutions to (43) exist, are unique, and are in a sense
well behaved [37]. Also the equation is linear in n and
the numerical solution of such equations has been studied
extensively [38].

Given an initial trK = 0 slice, a subsequent one may
be constructed by specifying appropriate boundary con-
ditions on the lapse and solving (43). In this work we use
the mixed von Neumann/Dirichlet conditions:

= 0, o.(outer boundary) = tanh(g/2), (44)

which determine the isometry sign across the throat (see
Sec. II C) and the Schwarzschild-like behavior at the grid
edge.

8. Shift sector conditions

Ever since the work of Smarr [39] and Smarr and Epp-
ley [18]on the axisymmetric two black hole collision it has
been known that general three-metrics are prone to devel-
oping instabilities on or near the axis of symmetry. These
instabilities have severely hampered progress on the two
black hole collision; in fact the two black hole spacetimes
of Smarr and Eppley were usually stopped after about
40 —60M oE the initial slice because of numerical prob-
lems caused by the uncontrolled growth of certain metric
and extrinsic curvature components near the axis [18].
(Recent progress on this subject has been reported in
Ref. [2].) Our initial attempts to evolve the distorted
black hole spacetimes described above with a general
three-metric of the form (9) also sufFered from a simi-
lar instability along the symmetry axis (see Sec. IV 8).

As we detail in Sec. IVB this instability can be con-
trolled somewhat by forcing the coordinates to remain
spatially orthogonal at all times. This is accomplished
by the introduction of a shift which makes pq2 vanish.
Since our initial data is already of this form we need
only introduce a shift such that

Avi2 = —2~&i2+ DgPe+ DePq = 0.

trK:—p K g
——0. (41)

Expanding the covariant derivatives and writing the
equation for the contravariant components we have

BqtrK= —D D o, +o.B=O, (42)

or, using the Hamiltonian constraint,

D D o. =oK Kg. (43)

This latter form tends to be better behaved numerically,
and is the form used in the code.

The evolution equation for trK may be computed from
Eqs. (4) and (5) and the maximal slicing condition is
obtained by setting trK = BqtrK = 0:

00 s BA
00' Bq'

which yields an elliptic equation for 0:

(47)

clps Op"
2oH = B +A (46)

Bg 00
(here we have already used C = 0). This gives us one
equation to determine both components of P . A fur-
ther restriction is made by requiring the shift to be the
"gradient" of a "potential" 0,
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8 0 020
2aH = B +A.

077
(48)

III. THE NUMERICAL ALGORITHMS

In this section we will discuss the different algorithms
we have used for the evolution of the Einstein equations,
and for the solution of the elliptic equations arising &om
our gauge choices. Following on the work reported in
Ref. [14] we have implemented three difFerent time ex-
plicit evolution schemes in the code: leap&og with half-
time-step extrapolation, MacCormack, and Brailovskaya.
We will suxnmarize the three methods below in Sec. III A,
and compare results of the methods in Sec. IV. In
Sec. III8 we discuss the solution of the elliptic equations.

A. Hyperbolic equation (evolution) algorithms

The evolution equations in 3+1 form are discussed in
detail in Sec. II A above. For brevity we will write them
here in schematic form:

Bgp = —2o.K (49)

and

BgK = a(K + R) + V'V'a. (50)

The symbols p, K, and B are symbolic of the metric
quantities p g, K g, and the Ricci tensor, while VVa.
represents the covariant Hessian of the lapse. The nu-
merical grid upon which the finite differencing is accoxn-
plished has fixed step sizes in both temporal and spatial
zoning. In the finite diHerenced form of the evolution
equations to follow, the spatial steps will be labeled by
the letter i, while the tixne steps will be labeled by n.

We start with the leapkog method. This is perhaps
the most comxnonly used xnethod for evolving hyperbolic
systems. The usual leapfrog method has the "momen-

This equation is then solved in the usual way: by substi-
tuting finite difference approximations for the derivatives
of 0 and using a linear system solver on the result. Given
the boundary conditions (23) and (24) it can easily be
seen that 0 xnust be antisymmetric across the axis, equa-
tor, and throat. The condition 0 = 0 is used at the outer
boundary where we have found that it makes both the
shift and its gradients smoothly go to zero. The dkcts of
this gauge on the instability are discussed in Sec. IV B.

This method has proved to be convenient and suc-
cessful in evolving the black hole plus gravitational wave
spacetime. However, an additional degree of &eedom in
the shift could be used for other purposes. For exaxnple,
one could use the shift to keep the three-metric diago-
nal, as we have, and also enforce another condition. One
choice would be to require the metric to have the "quasi-
isotropic" form [30], which in our system would require
A = B. However when this condition is used in the
Schwarzschild spacetime it produces an inward pointing
shift which forces a large portion of the grid inside the
event horizon [5].

tumlike" quantities (in this case K s) offset &om the
"fieldlike" quantities (p s) by 1/2 of a time step so that
the time derivatives are properly centered. Thus, one can
write the evolution system (49) and (50) as

n+1/2 n —1/2 (51)

and

K,"+ = K,"+ (a,"[(K,") + R,"+
]
—(V'V'a),"jb,t.

(52)

However, this introduces first-order errors due to the non-
linear term (K,")2. This problem can be cured by extrap-
olating the quantity K; to the time slice labeled by n+1/2
using the second-order accurate formula

Kn+1/2 3 Kn 1Kn —1
2 i 2 (53)

Then the second-order accurate, extrapolated leapfrog
method can be written as

n+1/2 n —1/2 2 n Kn gg (54)

and

K~+' = K" + (a"+ / ((K~+ /
) +R~ /

]

—(VV'a),. jb,t. (55)

(56)

and

K,"+' = K,"+(a,"[(K,")'+R-,"]—(VV' ),")b,t (57)

constitute the first, or predictor step, while

p,
"+' = 2[p,"+p,

"—2a,"K,"At].

This method works very well, as we discuss in Sec. IV.
Now we turn to two predictor-corrector xnethods, the

MacCormack and Brailovskaya schemes. These schemes
are discussed in Ref. [40] where they are applied to
Burger's equation written in Bux conservative form. Be-
cause the Einstein equations are not in this form, the
standard analysis for the stability, dissipation, and dis-
persion properties of these methods does not apply di-
rectly. The treatment of the time derivatives in the Ein-
stein equations can be carried over directly, but the struc-
ture of spatial derivatives is much more complex than
found in Burger's equation. These methods worked very
well in spherical symmetry, as reported in Ref. [14]. In
fact, they were found to be superior to the extrapolated
leap&og method described above. However, in spherical
symmetry there is only a longitudinal part of the field;
the transverse, or wave part, is absent. This extra de-
gree of freedom in the equations will pose some diKculty
for the predictor-corrector methods as we will discuss in
Sec. IV.

Both of these schemes have two steps in the evolu-
tion to the next time slice. The MacCormack predictor-
corrector scheme is written as
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and

K,". +' = —,
' [K,"+ K,"+ {a,". [(K,". +')' + R,"+']

—(V'Va),. )b, t] (»)

constitute the second, or corrector step. This method
is somewhat different f'rom other methods in that for
the predictor step the first spatial derivatives of the
metric appearing in the Ricci tensor and Hessian of
the lapse can be determined by forward difFerencing:
B„p," = (p,"+i —p,")/Ag. In the corrector equations
these derivatives are calculated using backward differ-
encing: O„p," = (p,

"—p,
" i)/Ai1. An alternative method

is to backward difference at the predictor level and for-
ward difference the corrector equation. However, in this
code we have used centered derivatives in both predic-
tor and corrector. Second derivatives are always center
differenced. We also note that in other applications [41]
centered spatial derivatives have been used in both the
predictor and corrector steps with satisfactory results, as
long as time steps were kept sufIiciently small. Results
from the MacCormack method will be discussed further
in Sec. IVE.

Finally we turn to the Brailovskaya predictor-corrector
method which we have also used to evolve the Einstein
equations. This method uses a centered differencing
scheme for spatial derivatives in both the predictor and
corrector equations:

(60)

and

K,"+' = K,"+ {a,"[(K,") + R,"]—(V'V'a),"jest (61)

are the predictor steps, while

the MacCormack and Brailovskaya methods [41]. The
Courant condition becomes more complicated when a
shift vector is used. Furthermore, the strict stability
analysis for complex nonlinear equations such as the Ein-
stein equations would be very complicated, and has not
been performed.

In spite of these deficiencies in the analysis, the stan-
dard formula (64) can provide useful guidance in choosing
a time step, as long as the shift vector remains small [31].
In practice, we have generally chosen At = Ag, which is
usually far below the Courant limit. Significantly larger
time steps can be used in some cases, although with re-
duced accuracy. An adaptive time step routine using
both the Courant limit and restriction on time deriva-
tives of the metric functions as a guide could be used to
make our code more efBcient, but this approach has not
yet been explored. The results quoted in this paper and
in [4] were obtained with b,t = Ag.

B. Elliptic equation algorithms

The solution of the elliptic equations arising in this
calculation is the most CPU intensive part of the numer-
ical integration of the Einstein equations. Our system
requires that we solve the Hamiltonian constraint as de-
scribed in Sec. IID for the initial data, and then during
the evolution elliptic equations are used to provide both
the lapse and shift functions, as described in Secs. II E 2
and IIE3. Here we discuss a variety of techniques that
we have explored for solving these equations accurately
and efIiciently.

The equations for the lapse, a (43), and shift vector
potential, 0 (48), and the conformal factor, 711 (29), are all
second-order-linear elliptic partial differential equations
that can be written in the general form

and

YL+1 7l 2 ~K (62)
t9xOZOZOx

a11g 2 + a12g gg
+ a22gg2 + a01g

Oz
+Gp2 —+ aosz = b(il, 8), (65)

goya
7/ ~

gtt
(64)

K,"= K,"+ {a,". [(K,"+') + B,"+'] —(V''77a), . )At.
(63)

are the corrector steps. This method is formally first
order in time and we shall see in Sec. IVE that it per-
forms slightly less well than the leapfrog and MacCor-
mack methods. A full comparison of these methods will
be presented in Sec. IVE.

These explicit finite difference methods for evolving hy-
perbolic systems require certain restrictions on the size of
the time step for stability. In analogy to the second-order
wave equation in fIat space, the Courant stability condi-
tion for a wave traveling in the radial direction would
be

where x(g, 8) is a scalar function of the independent co-
ordinate variables. The coeKcients a11, a12, etc. , are
functions of both g and 8 and are determined by the
three-metric and various partial derivatives of the three-
metric with respect to the spatial coordinates.

In order to solve elliptic equations numerically, the
usual approach is to approximate the derivatives with
finite difFerence operators and solve the resulting sys-
tem of simultaneous equations. Fortunately, our ellip-
tic equations are linear, so the resulting algebraic system
is also linear. (Nonlinearities are typically handled by
linearizing and iterating, so the technique is essentially
the same. ) There are many ways of writing 6nite differ-
ence operators, so the resulting system is not a unique
representation of the elliptic equations. However using
central difFerences to represent first and second partial
derivatives,

This condition generally applies to the leapkog scheme
described above when considering a linear wave equation,
but more restrictive time step requirements are found for I 7

+&+1 g +l —1
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i+1,j 2+a,j + i —1,j (67)

i j+1 2i j—1 (68)

+i,j+1 2&i,j + i, j —1

(b,8)2
(69)

the elliptic partial differential equation (PDE) leads to
an algebraic equation at each of the N grid points (i, j)
(where i labels rl nodes and j labels 8 nodes) that couple
values of the function z at that grid point with the values
of the function at the nearest neighbor grid points,

an&;+1,j+ aex, ,j+1+ac&;,j+ a~&.,j .
+as z; q z

——b; ~ , (70).

where an, as, ae, and am correspond to the north, south,
east, and west directions &om the central point, ac, of
the stencil on the grid:

a02

(b,8)2 268'
a01

(b, rl) 2 26rI '

a11
2

a22

(b,rI) 2 (68)2 '

a11 a01

(b,rl) 2 2b,g
'

a02

(b,8)2 2b,8 '

where all of the A's are evaluated at the central (i,j) grid
point. All of the elliptic equations appearing in the code
have a12 ——0.

The standard form for a set of linear equations is that
of a matrix equation Ax=b, where A is an N x N square
matrix containing all the finite difFerence coefBcients, x
is a vector of N elexnents consisting of all the unknowns,
and b (the right-hand side) is a vector containing all the
source terms and the given boundary values. By using
a new index k = (i —1) x (j ) + j that counts grid
points along successive constant grid lines we can order
the equations such that they have this form. In this way
we generate a standard matrix form of the problem where
A is now a very sparse matrix with diagonal structure as
shown in Fig. 2. For details on this procedure see Press
et al. [38].

Once the linear system of equations has been written in
the sparse matrix form we must solve the matrix equation
for the unknown values of the scalar function. We have
explored a number of diferent methods, including direct,
iterative, and multigrid methods.

C. Numerical methods

In this section we review the diHerent xnethods used to
solve the linear elliptic equations for the scalar functions

FIG. 2. The sparsity structure of the coeRcient matrix for
the ordered set of equations arising from the elliptic systems
is shorn.

o(rl, 8), Q(rl, 8), and @(r1,8) and make comments about
particular implementations of those methods and how
they afFect the overall performance of the code.

f. Diect naethods

The great advantage of the direct solvers is that they
obtain the solution in a fixed number of operations.
These methods are well described by Press et al. [38].
However, since we are considering large systems, these
xnethods are subject to the accumulation of round-oK er-
rors. Also, since we are considering massively parallel
and/or vector supercomputer architectures, they suffer
because the backward and forward substitutions implicit
to theses methods are nonparallelizable, nonvectorizable
operations and will execute at scalar speeds. For these
reasons iterative solvers are more efBcient in our case.

A multi&ontal method combined with incomplete fac-
torization of the coefBcient matrix for solving large linear
systems was used and its implementation was written by
Boeing Computer Services, Inc. (BCSLIB-EXT).

8. Iteretiee methods

Since the advent of computers with sufBcient mexnory
to compute large problems, iterative solvers have under-
gone significant development and many xnature iterative
methods are now available. Most of these techniques
fall under the headings of relaxation xnethods or gradient
(Krylov subspace [42]) methods.

Relaxation methods can involve the simplest Jacobi or
Gauss-Seidel techniques to more sophisticated simulta-
neous overrelaxation (SOR) algorithms [38]. These tech-
niques successively solve the system of equations for the
unknowns using each solution as an approximation for
the next iteration. While the relaxation methods can
perform quite well, they do not have a finite termination
criterion; they are only guaranteed to converge as the it-
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eration number approaches infinity. These methods are
useful when combined with multigrid methods (see be-
low).

Many of the gradient methods in use today are based
on the conjugate gradient (CG) method of Hestenes and
Steifel [43] for symmetric positive-definite systems (i.e.,

A is a symmetric matrix), or extensions of the CG
method to apply to nonsymmetric systems. Essentially
the conjugate gradient method minimizes a quadratic
function of the form

f(u)=2m A. x —x 6

QAPP 'x=Qb (71)

and then perform the iterative algorithm on the system

My = d, (72)

where

M=JAP,
y=P 'x,
d= Qb.

(73)

(74)

(75)

The preconditioning is most effective when the matrix M
is nearly the identity matrix, and when the procedure for
implementing the preconditioning is not computationally
expensive for the machine architecture being used.

One of the Krylov space methods used was a general-
ized conjugate residual (GCR) method using modified in-
complete LU (MILU) decomposition as a preconditioner.
This method is implemented by Scientific Computing As-
sociates, Inc. , in its PCGPAK package and was the first of

by calculating the gradient along a certain direction and
then minimizing this quantity. This is equivalent to solv-
ing the original matrix equation.

Some specialized conjugate gradient methods applica-
ble to nonsymmetric matrices are (i) conjugate gradients
applied to the normal equations (CGNR), (ii) biconju-
gate gradients (BiGC) [44], (iii) (bi)conjugate gradients
squared [(Bi)CGS] [45], and (iv) BiCGStab [46]. Other
Krylov subspace methods include the generalized mini-
mal residual (GMRES) method [47] and the generalized
conjugate gradient (GCG) method [48], but we have not
applied these methods to our problem.

A great advantage of the Krylov subspace methods is
that they are guaranteed to converge in a finite number of
iterations. Generally the maximum number of iterations
will be the number of unique eigenvalues of the coefFicient
matrix A. However, the convergence rates of the various
Krylov subspace methods can vary greatly, as can the
memory requirements. The second advantage to these
methods is that they can generally be implemented in a
parallelizable and vectorizable fashion which makes them
particularly appealing for use on parallel and/or vector
supercomputers.

Finally, all iterative techniques can benefit greatly
from effective preconditioning. Here, the matrix equa-
tion Ax=b is modified to produce an equivalent system
of equations of the general form

the conjugate gradient methods employed in the code.
However, being a general method, there was a great deal
of overhead associated with this particular implementa-
tion. It was not highly vectorized and ran at nearly scalar
speeds on a vector processor.

A BiCGS algorithm with a least squares polynomial
(LSP) preconditioner was also used. This solver was writ-
ten as part of the ITPACK project of the Center for Nu-
merical Analysis at The University of Texas at Austin.
The method was one of many included in the NSPCG

package.
The final conjugate gradient method to be used was

a BiCGStab algorithm written by one of us (J.T.) at
the National Center for Supercomputing Applications;
the CG-based algorithm was developed by Henk Van der
Vorst [46]. This is an advancement over the BiCGS al-

gorithm. However, no effective preconditioning has yet
been used, although code development is currently under
way in this area.

8. Multigrid

It is well known that iterative solutions to large ma-
trix equations obtained by the use of relaxation methods
have the advantage that they reduce the high frequency
components in the error but at the same time converge
very slowly to a solution in the low frequency compo-
nents. Multigrid methods provide a means for overcom-
ing the slow convergence while taking advantage of the
smoothing that results &om the relaxation. Since the
convergence of a relaxation method improves if the ini-
tial estimate of the solution is close to the solution itself,
multigrid solves the problem on a less computationally
intensive course grid and interpolates that solution onto
the fine grid to provide a better initial guess.

One begins with the matrix equation A"x" = b",
obtained &om the finite differencing of an elliptic PDE
Ax = b having a courseness h. (Here A represents the
differential operator acting on the continuous function x.)
This grid is generally of the same courseness on which the
evolution equations are solved. Using a simple relaxation
technique one can obtain a relatively smooth solution x"
after a few iterations. A residual r" = b —A"x" is calcu-
lated and this is restricted to a grid of greater courseness
h' (generally h' = 2h) by the restriction operator R&

h' I(r" = R~ r"). The low &equency components in the
error on the fine grid now become high frequency com-
ponents on the course grid and further smoothing using
a relaxation method can be employed on the course grid
to further eliminate the new high &equency components.

h'
A correction c" is then obtained to the solution on the

course grid and that can be interpolated onto the fine grid
by the interpolation operator Ih, to obtain a correction

h'on the fine grid, c" = I&,c" . The interpolated correc-
tion when added to x." can be smoothed by relaxation to
obtain an improved fine grid solution x".

Multigrid therefore solves the problem on multiple
scales and consists of three operations (i) smoothing,
(ii) restriction (moving &om fine to course grids), and
(iii) interpolation or prolongation (moving from course
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TABLE I. Timing results for black hole spacetime evolution. Data is for a 200 x 55 grid run to
t = 100M on a single Gray Y-MP processor.

GCR (PCGPAK)
Direct (BCSLIB)

NSPCG
UMGS2

BiCGStab

Time
(min)
280.5
174.2
120.5
23.2
18.3

Speedup
1.0
1.6
2.3

12.1
15.3

MFLOPS
21
36

176
73

213

Zone
(cycles/sec)

4503
7251

10483
54 447
69 025

Memory
size (MW)

3.2
2.6
1.0
1.4
1.0

to fine grids). DifFerent methods for smoothing (Jacobi,
Gauss-Seidel, SOR) can be used as can difFerent restric-
tion (full-weighting, half-weighting with injection) and
interpolation (bilinear, cubic spline) methods.

The multigrid method used with our code was provided
by Steven SchafFer of New Mexico Technical Institute [49]
(UMGS2). UMGS2 is a semicoarsening multigrid code.
This difFers f'rom full multigrid as described by only per-
forming the coarsening along only one of the dimensions
of the grid. This provides an algorithm that is much
easier to implement, yet retains the efBciency of using
multigrid. We perform the coarsening only along the 8
direction which since the solution is more smooth in that
direction.

D. Performance results

1. Per forrnance etatietice

For the iterative solvers, iteration ceased when the Eu-
clidean norm of the residuals reached a certain tolerance.
The Euclidean norm, or 2-norm, of the residuals is given
by

r 2= rr 2= rTr.

The residual at the mth iteration is given by

(76)

r =b —Ax (77)

where x is the approximation to x at the mth iteration.
Iteration stopped for the solution of each equation when

//
r //2& 10 x 10

Each method was used to solve the same problem, the
numerical evolution of a black hole plus gravitational
wave spacetime. The equations for the lapse o. (43) and
shift potential 0 (48) are solved on each time slice in the
evolution. Since the coefBcients in these equations are
time dependent, a difFerent pair of elliptic equations is
solved on each time step (i.e., the spatial dependence of
each coefficient is different on each time step).

was satisfied.
Table I summarizes the performance statistics of the

code for each solver, showing the UMGS2 and BiCGStab
algorithms to be the best for these particular equations.
The numbers given are for a complete run of the entire
code (which includes the solution of the hyperbolic equa-
tions as well) for identical problems to t = 100M (6667
time steps, i.e., 13335 elliptic equations are solved) with
200 radial zones and 55 angular zones. The codes were
run on a single processor of NCSA's Cray Y-MP4/464.
While the MFLOPS (million floating point operations
per second) rates for the different solvers vary greatly, the
more important results are total run time of the code and
zone cycles/eecond (a measure of how many grid points
per second can be evolved).

We have also begun to experiment with paralleliza-
tion of our code on the Cray architecture. As an ini-
tial test the BiCGStab version of the iterative solver
was rewritten to distribute the computationally inten-
sive tasks across multiple processors and our initial num-
bers are very encouraging. Table II shows the results for
evolving the same spacetime as above, but with twice the
resolution (i.e., 400 radial zones and 106 angular zones).
The concurrency is 3.92 (with a maximum of 4.00). Par-
allelization of the code will allow us to run the code in
approximately one quarter the amount of time previously
and means we have obtained a final speedup of approx-
imately 60 times compared to using GCR solver on a
single processor.

IV. CODE TESTS

Any numerical code must undergo thorough testing in
various regimes where results are known, before it can
be trusted to explore unknown territory. In this section
we present a number of numerical results which provide
tests of various aspects of the code. The 3+1 formalism
of the Einstein equations naturally divides the problem
into two parts: finding an initial data set consistent with
the constraint equations, and then evolving that data set
forward in time. We discuss both aspects of our code
here.

TABLE II. Timing results for black hole spaeetime evolution. Data is for a 400 x 106 grid run
to t = 25M on four Cray Y-MP processors.

BiCGStab

CPU
time
(min)

95.0

Elapsed
time
(min)

24.2
Concurrency MFLOP8

3.92 773

Zone Memory
(cycles/sec) size (MW)

99011 3.1
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A. Initial data

The initial data set is computed by solving the Hamil-
tonian constraint, as described in Sec. IID and in much
more detail in Refs. [3,5]. In Ref. [3] the convergence of
the solution as a function of grid resolution is discussed.
The system is approximated by using second-order accu-
rate finite difference approximations to the resulting el-
liptic equation, and solved using the techniques discussed
in Sec. III B. As discussed in Ref. [3], the convergence was
of second order in the grid spacing (coordinate intervals),
and errors were not very sensitive to the particular solver
used since the tolerances were set very low. For more de-
tails on convergence rates and error measurements and
for an analysis of the physical content of the initial data
please refer to Refs. [3,5].

B. Code stability: Diagonal vs general three-metric

Once initial data have been obtained, one can use
the evolution equations along with the gauge condi-
tions to solve the full Einstein equations. As is typical
with hyperbolic systems, however, the numerical solu-
tion is prone to developing instabilities. As discussed in
Sec. II E 3, an instability associated with the axis of sym-
metry has hampered many efforts to compute axisym-
metric black hole spacetimes. Not surprisingly, the same
type of instability is present in our code.

In spherical polar coordinates, the axis of symmetry
(8 = 0) is the location of a coordinate singularity. Since
any small errors away from the regularity of the metric
coefficients are multiplied by powers of (sin 8) i, near the
symmetry axis care must be taken to obtain very accu-
rate solutions in the vicinity of 0 = 0. The first issue
to resolve is where to place grid zones relative to this
axis. We have tried two approaches. One is to place grid
zones so that they straddle the axis, to avoid directly
calculating sensitive quantities where coordinate singu-
larities exist. The other is to place a zone directly on the
axis and treat it in a special way, by using 1'Hopital's rule
to derive a regularized set of evolution equations just for
the axis itself. Separate codes have been developed for
each of these approaches. In both cases, with a general
axisymmetric metric, the instability is present. For a de-
tailed discussion of the nature of the instability, its rate
of growth, propagation across the grid, etc. , see [5].

The instability is rooted in certain delicate terms in
the evolution equations that on casual inspection would
appear to blow up on the symmetry axis. The most
egregious of these terms appear in the expressions for
the Ricci tensor (see Appendix A). Although some of
these terms may blow up individually near the axis, suit-
able combinations will cancel analytically in the limit as
one approaches the axis so that the evolution equations
do not actually contain singularities. The difficulty is
that slight numerical errors will ruin the delicate cancel-
lations. Small errors are divided by terms that vanish
on the axis, leading to numerical instabilities. The ofF

diagonal expressions contain the most damaging of such
terms in the evolution equations. If we eliminate the off
diagonal metric function C from the evolution equations,

many of these terms will disappear.
In our code we have eliminated the ofF diagonal three-

metric component | by implementing the shift vector
discussed in Sec. IIE3. In the code this condition is im-
plemented by assuming C = 0 exactly in the evolution
equations. If one allows C to evolve, the shift does not
exactly cancel its evolution. The code is still unstable
but the time scale for the instability to seriously degrade
an evolution is shorter. With t = 0 enforced through-
out the evolution the code is stable. If one repeats the
spherically symmetric runs described above then what
one finds is a very small, smooth, shift potential which
has a maximum of order 10 &AM —i near g = 1.5 and
9 = vr/4. The extrinsic curvature component H~ is not
smooth; it shows some erratic behavior near the axis.
However, this behavior does not grow or propagate, re-
maining at very low levels (10 M ) even to the end
of a long (t = 100M) run. Note that with a shift vector
the code is using spatial derivatives of H~ in the evolu-
tion equations. If one adds only a very small amount of
angular dependence to the initial data (say a = 0.001)
then H evolves normally and the erratic behavior is not
visible in the solution.

There are other approaches to solving problems cre-
ated by coordinate singularities. Evans has developed
a method of "numerical regularization" [30]. Numerical
regularization is a technique for eliminating instabilities
caused by the improper finite differencing of variables on
or near the coordinate singularities in spherical polar or
cylindrical coordinates. Unfortunately a straightforward
application of this method does not work for the metric
components for the simple reason that all of the metric
functions are either quadratic (A, B, and D) or linear

(C) in their angular behavior near 8 = 0. For stan-
dard finite difference operators, one can show that the
angular finite differencing scheme of second order repro-
duces exactly the required (regular) result near the axis.
Since spatial derivatives of the extrinsic curvature com-
ponents are not present in the evolution equations w'ith

zero shift these have not been examined. Thornburg [50]
has also examined irregularities along the symmetry axis
and develops various regularization techniques that have
not been tried in this code.

C. Convergence tests

The shift vector described in the previous section elim-
inates the axis instability only if the angular resolution is
kept below about 50 zones. Once this limit is passed the
code is once again unstable even if run with spherically
symmetric initial data (as described above). However one
can perform convergence tests for resolutions less than 50
angular zones and for these one gets satisfactory results,
some of which are outlined in the next two sections. In
this section we will give a prototypical example and com-
pute the convergence rate for the evolution part of the
code.

We compute the convergence rate for our evolution
code by assuming the true value of some quantity Qo
differs from the computed value Q via the formula
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Q —Qp ——k(Ag), (78)

where k is some constant independent of the grid spacing
or time step, Ag is the radial grid spacing, and u is the
convergence rate. In practice this may not be strictly
true, since k could have some dependence on grid and
time step parameters, and Q —Qo is more generally a
function of At and 48. Furthermore the converge rate
is likely to depend on the actual location of the quantity
being measured, as different features develop locally in
these calculations and boundaries may affect the conver-
gence rate as well. Our calculations are performed with
Ag = 68 = At in all cases which makes the analysis
more straightforward, but these effects can still compli-
cate the convergence calculation.

With these caveats, if one assumes the error term has
the form given by (78), then one may easily compute the
convergence rate 0 from the formula

8 ln(Q')
8 ln(ArI)

' (79)

where Q' = BQ/Bb, rl. Using the above formulas, if we
run the code at three different resolutions, we can com-
pute the convergence rate 0. for various quantities. As
our initial data and time evolution schemes are formally
second order (except for Brailovskaya, which is formally
first order as noted in Sec. IIIA), we expect to obtain
convergence exponents u near 2 when second-order spa-
tial derivatives are used. In practice we have computed
convergence rates at different locations on the grid, with
a number of different indicators, such as metric functions,
extracted waveforms, apparent horizon masses, etc. The
convergence results we report here were obtained with the
leap&og evolution scheme coupled with centered, second-
order spatial derivatives.

Since it is the metric that is being evolved with this
code, we report convergence rates based on comparisons
of various metric functions. We find that generally the
convergence exponent is near the expected value of 2.
For example, we have run the code for three resolutions
of (50 x 14), (100 x 27), and (200 x 53) zones and
compared the radial metric function A at each resolution.
For geodesic slicing, we obtain a = 2 (to within about 1%
over the entire grid), not just after a few time steps but
even at late times in the evolution before the slicing hits
the singularity at t = mM. This shows that the evolution
equations in the code achieve second-order accuracy.

However, we point out that for maximal slicing the pic-
ture is more complicated, probably due to the fact that
we must solve'an elliptic equation for the lapse a, whose
second derivatives are important in the evolution of the
system. While the maximal slicing equation is coded in
a second-order manner, formally one loses accuracy with
each derivative of this solution. Therefore although o. it-
self has a second-order numerical solution, spatial deriva-
tives of a can be less than second order. We find that
in the region of spacetime outside the peak that develops
we achieve cr 2, although inside this region the results
are not consistent with this value. (The results can be
greater than or less than 2, depending on the time slice on

which the convergence is computed. ) We note that this
is the region in which the lapse o. has essentially &ozen
the evolution, and it is inside the horizon. Furthermore
this is a gauge condition, so in principle this result does
not affect physical results extracted from the simulations,
such as waveforms and energies radiated. We find simi-
lar results for other metric functions and at other times,
and conclude that our code is second-order accurate, at
least in the region of spacetime where physical results are
derived.

D. Evolution: Comparison with Schwarzschild

Low Resolution Radial Metric Function A

80-

60

40-

20

[

Or

0 6

FIG. 3. We show the radial metric function A at intervals
of 10M for both the 1D code (solid lines) and the 2D code
(dashed lines). The position of the apparent horizon at each
time is shown with a solid circle. The initial data set was the
spherically symmetric black hole solution. 100 radial zones
were used in both cases.

At late times, any energetically bound black hole
spacetime with no net angular momentum should re-
lax to a single Schwarzschild black hole. Multiple black
holes will coalesce, and a distorted black hole will con-
verge and eventually radiate higher multipole distortions
away, leaving a spherical, single black hole spacetime.
For these reasons, the single spherical black hole space-
time was studied in detail before moving on to the ax-
isymmetric black hole spacetime considered here. The
study of the spherical black hole spacetime provides a
detailed test bed for the axisymmetric system. The ax-
isymmetric black hole calculation must be able to repro-
duce the spherically symmetric results when given ini-
tial data which is spherically symmetric. Furthermore,
at late times in the evolution of a distorted black hole
the system again becomes Schwarzschild and again this
spacetime must be accurately reproduced. Finally, the
one-dimensional (1D) code provides us with the ability
to run with large numbers of radial zones which would be
impractical with the 20 code. In this way, we are able to
see how many radial zones are required for accurate evo-
lution of the longitudinal part of the gravitational Geld
for a given length of time.
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FIG. 6. We show the lapse function o, at intervals of 10M
for both the 1D code (solid lines) and the 2D code (dashed
lines). The position of the apparent horizon is shown with a
solid circle. 200 radial zones were used in both cases.

FIG. 4. We show the radial metric function A at intervals
of 10M for both the 1D code (solid lines) and the 2D code
(dashed lines). The position of the apparent horizon is shown

with a solid circle. The initial data set was the spherically
symmetric black hole solution. 200 radial zones were used in
both cases.

are taken along the equator (8 = m/2). Other 8=const
rays are virtually identical. Figure 3 shows results for
100 radial zones (6ri = 0.06), while Fig. 4 shows re-
sults for 200 radial zones (Arj = 0.03). Note that there
is good agreement between the two codes at both high
and low resolutions, although there are clear diH'erences.

Furthermore, the 2D data remain essentially spherically
symmetric throughout the evolution, as it should (but
see remarks below). In Figs. 5 and 6 we show the evo-
lution of the maximal lapse function for the same runs.
We have plotted the position of the apparent horizon on
each line with a solid circle. The horizon has been located
with an apparent horizon finder based on the method of
Cook and York [17],described in detail in Refs. [3,19]. (A

When the amplitude of the gravitational wave is set
to zero (a = 0) the solution to the initial-value problem
is the Schwarzschild three-metric at t = 0 . This initial
data set can be evolved and checked against the equiva-
lent results from the 1D code. Test results are presented
in Figs. 3—6. These results all use the leap&og evolution
scheme with second-order spatial derivative approxima-
tions for both the 1D and 2D cases. In Figs. 3 and 4
we show the behavior of the radial metric function A on
a number of diH'erent time slices for both the 1D and
2D codes, given spherically symmetric initial data. The
solid lines show results &om the 2D code, while dashed
lines show results &om the 1D code. The 2D results

1D Resolution Study
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FIG. 7. We show the radial metric function A at various
resolutions for the 1D code, from 100 radial zones (b,rl = 0.06)
to 1000 radial zones (Ag = 0.006). Each graph is taken at
t = 60M. As the number of radial zones is increased toward
1000, the solution is converging to a very sharp peak.

FIG. 5. We show the lapse function u at intervals of 10M
for both the 1D code (solid lines) and the 2D code (dashed
lines). The position of the apparent horizon is shown with a
solid circle. 100 radial zones were used in both cases.
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full account of the dynamics of the apparent horizon for
highly distorted black holes is given in Ref. [19].) Notice
that the lapse quickly drops to very near zero inside the
horizon, rising rapidly to a nearly constant value outside
the horizon.

While there is good agreement between the 1D code
and the 2D code at a given resolution, one can see that
there is a noticeable difFerence between the results at the
two difFerent resolutions. There is agreement up to about
30M, but afterward the low resolution cannot maintain
the steepening profile present in the high resolution case.
For comparison, a series of 1D runs for the radial metric
function A at 60M are shown for difFerent resolutions in
Fig. 6. This work is detailed extensively in Refs. [5,14].
Here we provide it for reference so that one may see the
resolution required for an accurate solution to the longi-
tudinal part of the Einstein equations at late times (say,
to t = lOOM). Clearly, 200 radial zones is already unable
to accurately resolve this peak by 60M. Beyond this time
the longitudinal part of the field loses accuracy, and this
can be interpreted as a change in the mass of the system,
as noted in Ref. [4].

For truly accurate longitudinal evolution through t =
100M, one can see that at least 1000 equally spaced
radial zones are required, if second-order spatial difFer-

encing is used. Significantly more accurate results can
be obtained if fourth-order spatial difFerencing is used,
but, such a scheme breaks down when large gradients
develop. We have experimented with fourth-order deriva-
tives, and find that they work very well until gradients
in the lapse and the radial metric function A become
too large. The result is an instability, typically devel-

oping well before 100M, depending on various computa-
tional parameters. A more sophisticated treatment al-
lowing lower order derivatives in the region where large
gradients develop might work, but has not yet been tried
in our code.

The problems associated with the peak in the radial
metric function A result &om several factors. First, our
choice of maximal time slicing causes very steep radial
gradients in both the lapse function o. and the radial
metric function A. As these gradients increase during the
evolution, the number of grid zones required to compute
accurate derivatives of these functions also increases. Re-
gardless of the number of grid zones present, at some
time during the evolution the gradients will become steep
enough that numerical derivatives will lose accuracy. An
adaptive grid which wouId automatically add zones where
required would be useful here, but we have not explored
this technique yet. Another lapse can be chosen so that
more gentle gradients are present. Bernstein [5] has stud-
ied many such algebraic slicing conditions that are similar
in many ways to maximal slicing in the 1D case. Finally,
an apparent horizon boundary condition that keeps the
radial metric function A from growing can prevent this
peak &om developing altogether, but a full 2D ixnple-
mentation of this condition has yet to be fully developed
[31,50].

We note that the 2D system evolved here is not truly
spherical, although it appears very nearly so when ana-
lyzing difFerent angular slices of the xnetric functions such

as g„„.Our 2D gauge choice has not been altered for this
test, so that both the P" and Ps components of the shift
are present, as is the oH' diagonal component of the ex-
trinsic curvature K„g. These functions are not present
in the 1D code, and in fact only the P" shift is allowed
in strict spherical symmetry. During the evolution these
extra functions do remain small, although they do not
vanish. They are required to maintain the stability of the
evolution along the axis. If the shift is not used to main-
tain the diagonal three-metric condition, even spherical
initial data will develop the axis instability, as described
in Sec. IV B. However, when the shift is used to maintain
this condition, the spherical evolution results of the 1D
code can be very well reproduced with the 2D code.

E. %Vaveforms

Another major test of the code is provided by the dy-
namical evolution of a distorted black hole spacetime. As
shown in Ref. [3] the initial data of the black hole plus
gravitational wave spacetime can be chosen to p"oduce a
highly distorted black hole with smaller amplitudes pro-
ducing smaller distortions. The evolution of the high am-
plitude data sets will be a major focus of future research.
Provided that the amplitude of the initial wave is low
enough, the spacetime should be accurately described by
black hole perturbation theory. Such data sets have been
considered in detail in Ref. [4] where perturbation theory
was used to analyze the evolution. In that paper it was
reported that our gauge choices and numerical methods
result in a stable evolution, and in all cases studied the
normal modes of the black hole were excited, dominat-
ing the late time gauge-invariant gravitational waveform.
Careful comparisons were made to both the wavelength
and damping time expected for a black hole of a given
mass oscillating at its quasinormal mode &equency, and
to the actual evolution of the linearized Einstein equa-
tions (the Zerilli equation [4]). The agreement between
our code results and these tests was generally within a
few percent, and small discrepancies arising from both
code errors and physical, nonlinear effects were analyzed
in detail. For a discussion of the physics of these calcu-
lations, we refer the interested reader to Ref. [4].

Here we provide a comparison of the various algorithms
discussed in Sec. III above, and their eH'ect on the wave-
forms extracted from the numerical evolution. In Sec. III
we discussed three diH'erent methods used to evolve
the Einstein equations forward in time, the leapfrog,
Brailovskaya, and MacCormack methods. As shown in
Ref. [14] all three of these methods performed well in
spherical symmetry, although the Brailovskaya and Mac-
Cormack predictor-corrector methods had a slight advan-
tage over leap&og. However in the axisyxnmetric space-
times, where gravitational waves are present, we find that
the leap&og method is best able to reproduce the known
quasinormal mode &equencies of a perturbed black hole.

Figures 8(a) and 8(b) compare the I. = 2 waveform ex-
tracted &om the same low amplitude spacetime evolved
with three difFerent evolution schemes. The waveforxn
is measured over a shell of proper area 47r(15M)z [this
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shell is located at g = 3.4 or about r = 15m, us-
ing (7), in the low amplitude spacetimes]. The meth-
ods are leap&og, Brailovskaya, and MacCormack, each
using second-order, centered spatial derivatives. Dif-
ferences between the Brailovskaya and Mac Cormack
method and the leapfrog znethod are then plotted, to
bring out the differences between the methods. The
leap&og and MacCormack methods give similar results,
but the Brailovskaya method clearly shows some widen-
ing and dissipation in the waveform at later tiznes. This
same efFect has been noted in Ref. [41] in studies of self-
gravitating scalar 6elds, and it can also be seen in siznple
studies of the Hat-space scalar wave equation in 1D.

In Fig. 9 we show the waveform obtained with the
leap&og method plotted against a at to the quasinor-
mal modes of the black hole, known from perturbation
theory [51]. This Bt to the waveform is determined by ad-
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FIG. 9. This Bgure shows the 8 = 2 waveform against the
least squares fit to the two lowest f = 2 quasinormal modes
of the black hole for the leap&og scheme from the last Sgure.
The fit was done over the range t = 25M to t = SOM. At late
times the numerically computed waveform becomes slightly
longer for reasons discussed in the text.
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FIG. 8. (a) This figure shows the waveforms obtained for
the spacetime (amplitude=0. 1, range=0, width=1) measured
over r = 15m for the three evolution schemes. The grid reso-
lution used was (200 x 53). (b) This Sgure shows the dHfer-

ences in the 4 = 2 waveform for the same run. The leapfrog is
the standard by which the other are measured. The difference
between the leap&og and the Maccormack is the solid line,
and the difference between the leapfrog and the Brailovskaya
is the dashed line. The leap&og and MacCormack give similar
results, while the Brailovskaya is more dispersive.

justing the phase and amplitude of the two lowest-lying
(fundamental and fu'st overtone) quasinormal modes for
an 8 = 2 perturbation. The comparison is excellent ex-
cept for the slight increase in wavelength at late times.
This would be consistent with an apparent increase in
mass of the hole which would be due to an error in com-
puting the longitudinal part of the 6eld. This error has
been documented in Refs. [4,5] and has been discussed in
Sec. III A. We know that the background is signi6cantly
more accurate if computed with the fourth-order spatial
derivatives for t less than about 70M. After this the
fourth-order solutions become unstable and break down
(at 200 radial zone resolution). We have also found that
the waveform computed &om the spacetime using the
fourth-order spatial derivatives shows a smaller increase
in wavelength at late times. This in8uence of the lon-
gitudinal part of the Geld on the waveform is also seen,
and is stronger, in the 8 = 4 mode.

Figure 1 shows a comparison of the same waveform
when the resolution is doubled in both the radial and an-
gular directions. The 8 = 2 modes match up reasonably
well for times less than about t = 50M after which the
low resolution signal shows a series of small growing os-
cillations. The same efFect is seen more strongly in the
E = 4 mode. An explanation for this is that the out-
going radiation is scattering o8' the increasingly coarse
grid at large g; some of the radiation is propagating in-
ward from a region outside r = 15m (about q = 3.4) and
this is causing a signal at the r = 15m detector. This has
been co~armed by timing the arrival of the osciQations at
dT'8'erent detectors in the spacetime. Recall (Sec. IIE 1)
that because of the increase in proper length of the zones
there is a limit at which radiation will no longer prop-
agate well on the grid. When a wave enters this region
it is well known that some of it will be re6ected back.
Frozn Fig. 1 it appears that the r = 15M detector be-
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gins to receive this radiation at about t = 50M on the
100 x 27 grid. If the radiation initially is emitted near
r = 2M then this suggests that the backscattering lo-
cation is in the neighborhood of r = 34M or g = 4.2.
At this location the nuxnber of grid points which would
span a wave of wavelength 17M is about 9 on the 100x 27
grid. This would indicate that in the number of zones per
wavelength n discussed in Sec. IIE 1 should be at least
10 at this grid spacing, Ag = 0.06. Using this figure
we see that on the 200 x 53 grid the radiation will be-
gin to backscatter near r = 56m and so this radiation
will not begin to affect the r = 15m detector until about
t = 94M, well after the calculation was stopped.

F. Energies

Another measure of the accuracy of the code is the
consistency and conservation of various indicators of the
mass of a black hole. The total ADM mass of the system
can be written as [4]

ciple the energy fIux of gravitational waves away &om
the black hole should make up the difference. Indeed,
we are able to make these measurments with satisfactory
results. For a typical simulation with run parameters
(cl gp'ip ri) = (1.5,1.0,1.0,4), we find M~&~ = 2.75 is the
total mass of the spacetime and M~H ——2.45 is the ap-
proximate final mass of the black hole. As a check on
the consistency of the final mass of the black hole we can
perforxn a fit of known quasinormal waveforms, using the
mass as a fitting parameter, to the extracted waveform
obtained numerically. In this case we obtain a good fit for
Mg ~, ——2.5, which is within a few percent of the horizon
xnass M~H. Finally, we find that three different mea-
sures of the radiated energy, using the Zerilli function,
the Newxnan-Penrose function 44, and the Bel-Robinson
Poynting vector [7] agree well with each other, producing
a total energy output E, d, ——0.22. The overall account-
ing of the energies in the system is accurate to within less
than 5%%up, and the largest uncertainty is in the final mass
of the black hole. These figures are typical over a wide
range of data sets.1, /'8@

MADNi = ——V'2m e"~
~

——
~

sin Hd8. (80)
(Bg 2)

Note that in practice this quantity can only be computed
at a finite radius (at the edge of our grid), and because we
choose to make the conformal factor 4 fixed in time, this
quantity does not change with tixne. However it does give
us the mass of the spacetime for comparison with other
measures, such as the mass of the apparent horizon.

As described in Refs. [4,7) we have developed an ap-
parent horizon finder and various methods for comput-
ing energy Buxes of gravitational waves emitted by the
system, including integrating the Zerilli function @ dis-
cussed in the previous section and the Newman-Penrose
Weyl scalar @4. These measures provide useful ways to
check the accuracy of the code, as well as a xneans of
extracting important physics &om the sixnulations.

One useful quantity to monitor is the mass of the ap-
parent horizon of the black hole as a function of time.
For a dynamical black hole, we expect this mass function
to increase as gravitational waves fall into the back hole,
and then settle down to a value less than the ADM xnass
of the spacetime. This quantity has been reported in de-
tail elsewhere [20], where it was shown that the apparent
horizon mass increases and levels off to a level equal to
the final mass of the black hole, but then begins to creep
up rapidly at late times (after t ) 50M) as the peak in
the radial xnetric function becomes too steep to resolve
accurately. The error in this sensitive measure of the
black hole mass can exceed 50% at late times, depending
on the resolution.

The measurements of the ADM mass and apparent
horizon mass also provide a good "accounting" test of
the code, as we can measure the energy leaving the black
hole through some two-sphere outside the horizon. As
the ADM mass represents the total mass of the space-
time, and the apparent horizon mass at late times (but
before the artificial growth due to the effect discussed
above) measures the final mass of the black hole, in prin-

V. SUMMARY AND FUTURE APPLICATIONS

We have presented a method for evolving axisymmetric
black hole spacetimes with a numerical computer code.
This code was built after extensive study of a spherically
symmetric code designed to evolve the Schwarzschild ge-
ometry, and a number of comparisons have been xnade
with results &om that code. We have further tested the
axisymmetric code for stability and accuracy under non-
spherical conditions.

In a series of papers we will use this numerical code
to explore the physics of axisymmetric black hole space-
times, and as a tool to test results &om 3D black hole
codes now under development. Future applications of
this code include (i) an extensive survey of possible can-
didates for tracking gravitational waves in both the linear
and nonlinear regimes. This will include an analysis of
the radiation extraction techniques developed by Abra-
hams and Evans to extract gravitational waves in the
linear regime, as well as a number of nonlinear measures
of gravitational waves, using the Newman-Penrose de-
composition of the field, the Bel-Robinson tensor, the
York tensor, and others. (ii) A detailed study of the dy-
namics of black hole apparent and event horizons (see,
e.g. , [20,52].) (iii) An exploration of the nonlinear col-
lision of a gravitational wave with a single black hole.
Here we will be interested in exploring in detail the non-
linear aspects of the interaction between black holes and
gravitational waves. This will be a necessary step in the
development of the project toward (iv) the collision of
two black holes [19], and (v) full, 3D numerical relativ-
ity. We have also begun to consider (vi) rotating holes,
that can be treated by modifying the present scheme to
include the additional metric components required when
rotation is present.
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and the most general extrinsic curvature tensor is

~a.y' a.q'
z,, =y'z;, = a.y' a, q'
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The kinematic variables include the lapse function o. and
the shift vector with two nonzero components:

spatial and temporal variables. The equations were de-
rived &om a package written in the MAcsYMA language.

The most general three-metric for an axisymmetric
nonrotating system is given by

y4 &y4
b4"

o o

APPENDIX A: THE COMPLETE SET OF
EINSTEIN EQUATIONS

This appendix presents the "3+1"form of the Einstein
equations used in our code. All the equations are writ-
ten explicitly in terms of the kinematic and dynamical
variables and their partial derivatives with respect to the

With the addition of the notation

8 = ab —c

the intrinsic Ricci curvature tensor for the three-
dimensional spacelike hypersurfaces is determined from
the three-metric and has the nonzero components
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sin 0
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The Hamiltonian constraint written explicitly in terms of the extrinsic and intrinsic curvature components is
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Explicitly evaluating the curvature scalar R of the 3D hypersurfaces yields
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and the two components of the moment»m constraint become, for Hq ——0,
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and, for H2 ——0,
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The evolution equations for the conformal three-metric components are given as follows. The metric evolution for
Yxx = a-
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The metric evolution for p22
——b:
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Finally the equations that govern the evolution of the extrinsic curvature components are the metric evolution for
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