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Determining parameters of the Neugebauer family of vacuum spacetimes in terms of
data specified on the symmetry axis
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(Received 13 May 1994)

We express the complex potential 8' and the metrical Belds w and p of all stationary axisymmetric
vacuum spacetimes that result from the application of two successive quadruple-Neugebauer (or two
double-Harrison) transformations to Minkowski space in terms of data speci6ed on the symmetry
axis, which are in turn easily expressed in terms of multipole moments. Moreover, we suggest how,
in future papers, we shall apply our approach to do the same thing for those vacuum solutions that
arise from the application of more than two successive transformations, and for those electrovac
solutions that have axis data similar to that of the vacuum solutions of the Neugebauer family.

PACS number(s): 04.20.Jb

I. INTRODUCTION

a=O
(1.2a)

V=) V.z"-, (1.2b)

w=) w.z"-, (1.2c)

where 8 and 4 are the complex potentials of Ernst [1], z
is the Weyl canonical coordinate, and the coeKcients in
the polynomials are complex constants. In a long series
of papers, Manko and his associates [2] have evaluated
the complex potentials and metric fields for particular
assignments of the axis data. For each such assignment,
they solve anew Sibgatullin's integral equation formula-
tion [3] of a Riemann-Hilbert problem. The following
question naturally arises: "Couldn't all these solutions
be obtained at once, rather than in the piecemeal man-
ner employed by Manko et al.?" Our objective, which
will be partially achieved in the present paper, is to ex-
press the complex potentials and metric fields of all such
solutions in terms of arbitrarily prescribed axis data of
the form indicated above.

To address this question in a systematic way, we shall
divide the solution of the problem into three parts: (1)
The general solution of the n = 2 vacuum problem
(V = 0); (2) the general solution of the n = 2 elec-

In recent years considerable interest has been displayed
in stationary axisymmetric solutions of the Einstein-
Maxwell equations that are characterized by axis data
of the form

U —W V
U+W' U+W '

with

U —W
U+W '

where U is the 2n x 2n determinant

Uj ] 0 ~ 0 U]

Uni --. Unn

(1.3)

(1.4)

in which occur the 2 x 2 submatrices

~( (Km q) X21, qr2s q (K2g) X2gr2g
(K2x g) (K2g) )

trovac problem; (3) the general solution of the problem
for all values of n. This procedure will enable us to il-
lustrate the basic ideas within the simplest context (1),
after which we shall devise more complex strategies to
cope with problems (2) and (3). We already know that
it will not be possible to solve problem (3) completely
without resorting to some n»merical work, but the situ-
ation is not quite as grim as one might suppose. As we
solve problems (1) and (2), we shall point out how we
intend to extend the procedures that we have used there
to the case n & 2.

The vacuum solutions, which are the subject of the
present paper, all belong to the Neugebauer family

[4]; i.e., they can be generated from Minkowski space
through the action of n successive quadruple-Neugebauer
Backlund transformations. Alternatively, these solutions
can be constructed using n double-Harrison Backlund
transformations [5], or the Kinnersley-Chitre transforma-
tion [6] that corresponds to the latter Backlund transfor-
m.ation. While the solutions have been known for a long
time, this is the first attempt of which we are aware to ex-
press everything directly in terms of arbitrarily specified
axis data in the manner of Manko et al.

The complex potential E' of the solution that results
&om applying a succession of n quadruple-Neugebauer
Backlund transformations to Minkowski space is given
by
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where

.—g(z —K )2+ p2 (1.6)

The 2n x 2n determinant W is constructed from U by
replacing the (2n —1)st row of the latter determinant
by K1 - .K2„. It is left for the reader to verify that
f:= U/W is a solution of the complex potential field
equation [7]

The field U is homogeneous of degree n and the field R'
is homogeneous of degree n —1 in the r's. Prom this it fol-

lows, in particular, that the spacetime is asymptotically
Hat, with a possible Newman-Unti- Tamborino (NUT) pa-
rameter. On the symmetry axis, where p = 0, one has
rk ——Kk —z, so U and S' are, respectively, polynomials
of degree n and n —1:

(g' —1)V ( = 2('V( V(,
U=) U.z"-, (1.9a)

if the constants K (a = 1, . . . , n) are either real or occur
in complex conjugate pairs and the constants X (a =
1, . . . , n) satisfy

W=) Wz"- .
a=1

(1.9b)

X X& ——1 whenK =K& .

The Kinnersley-Chitre (KC) transformations that corre-
spond to various combinations of real K's and complex
conjugate pairs of K's can be efFectively unified into a
single complexified KC transformation in which parame-
ters that are real in the case of an ordinary KC trans-
formation are replaced by complex-valued parameters.
This approach was first explored by Hauser, who showed
that one can solve the Hauser-Ernst homogeneous Hilbert
problem just as easily for members of the group SL(2,C)
as for members of SU(1,1) [6]. Rather than think of every
possible partition of K's into real ones and complex con-
jugate pairs as comprising a diHerent family of solutions,
it is more natural and a lot more convenient to consider
these as real cross aections of one family of complexified
spacetimes [8], which we shall dub the ¹ugebauer family,
honoring the person who pioneered the systematic study
of members of this family and to whom the determinantal
expressions for the E' potential are due.

In particular, Up is the determinant that is constructed
from U by the substitution

r -+ —1 (a=1,2, . . . , n) . (1.10)

When Uo P 0 one can, if one wishes, readjust the com-
mon factor in U and W so that Up ——1. We shall refer
to the resulting constants U, W (a = 1, 2, . . . , n) as the
axis data, the specification of which uniquely determines
the stationary axisymmetric vacuum spacetime. When
Up = 1, the real and imaginary parts of the constants
U, W (a = 1, 2, . . . , n) are closely connected with the
multipole moments [9,10] that describe this asyrnptoti-
cally Bat spacetime. If one translates along the z axis
so that ReU1 ——0, then iU1 is a rotation parameter, and
Wi a (complex) mass parameter, and so on. The imagi-
nary part of the latter parameter is associated with the
so-called NUT parameter of the spacetime.

In general U and W can be expressed (up to a common
constant factor) in the respective forms

ei„i„b,(Ki„,. ... . . , Ki, )6(KI, , , . . . , KI„)Xi„x x XI, rl„x . x ri,„, (1.11a)

eI„I„A(Ki„,..... . , Ki,„,)6(KI,„,. . . , Ks, )Xi„x x Xi,„,rf„x x rI,

(1.11b)

where

b, (Ki, . . . , K„):=

a ~ a 1
K2 . . K„

(1.12)

Kn —1 Kn —1
1 2 n

denotes the determinant of a Vandermonde matrix. On the symmetry axis, these formulas reduce to

~I„I„„b,(KI„,. . . , KI, )A(Kg„, , . . . , Kg.,.. )XA,, x . x Xi, (KI„—z) x x (Ki, —z),
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1
2f1

(n —1)!(n+1)!

xXs, x . . x Xs„,(Kq, —z) x . . x (Kq„, —z), (1.13b)

which are consistent with the axis values of U and W being given by expressions (1.9a) and (1.9b), respectively.

II. THE TL = 2 SOLUTION

The case n = 1 is well known to correspond to the Kerr-NUT spacetime. Therefore, we shall concentrate upon the
next simplest case, n = 2, which was first considered by Kramer and Neugebauer [11] and where

U = —(K2 —K1)(K4 —Ks) (X1X2r1r2 + XsX4rsr4) + (Ks —K1)(K4 —K2) (X1X3T1T3+ X2X4rsr4)
—(K4 —K1){Ks—K2) (X1X4r1r4 + X2X3T2T3) ) (2.1a)

W = —4 (K2) Ks, K4)X1r1 + b, (Ks, K4, K1)Xsr2 —b, (K4, K1,K2)Xsr3 + b, (K1,K2, K3)X4r4 .

A simple calculation yields the following expressions for those complex constants that appear in the axis data:

(2.1b)

Uo ———(K1 —K2) (Ks —K4) (X1X2 + X3X4) + (K1 —Ks) (K2 —K4) (X]X3+ X2X4)
—(K1 —K4) (K2 —K3) (X1X4 + X2X3) (2.2a)

U1 ——(K1 —K2) (Ks —K4) [(K1 + K2)X1X2 + (Ks + K4)XsX4] —(K1 —Ks)(K2 —K4) [(K1 + Ks)X1Xs
+(K2 + K4)X2X4] + (K1 —K4) (K2 —Ks) [(K1 + K4)X1X4 + (K2 + K3)X2X3], (2.2b)

U2 ———(K1 —K2) (Ks —K4) (K1K2X1X2 + K3K4X3X4) + (K1 —Ks) (K2 —K4) (K1K3X1X3+ K2K4X2X4)
—(K1 —K4) (K2 —Ks) (K1K4X1X4 + K2K3X2X3) ) (2.2c)

W1 ——6(K2, Ks ) K4)X1 —b (K1 ) Ks, K4)X2 + b (K1,K2) K4)Xs —6(K1,K2, K3)X4,

W2 ———b.(K2) Ks) K4)K1X1 + b.(K1,Ks) K4)K2X2 —6(K1,K2, K4)K3X3+ b, (K1,K2, Ks)K4X4 .

(2.2d)

(2.2e)

We were surprised how easy it was to solve these equations for the four complex constants X (a = 1, 2, 3, 4) in terms
of the K's and the axis data.

A. Determination of X (a = 1,2, 3, 4)

We begin by using the above expressions for Wq and W2 to express X4 in terms of the other X's. Then, we use the
expressions for W2 and U1 to express X2 {and X4) in terms of X1 and Xs. Next, we use the expressions for W2 and Ue
to express Xs (as well as X2 and X4) in terms of X1. Finally, we use the expressions for W2 and U2 to solve for X1 (as
well as X2, Xs, and X4). The first and last equations are linear, while the second and third are, perhaps surprisingly,
only quadratic. Choosing the roots of the quadratic equations judiciously, we obtain the following expressions for the
X's:

+X1 [U2W2 + U1(U2W1 U1W2)] + (K2 + K3 + K4)(U2W1 U1W2)
—(K2K3 + K2K4 + K3K4) W2 —(K2K3K4) W1, (2.3a)

17X2 ——[U2W2 + U1 (U2W1 —U1 W2)] + (Ks + K4 + K1)(U2 W1 —U1 W2)

(K3K4 + K3K1 + K4K1)W2 (K3K4K1)W1

+Xs —[U2W2 + U1(U2W1 U1W2)] + (K4 + Kl + K2)(U2W1 U1W2)
—(K4K1 + K4K2 + K1K2)W2 —(K4K1K2)W1, (2.3c)

17X4 ——[U2W2 + U1(U2W1 —U1 W2)] + (K1 + K2 + Ks)(U2W1 —U1W2)
—(K1K2+ K1K3+ K2K3)W2 —K1K2K3)W1 ) (2.3d)

where
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V:= Wl (U2 Wl Ul W2 ) + W2 (2-4)

In these expressions, the complex parameters U, V, W (a = 1, 2, 3, 4) have been rescaled so that Us ——1. For
each choice of the parameters K (a = 1, 2, 3, 4), these equations assign values to the four complex parameters X
(a = 1, 2, 3, 4).

B. Determination of Ko (a = 1, 2, 3, 4)

The requirement (1.8) leads to four conditions (where Uo ——1)

Kg + K2 + K3 + K4 ———2 ReUg, (2.5a)

KiK2 + KiKs + KiK4 + K2Ks + K2K4 + KsK4 ——IUi I

—
I
Wi

I
+ 2 ReU2, (2.5b)

K2KsK4 + Kz KsK4 + K) K2K4 + K&K2Ks ———2 Re(U2Ui —W2Wi ) (2.5c)

K1K2K3K4 IU2I —IW2I (2.5d)

Incidentally, these four relations are equivalent to the
single relation

U(z, O) I' —IW(z, O) I' = IU, I'(K, —z) (K, —z)
x (Ks —z) (K4 —z), (2.6)

and

To .——81B —12B A(A —36C) —48C(A —4C)

(2.12)

which one should also be able to deduce directly &om the
determinantal expressions for U and W, and which can
be generalized in a natural way for n ) 2 [12].

From the above expressions it is clear that each of the
K's satisfies the quartic equation

In the vacuum case we have the identifications

2 ReU2,

B = —2 Re(U2U; —W2W;),

(2.13a)

(2.13b)

0 = K +2ReUiK + (IUil —IWil +2ReU2)K
+2Re(U, U,

* —W, W,*)K.+ (IU, I' —IW, I') . (2.7)

Moreover, because the coeKcients of this quartic equa-
tion are real, the solutions K (a = 1, 2, 3, 4) are real, or
occur in complex conjugate pairs.

Of course, using a translation along the z axis, we can
always achieve ReU& ——0 or Kz + E2 + E3 + K4 ——0.
Cardano's method of solving the quartic equation

(2.13c)

K, = —,'(k+ (~++ r. )), (2.14a)

which can be generalized easily for electrovac fields.
An alternative way of expressing this result that facil-

itates a comparison with Manko et al. is

K4 —AK.' —BK.+ C = 0 (2.8)
K2 ——

—,'(k —(r++ r. )}, (2.14b)

then yields

K& ———,'{k+ /2A —k'+ 2B/kf,

K2 ——
2 {k—/2A —k2 + 2B/k),

Ks ——
2 (—k + /2A —k —2B/k),

K4 = 2(—k —/2A —k2 —2B/k),

where

(2.9a)

(2.9b)

(2.9c)

(2.9d)

where

Ks ———,'(—k+ (r+ —r. )),

K4 ——-'( —k —(r.+ —r. )),

r ~ = g(A —k2/2) j2d,

d = —' Q(A —k2/2) 2 —(B/k) 2 .

(2.14c)

(2.14d)

(2.i5)

(2.16)

:= QT++ QT + —A,
3

T~ ..= 2'7A(A ——36C) + 'B + —,
' ~T(), -(2.11)

When the axis data happen to satisfy the relation

B:=—2 Re(U2Ui —W2Wi*) = 0, (2.i7)

one also has k = 0. Therefore, one must carefully evalu-
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ate the limit of our expressions for the K's as B ~ 0, not-
ing especially that lim~~sB/k is finite, and lim~~od =
y C. The reader can show that the result obtained this
way is consistent with the fact that when B = 0, the
square of each K satisfies a quadratic equation,

~p = Pf Xz )

~z = pf Xp )

(3.5a)

(3.5b)

0 = (K')' —AK'+ C (2.is)
~p = S gp~,' —~.~.')I(»)' (3.5c)

Ki ———K2 ——2i(~P+ ~ ), (2.19a)

Ks ———K4 ——2(~+ —~ ), (2.19b)

where

~y ..= glwil —lUil + 2(+d —ReU2) (2.2o)

and

which can be solved directly. Without further loss of
generality we can express the solution in the form

~. = ~(~ p~.'+ ~.~,)I(»)' (3.5d)

where y:= ImE'.

While, in principle, this is straightforward, in practice
it is extraordinarily tedious to calculate the field u in this
way. Even for n = 2 the number of terms one encounters
is enormous. Modern solution-generating techniques usu-

ally provide some alternative method for determining ~.
We are most familiar with our own homogeneous Hilbert
problem (HHP) formulation, in which the H potential of
Kinnersley and Chitre plays a key role. This is a 2 x 2
matrix potential, the negative of the real part of which
is just the metric block

d:= v IU21' —IW21' (2.21) ( f-ip2 f~2 f~ )h=l (3.6)
The reader can easily check that all equations (2.5a)
through (2.5d) are satisfied by this solution.

In Eqs. (2.9a) through (2.9d) or Eqs. (2.14a) through
(2.14d) we have expressed K (a = 1, 2, 3, 4) explicitly
in terms of the axis data. Either of these sets of expres-
sions can be substituted into Eqs. (2.3a) through (2.3d)
to obtain X (a = 1, 2, 3, 4) explicitly in terms of the axis
data. The complex potential 8 is then given by Eq. (1.3)
with U and W rendered by Eqs. (2.1a) and (2.1b), re-
spectively.

II = II('l+ X+(0)n, (3.7)

where, for Minkowski space,

(3.s)

while the lower right element of the matrix H is the com-
plex E' potential. Now, the HHP yields not just a formula
for E', but rather a formula for H: namely,

III. THE SPACETIME METRIC
and, generally,

In principle the metric, which is usually written in the
form

ds = f [e ~(dz + dp ) + p dP j
—f(dt —~dP)

(3.1)

can be constructed once the complex potential E' is
known. The field f:=—

gqq ——Ref is given by

(3.9)

8 = HLR = 8( l + iX+(0) (3.io)

while

The matrix X+(t) is one of the 2 x 2 matrices involved
directly in the HHP. The E' potential is given by

lUl2 —lWl2

lU+ wl' (3.2)
fu = —ReB~L = f(0 ur( l —ImX (Q) (3.ii)

Thus, the infinite redshift surface corresponds to

lUl = lWl (infinite redshift surface), (3.3)

while it can be shown that there is a curvature singularity
whenever

where LL and LR refer to lower left and lower right ma-
trix elements, respectively. The point is that one can
evaluate X+(0)~R almost as easily as X+(0)L~. The field
cu is determined much more easily this way than by inte-
grating the differential equations for ~.

For the general n —2 solution of the Neugebauer family,
the procedure we have outlined yields a result of the form

U+ W = 0 {curvature singularity) . (3.4) (3.12)
The fields cu and p can be determined, up to respective in-
tegration constants, by solving the differential equations where
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JV = (K1 —K2) (K3 —K4) (K1 + K2 —K3 K4) (Q1Q2 —Q3Q4)
—(K1 —K3) (K2 —K4) (K1 + K3 K2 K4) (Q1Q3 —Q2Q4)
+(K1 —K4)(K2 —K3)(K1 + K4 —K2 —K3)(Q]Q4 Q2Q3)

Q~:= z[x~r~ + (Kk —z)],
(3.i3)

(3 14)

and ceo is a real constant, the value of which is determined
by the HHP in such a way that ~ = 0 on the axis.

Finally, one 6nds that, for all n = 2 solutions, the Geld

p is given by the simple expression

I

where a ( m, we find that

X1 ——X3 — X2 —X4 —— . (3.17)
m m

e" = (IUI' —lwl')/(IUol'r1r2rsr4) (3.i5)

where the constant has been chosen so that p = 0 on the
syxnmetry axis [13].

In particular, if we specialize to the case

U1 —— ia, U2 ———b, W1 ——m, W2 ——0 (a, b, m real),

(3.16)
!

Substituting these values into our general expressions for
U, W, and JV, and using the notation of Manko et al. ,

(3.18)

we obtain

K
U = ((m —2a )(R r + R+r+) + 2iatc+(R r —R+r+)) + z+(R r+ + R+r ) —4b(R+R + r+r ), (3.19a)m

W = +
((m —a )(r+ yr —R+ —R )+~+K (R++R +r++r )m

+ia[(z+ + e ) (r —r+) + (z+ —r ) (R+ —R )]), (3.19b)

t' A'
f(~ 4'&) = ™

I UgU+ W)
(3.20)

where ~o ———2a, and

2&+K—{&—(Q1Q3 Q2Q4) ++(Q1Q4 Q2Q3) )
(3.21)

where

f~++ial 1
Q1 —i —

I I
R + -(~++K ) —z, (3.22a)

m ) 2

/~+ —ia) 1
Q2 =i

I
IR+ (K++~ )

—z, (3.22b)
m j 2

(K~ + ia) 1Q3=i —
I

lr + —(~+ —K ) —z, (3.22c)
m ) 2

(r+ —ia) 1
Q4 ——i

I I "+ (~+ —r ) —z . (3.22d)
)

IV. FUTURE EXTENSIONS

the vacuum specialization of the most recent solution
published by Manko et al. Our way of expressing the
field ru is a good deal simpler than is theirs: namely,

l

on the symmetry axis, which in turn are easily related to
the multipole moments of the source of the gravitational
field [9,10]. One first evaluates the K's using Eqs. (2.9a)—
(2.9d) and the X's using Eqs. (2.3a)—(2.3d). Then one
evaluates U and W using Eqs. (2.la) and (2.1b), respec-
tively, and f&u using Eqs. (3.12)—(3.14). Of course, p is
given by Eq. (3.15).

In a future paper we shall include electromagnetic
6elds, where the complex potentials have the forms

U —R'
U+R" U+W ' (4.i)

and U is homogeneous of degree n while V and W' are
homogeneous of degree n —1 in rq, . . . , r2„. Electrovac
6elds of the type in which we shall be interested have
been generated by at least two techniques, one due to
Alekseev [14] and the other due to Cosgrove [15]. We
are more familiar with Cosgrove s approach, which, in
its usual formulation, produces directly only the charged
Kerr metric with g, + e ) m . The complexi6ed Cos-
grove transformation, in which the group SU(2, 1) is re-
placed by SL(3, t ) produces a family of complex space-
times [8], the real cross sections of which are the elec-
trovac spacetimes we shall study.

After considering the electrovac extension, we shall
pass on to the case n ) 2. For all values of n, the K's
will satisfy the equation

In this paper we have succeeded in expressing all the
n = 2 members of the Neugebauer family of solutions of
the vacuum field equations in terms of data prescribed

IUI'+ I&l' —lwl' = IUoI' (K- —') (4.2)
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on the symmetry axis [12]. Except in special cases, it will
not be possible to express the K's as algebraic expres-
sions in the axis data U, V, W (n = I, . . . , n), because,
in general, the K's will be solutions of an algebraic equa-
tion of degree 2n. On the other hand, it may be possible
to express the complex potentials E' and 4 explicitly in
terms of the axis data and the K's, with the latter pa-

rameters determined numerically &om the axis data or
the multipole moments.

Long ago Neugebauer gave the 2nx 2n determinants for
U and W, but we are not aware of any similar formula
for fu Likely general forms [16] for JV and p can be
guessed &om the expressions we have displayed for the
case n=2:

JV =, ) el„.. .g,„E(Kg„.. . , Kg„)A(KI,„+„.. . , Kg,„)
kg, ...,kg„=l

x[(K), + + Kg„) —(Kg„, + + Kg,„)]QI„x . . x Qg (4.3a)

and

(4.3b)

We regard it as extremely unlikely that any amount of
study of the particular instances considered by Manko et
al. would have allowed one to guess a plausible generally
applicable form for u. That is the principal advantage to
considering the general n = 2 case rather than particu-
lar examples, no matter how interesting those particular

examples might be with respect to potential physical ap-
plications.

It should also be mentioned that, following Neuge-
bauer, one can also generalize our work by using an arbi-
trary Weyl metric as the seed metric instead of Minkowski
space. One can conceive of potential physical applica-
tions for some of these metrics too.
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