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Vfe consider the quantum dynamics of both open and closed two-dimensional universes with
"wormholes" and particles. The wave function is given as a sum of freely propagating amplitudes,
emitted from a network of mapping class images of the initial state. Interference between these
amplitudes gives nontrivial scattering effects, formally analogous to the optical diKraction by a
multidimensional grating; "bright lines" correspond to the most probable geometries.
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I. INTRODUCTION

Roughly, 30 years after the first serious attempts at for-
mulating a quantu~ theory of gravity [1],still very little
is known about what such a theory might be, beyond the
semiclassical approximation. It is nonrenormalizable as
a quantum field theory, and there is a general feeling that
one must seek a nonperturbative formulation of quantum
gravity.

Unfortunately, the nonperturbative analysis of nonlin-
ear dynamical systems is a notoriously difBcult problem.
Quanta~~ gravity is far from the only case where non-
perturbative effects are important. Other examples in-
clude some of the most pressing problems at hand, such
as climatology, fusion physics, etc. Certainly, the chal-
lenge of developing new methods for this class of prob-
lems must be accepted. Theoretical work in the field
has split along two currently nonintersecting trajectories:
One deals with chaos; the other is related to knots (or,
more generally, things that cannot be made to vanish by
a succession of small deformations). Although both are
studied in the context of gravity, knots appear to be most
closely related to quant»m gravity and the issue of the
"small scale structure" of spacetime: Relations between
quant»m gravity and knots have appeared both in 3+1
dimensions [2] and in the model of (2+1)-diinensional
gravity [3], which we will pursue in this paper.

Before we begin, it should be stressed that there is still
no candidate for a consistent theory of "quantum grav-
ity" or a proof that such a theory exists. On the other
hand, numerous authors have suggested that (2+1)-
dimensional gravity could be used as a simpler model,
in which one could formulate a quantum theory and in-
vestigate issues of interpretation, the choice of time, etc.
[4]

Witten's work on the subject has led to a complete set
of Heisenberg picture observables for quantum theory,
an important step in the quantization program [5]. In
spite of this, much remains to be done before one could
say that quantum gravity in 2+1 dimensions has been

solved. The authors who have undertaken to follow up
Witten's work have encountered major obstacles in two
different directions. Nelson and Regge, trying to make
Witten's reduced phase space explicit, found that they
could do so up to genus 2 only by finding the ideal of
a complicated system of relations among traces, some of
which are cousins of the Cayley-Hamilton relations for

SO(3) matrices [6]. On the other hand, the task of ex-
tracting the explicit time dependence of the observables
(i.e., solving the Heisenberg equations for some choice of
internal time) was solved in the case of genus-1 universes
by Moncrief [7] and, in the context of Witten's variables,
by Carlip [8]. Interestingly, these authors differed as to
what the Hamiltonian should be; in particular, Carlip's
proposed Hamiltonian was unbounded &om below. Fol-
lowing Moncrief's remarks to this effect, Carlip showed
that his formulation led to a "Dirac square root" of the
Wheeler-DeWitt equation, when one demands invariance
of wave functions with respect to the mapping class group
[9]

Our purpose in this paper is to pursue the quantiza-
tion of (2+1)-dimensional gravity to the point of provid-
ing a complete set of Schrodinger observables, a Hamilto-
nian, a consistent choice of ordering of the operators, and,
in coxnputable form, wave functions for various types of
scattering problems. We hope that this will help to for-
mulate some of the fundamental problems of quantum
gravity in terms of speci6c coxnputable questions. We
stress that some of these "problems" involve the very con-
sistency of the formalism which we are proposing, and so
we do not claim to have proven that the theory exists.

Many authors have worked on (2+1)-dimensional
quantum gravity, and it sometimes seems that each one
has a different approach. We will brie6y list some of these
approaches in terms of two main schools of thought. In
2+1 dixnensions without continuous matter 6elds, there is
only a finite number of independent observables. The is-
sue is how to reduce the infinite dimensional phase space
by exploiting the infinite number of gauge symmetries to
obtain a 6nite-dimensional system which could be quan-
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tized exactly. One approach is to fix the gauge by choos-
ing a slicing of spacetime in constant curvature slices
(York gauge [10])or some other choice of slicing —we will
call this the Arnowitt-Deser-Misner (ADM) school. The
other relies on the fact that (2+1)-dimensional space-
times can be regarded as a particular sheet of solutions
(with "maximal Euler class" ) of Chem-Simons gauge the-
ory for an ISO(2, 1) connection —the ISO(2, 1) school.

A. ADM school

X. Particles and cones

&om the holonomy, but these are not independent vari-
ables. They are related by nonlinear constraints, some
of which are cousins of the Cayley-Hamilton identities.
Zertuche and co-workers [17] have succeeded in identify-
ing the reduced phase space explicitly up to genus g = 2.
The canonical quantization process leads, in some cases,
to quantum groups [18]. The reduced phase space can be
interpreted as a Hamilton-Jacobi formulation [19],and so
the representations of the reduced algebra should give the
wave functions in the Heisenberg picture. No attempt is
made to compute the Hamiltonian or to formulate quan-
t»m dynamics.

The geometry of the an R2 universe with particles is
a multicone, i.e., a Hat surface with conical singularities,
where the deficit angle at each singularity is related to the
mass of the particle. The two-particle classical dynamics
was solved explicitly by Deser, Jackiw, and 't Hooft [11],
the quantum scattering of a light particle by a heavy one
was worked out by Deser and Jackiw [12],and the general
two-particle quantum scattering problem was solved by
't Hooft [13]. The three-particle classical problem was
solved by Lancaster and Sasakura [14].

S. Riernaran ear faces

The geometry is a genus-g Riexnann surface, &om a
constant extrinsic curvature foliation of spacetime. The
surface coordinates are chosen so that the xnetric is con-
formally fiat [26] or conformally hyperbolic [7]. To com-
pute the Hamiltonian, one solves an equation for the con-
formal factor. In the first case, it is not a coordinate
scalar, and so the equation must be solved on coordinate
patches —it is not known whether it admits a solution for
genus g & 1. In the conforxnally hyperbolic case, Mon-
crief finds a Lichnerowitz equation for the scalar confor-
mal factor and proves the existence of a solution for all g
[7]. The Schrodinger equation is easily written down for
genus 1 [15], and the solutions can in principle be found
&om the xnodular invariant eigenfunctions of Laplacian
on Teichmuller space, which are known as the Maass
forms [16].

The virtue of the ADM approach is that it is most sim-
ilar to (3+1)-dimensional gravity. Its drawback is that it
encounters some technical problems that are most similar
to those of (3+1)-dimensional gravity.

B. ISO(2,1) school

f. Reduced phase space quantization

One finds a complete set of phase space observables
which coxnmute with the constraints. The reduced phase
space is related to the moduli space of fiat ISO(2,1) con-
nections [5]. The problems begin when one attempts to
paraxnetrize this space and compute the Poisson brack-
ets: One can form an infinite set of ISO(2,1) invariants

Cosa&ant quantization

One works with the ISO(2, 1) "homotopies" along loops
which form an arbitrarily chosen basis of vrq (Zs) and later
imposes invariance with respect to a change of basis or
mapping class transformation [20]. The difficulties en-
countered by Zertuche and co-workers can be avoided by
using these homotopies rather than the invariants derived
from them, leaving out a global ISO(2, 1) symmetry. The
homotopies can be paraxnetrized in the "polygon repre-
sentation" of (2+1)-dimensional gravity, and the sym-
plectic structure is known [21]. Mapping class invariant
scattering amplitudes can be coxnputed by the method of
ixnages, by sumxning over all mapping class images of the
"in" state. Two problems are encountered: Each term in
the sum can only be coxnputed if one knows the Hamil-
tonian for a given choice of time. The maxixnal slicing
choice only allows one to compute the Hamiltonian ex-
plicitly only for genus g = 1 (see ADM school). The
other problem is that the sum is over the non-Abelian,
infinite, mapping class group, and it is not clear a priori
which terxns might be small or if the sum converges.

8. Planar multiple polygons

Recently, 't Hooft has proposed another approach
based on a slightly diferent polygon representation,
where one chooses a piecewise Bat surface, which leads
to a number of planar polygons, with SO(2,1) identifi-
cations of the boundary edges. There is a remarkably
simple symplectic structure and Hamiltonian for this sys-
tern; since these variables are directly related to a choice
of generators of the first homotopy group, the mapping
class group acts nontrivially on the wave functions [22].

This paper can now be s»mmarized in one line: We
combine our earlier calculation of the Hamiltonian in the
polygon representation with the xnethod of ixnages and
the "stationary phase theorem" to advance along the co-
variant quantization program [23].

The reader is referred to the previous paper on the
polygon representation of (2+1)-dimensional gravity for
the canonical variables, the Hamiltonian, and most im-
portantly, the relation between the polygon representa-
tion and the ISO(2,1) homotopies [19].We will begin this
paper directly with the canonical quantization in Sec. II.
The mapping class group invariance is discussed in Sec.
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III, where we write down invariant amplitudes for vari-
ous types of scattering problems. In Sec. IV we give the
conclusions and discuss the problem of time.

{E (p), E (p)}= e E,(p),

(E (p), M, (p)}= e Mg, (p),

(M s(p), M'g(p) }= 0 .

(2.1)

(2.2)

(2.3)
II. QUANTIZATION

IN THE PGLVCGN REPRESENTATIGN

In this section, we will draw heavily on results from the
classical theory; their derivations can be found in [19]
and references therein, and will not be repeated here.
The reduced phase space of (2+1)-dimensional gravity
can be parametrized by 2g+ N three-vectors E(p) and as
many SO(2,1) matrices M(p), with the following Poisson
brackets and constraints (p = 1,2, . . . , 2g + N):

J—:) [I—M (p)]E(p) = 0, (2 4)

and the cycle condition for the SO(2,1) identification ma-
trices leads to the constraints

where

Pa 1 abc~ 02 cb (2.5)

The vectors E (p) together with their identified partners
M —(p)E(p) form a closed polygon

W = [M(1)M (2)M (l)M(2)] . [M(2g —1)M (2g)M (2g —l)M(2g)]M(2g+ 1)M(2g+ 2) . M(2g+ N) .

(2.6)

H(V)—:P (p) + sin [O(p)] —0, (2 7)

w'hich generate translations of each particle along its
world line.

It is convenient to define the canonical variables
P (p,) = 2e ~M,s(p, ) and

The constraints J and P~ generate a Poincare alge-
bra with the brackets (2.1)—(2.3). The masses of the N
particles are given by the constraints

I

for p = 1, . . . , 2g [for which M(p) is a hyperbolic (a
boost) [24]] or, for p = 2g+ 1, . . . , 2g+ N,

P Psl
M s

—h s+Pe's+(gl —P2 —1) ~b s— P )
(2.12)

The SO(2,1) constraints become

X(p) =
I P(p) & J( )—

P2(p) ( trM(p) —1 )
(2.8)

J:—) X(p) A P(p) = 0, (2.13)

where

J(p) = [I-M '(p)]E(p) (2.9)

(P (p,),X (p)} = h (2.10)

The constraints can be written in terms of the canon-
ical variables, using J(p) = X(p) h P(p) and

The variables X(p) and P(p) have canonical Poisson
brackets:

while the translation constraints P 0 are defined im-

plicitly in terms of P(p) by (2.11) and (2.12). The ex-
plicit form of the function P(P(p)) —0 can be derived
from relations (2.11) and (2.12).

We will assn~e the universe is a closed surface with
genus g & 1; for the other cases, the argy~ments below
carry over if one substitutes for the "time" and "Hamil-
tonian, " the appropriate expressions drawn &om the pre-
vious paper. We propose the following choice of "internal
time" in a kame where M(l) is a boost in the (yt) plane:

M s = b s+ P,e' s+ (Ql+ P2 —1)
~

h s—P &a&

E (1)
P*(1) (2.14)

(2.11)
The Hamiltonian is given in terms of the variables M(p),
p, & 1, by solving the constraint

W—:[M(1)M (2)M (1)M(2)] . . [M(2g —l)M (2g)M (2g —1)M(2g)] I (2.15)



50 CANONICAL QUANTIZATION OF (2+ I)-DIMENSIONAL GRAVITY 4985

for tr[M(1)], where M(1) is a boost of magnitude b with
axis z. One 6nds

P (2)-Q =0, (2.18)

where

Pg (2)Qg —P„(2)Qs
P'(2) —PP(2)

(2.i6)
P (2) —Q -0.

The boost generator is

J =—) [I —M '(p)]* x E (p,) = 0 .

(2.i9)

(2.20)
Q = 2e (M(2) [M(3)M (4)M (3)M(4)] .

x [M(2g —1)M '(2g) M '(2g —1)M(2g) ]),b .
(2.17)

There are two residual "translation" constraints and
one "boost" constraint. The former come from

M(1)M (2)M (1) [M(2)M(3)M (4)M (3)
xM(4) M(2g)]

The remaining phase space variables are E(p), M(p) for
p, = 2, . . . , 2g. Their time evolution is generated by the
Hamiltonian (2.16) and any linear combination of the
first-class constraints (2.18)—(2.20), which commute with
the Hamiltonian.

If N ) 1, one can choose a gauge where the vector
X(2g+1) is aligned with the z axis and X(2g+2) vanishes
at all times; M(2g+ 2) is then a pure rotation with angle
Q(2g+ 2), and

X (2g+1)
P (2g+ I) ' (2.2i)

P =—e '[M(2g+ 3) M(2g+ N)M(l) M(2g)M(2g+ 1)],b —0, (2.22)

P":—e"~[M(2g+ 3) M(2g+ N)M(1) M(2g)M(2g+ 1)),b 0, (2.23)

H = Tr[M(2g+ 2) M(2g+ N)M(1)M '(2) M (2g —1)M(2g)] . (2.24)

t9

BX (p)
' (2.25)

[P (p), X (p)) = ib—(2.26)

Note that the internal times (2.14) and (2.21) have
a linear time evolution, as well as any choice which is
linear in the E's, since d2E(p)/dt=O. Such times are also
"inertial" in the sense that the position of a particle as
seen from the observer, E(p), follows a straight trajectory
at constant "velocity. "

We begin by constructing the quantum theory in the
most naive way and then pick up the problems as they
appear (see the mapping class group, next section). We
quantize the canonical phase space X(p), P(p) in the
usual way (p = 2, 3, . . . , 2g + N):

M1/2
E(p) = PA(PAX)

P/2y P2+ 1 —2

P'+1
P(P X), (2.27)

where the index p, = 2, . . . , 2g + N has been omitted in
the right-hand side expressions, and M /, the "square
root" of M(p), was given explicitly in the previous paper
[Eqs. (6.7) and (6.9)].

As mentioned, the ordering of the operators in (2.27)
leads to the correct commutator algebra for E(p), M(p).
For example, using P (p) = ill 8/BX (p), one f—inds
[E (p), Eb(p)] = —ie ~E,(p). This solution to the or-
dering problem is not unique.

The Wheeler-DeWitt quantization would consist
in taking the set of square-integrable functions on
R "& + ~, which are a~»hilated by the constraint op-
erators

q = q((X(p), p = I, . . . , 2g+ N)), (2.28)
To prove the equivalence of this quantization to one

which could be carried out in the variables E(p), M(p),
one must express these variables in terms of X(p) and
P(p)and show tha, t there exists an ordering of these
expressions such that the commutators form a represen-
tation of the algebra (2.1)—(2.3). An acceptable ordering
is obtained by placing all the X's on the right:

J v(=0, (2.29)

P /=0. (2.30)

Equation (2.29) states that g must be a Lorentz scalar
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in the variables X(y,). The other constraints are the
Wheeler-DeWitt equations. These caa in principle be
obtained explicitly from (2.11) and (2.12) by replacing
everywhere P (IJ) by the operator i—h8/BX (p). The
result is a nonrational function of the derivatives, not
likely to give a physically acceptable quantum theory.
For this reason, we will prefer to partly fix the gauge,
as indicated above, by choosing the internal time (2.21)

ih = H((P(p), y, = 2, . . . , 2g+ N))g .
0$

(2.31)

One must still impose the two " momentum con-
straints" (2.22) and (2.23),

and the corresponding Hamiltonian (2.24) and quantize
in the Schrodinger picture:

e* '[M(2g + 3) M(2g + N)M(1) M(2g)M(2g + l)],~'Q = 0, (2.32)

e" '[M(2g + 3) M(2g + N)M(1) M(2g)M(2g + 1)],~ Q = 0, (2.33)

and require that the wave function be a Lorentz scalar.
The solution to the Schrodinger equation, for an initial

state Q(X(p), 0), y, = 2, 3, . . . , 2g+ N, is given by

@((X( ));T) = * *' ' ~" &&((X(„));0). (2.34)

The Hamiltonian operator is defined by the Fourier
decomposition

iTH( —i8/8X{p}) iKO X iTH(Ko) (2.35)

III. MAPPING CLASS GROUP
AND QUANTUM SCATTERING

Finding initial states which satisfy the constraints is
not difBcult in principle. Only the constraints (2.32) and
(2.33), which depend on the momenta in a nonpolyno-
mial way, appear to present a difhculty, but in P space
these become algebraic relations, which summarize the
cycle conditions, for which explicit solutions can be con-
structed (this is not always easy).

A. Mapping class group

The variables which we are using are associated with a
particular choice of geaerators of the fuadamental group
for a genus-g surface with N punctures. A difFerent
choice of generators can lead to a difFerent set of variables
for the same spacetime. The group of transformations
from one set of generators to another, called "mapping
class group, " is a discrete symmetry of the polygon rep-
resentatioa. One must demand that the wave function
be mappiag class iavariant aad this leads to interesting
"scattering" effects [23].

Before we begin to construct invariant wave functions,
we will review the mapping class group and its actioa on
the polygon variables, including "time" and the Hamilto-
nian. We must also make sure that our choice of operator
ordering is consistent with this symmetry group.

The mappiag class group is presented by the following
generators [25] (the loops a,b; are a standard basis, where
each ai intersects only the corresponding bi at only one
point; 7„,, 7„,, 7;, are Dehn twists [20]):

7.„, : bi m bia;, (3 1)
The preliminary theory of (2+1)-dimensional quantum

gravity, which we constructed ia Sec. II, is formally sim-
ilar to the nonrelativistic quantum mechanics of a set
of free particles propagating in a Hat three-dimensional
background, but with an unusual "kinetic energy" func-
tion. This noninteracting picture can be understood as
follows: We have defined the polygon variables by cutting
up and unfolding the manifold to get a polygon embed-
ded ia Minkowski space. In this classical picture, the
corners of the polygon follow straight timelike lines —so
indeed they behave very much like &ee particles.

—1
ry, '. a' m a b. (3.2)

L—1 —1+ +ib ' +i+ y bi+ ].+i+ y
L —1 —1 L L —17, : / b; M 6 +yb +&Gi+&biGi+ybi+yG +»

L —1 —1 L

, Qi+y M Gi+yb, +&G;+&b,Q, +y .

(3.3)
(3.4)
(3.5)

For genus g=2, the representation of the elements
(a, , b;) in ISO(2, 1) was given in [19] (with the change
in notation u; -+ a;, v; m b;) For examp. le,

&(o )= ( M(1) [I —M(1)]E(1)—M(1)E(2) )+[I —M(1)]OA
0 1

(3.6)

( M i(2) [I —M (2) —M i(l)]E(l)
+[I—M ~(2)]E(2) + [I —M '(2)]O&

1
(3.7a)
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so that we find, applying Eq. (3.1), that p(ai) is unchanged under v„,. and p(bi) becomes

p(bi) -+
( M i(2)M(1) [I—M i(1) —M i(2)M(1)]E(1)

+[I—M i(2) —M (2)M(l)]E(2)
+[I—M '(2)M(l)]OA

0 1

(3.7b)

By comparing this to expression (3.7a), one can deduce
the action of the mapping class transformation on the
variables E(p) and M(p) (this is not easy):

E(1) -+ E(1) + E(2),
E(2) -+ M-'(1)E(2),
M(1) + M(1),

, M(2) ~ M '(l)M(2),

(3.8)
(3.9)

(3.10)
(3.11)

and similarly for p,=3 and 4 and for any other element
of the mapping class group. These relations can also be
derived &om the polygon representation of the variables
E(p) and M(p) (Fig. 1). The loop ai is a loop starting
at 0, going through the segment E(1) at the point X,
through M (1)E(1) at X', and back to 0. Likewise,
bi starts at 0, goes through the segment M i(2)E(2) at
Y', then continues through Y, and returns to O. Now
one can deform the combined loop bqaq smoothly into the
loop which is represented in Fig. 1, where a small semicir-
cle surrounds the corner B of the polygon. One can then
choose a new set of cuts which avoids the corner B: The
first cut is now E(1)+ E(2) (dashed line), while the sec-
ond cut is as before, but in a &arne which has been trans-
ported around the loop E(2) once: E(2) ~ M i(1)E(2).
Any xnapping class group transforxnation can be obtained
in a similar fashion &om the polygon representation by
sliding one corner of the polygon around a loop (a Dehn
twist).

Mapping class transformations leave the cycle condi-
tions invariant, since they are automorphisms of vri(Z).
This implies that the Hamiltonian, which was computed
in the previous section by solving the cycle conditions

I

in a frame where M(l) is a pure x boost, is invariant
as long, as the &arne is adjusted so that this condition
is preserved. We will thus choose the &axne indepen-
dently for each term in the sum over the mapping class
group (next section). This requires adjusting the initial
and final conditions appropriately by an overall SO(2,1)
transformation. Time, defined as the variable canonically
conjugate to this Hamiltonian, is mapping class invariant
up to a constant.

One must check that the mapping class group action
is consistent with the choice of operator ordering. If
one chooses to place the E's and X's on the right, the
bracket algebra, as well as the relations that give X(p)
as a function of E(p,), are preserved under the mapping
class group transformations (this can be checked explic-
itly and derives &oxn the fact that all the relations are
linear and homogeneous in E and X). This difFers signifi-
cantly from the situation in York s extrinsic gauge, where
the task of finding an operator ordering consistent with
the mapping class group implies that one consider mul-
tivalued wave functions, with a modular weight which
depends on the ordering chosen [9]. We feel that this
implication is due to the choice of slicing and is not a
fundamental property of (2+1)-dimensional gravity. In-
deed, the polygon variables do not exclude the possibility
of choosing the extrinsic curvature slicing; rather, they
do not specify any foliation: We have decoupled the slic-
ing (gauge) from the global variables (observable) and
simply dropped the former. The implication discovered
by Carlip coxnes &om the difficulty to find a consistent
operator ordering for the relations which give the ADM
operators in terms of the quantized ISO(2,1) homotopies.

A B. Invariant w'ave functions: The method of images

E

FIG. 1. The loop aqbq crosses twice through the edges of
the original polygon at X = X' and Y = Y'. By recut ting the
surface in a different way prior to unwrapping it as a polygon,
one obtains a first cnt which goes directly froin A to C (dotted
line), so that the loop azbz crosses only once an edge of the
new polygon, exactly in the same way as a& crossed one edge
of the original polygon. The switch Rom one set of cuts to
another, and &om aq to aqbq, is an example of a mapping
class transformation.

One must find mapping class invariant wave functions
which solve the Schrodinger equation. We first review
what has already been achieved in both the ADM and
ISO(2, 1) schools. In the ADM approach [7,26], the
Hilbert space is the space of modular-invariant square-
integrable functions over Teichxnuller space. To find the
solutions to the Schrodinger equation, one considers the
eigenfunctions of the Hamiltonian operator. The Hamil-
tonian is not yet known for genus greater than 1 (one
must solve a I.ichnerowitz equation), but it is expected
that if a solution could be found, then the ordering prob-
lems would be intractable. This means that one is prob-
ably limited to the case of the torus, where the Hamil-
tonian is known and the wave functions are the Maass
forms [16,32].

In the ISO(2, 1) approach, one computes the amplitude
for the scattering of N particles on a plane as a s»m of
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amplitudes over all possible brai4~gs of the world lines
of the particles; if one is dealing with a compact ~~~~-

verse with handles and punctures, then one snms over the
mapping class group, rather than the braid group. Each
term in this snm is a path integral with the Chem-Simons
action, over all Poincare connections on three-manifolds
with 6xed "initial" and "6nal" conditions, and a given
topology and mapping (or "braiding, " for particles). Be-
sides the diculty of computing the path integral with
fixed boundary conditions (which is related to the diffi-
culty of finding the Hami&tonian), one must deal with an
infinite snm over a non-Abelian group; it is not known
whether the sum can be ordered as a converging series or
if the result is computable.

In both approaches, one can separate the task at hand
into two subtasks: (1) the dynamical problem (finding
the Hamiltonian or computing a sum over histories with
initial and final conditions); (2) the mapping class prob-
lem (finding modular-invariant eigenstates of the Hamil-
tonian operator or performing the sum over the mapping
class group).

Both the dynamical and the mapping class problems
have been solved for the scattering of two particles on IR

[13],and the Hamiltonian is known for the quantum torus
[7], with work under way on the mapping class problem
[32].

So far in this paper, we have solved the dynamical
problem in the general case of a genus-g surface with N
punctures. In what follows, we will attempt to provide
a solution to the mapping class problem by constructing
the invariant wave functions as a series of computable
terms. We will give a procedure to decide on which terms
[or elements of the mapping class group (MCG)] give a
significant contribution to the amplitude and argue that
the number of such terms is finite.

We will consider the amplitude to go from an initial
state IXi), which we choose to be an eigenstate of the
"position" operators at Ti——0 (X (p), y, = 2, . . . , 2g +
N}, to a final state IXz) at T» 0. Neither of these
states is mapping class invariant, but one can construct
an invariant states IX); „by summing over all mapping
class images of X:

Ix) - - ). I~(g')x) . (3.12)
ig(MCG}

This eigenstate has ignite norm, equal to the cardi-
nality of the mapping class group. We will use the formal
expression (3.12) as a starting point and derive physically
acceptable wave functions below.

C. Scattering amplitudes

v(p x} II x(p) —p(g')x(p) II (3.13)

This criterion depends on. the variance of the wave packet;
one can get a more universal condition if one assumes
that the variance is of order h~. In units h = 1 this gives

&(~ ~} II x(u) —ro(g')x(~) II'» 1.

We are now ready to calculate the scattering ampli-
tude: Taking two asymptotic invariant states (3.12) and
the Hamiltonian (2.24) and recalling that the mapping
class group leaves H invariant and translates T by a con-
stant, the amplitude is just

Even though the spacetimes considered here are not
asymptotically Bat, one can de6ne noninteracting "in"
and "out" states as follows. Since there is no potential
energy term in the Schrodinger equation, the system is
noninteracting as long as the mapping class group sym-
metry is not taken into account. It is easy to see &om the
construction of invariant states in (3.12) how the map-
ping class group aHects this noninteracting picture: A
realistic state might be a superposition of position eigen-
states (3.12), with some variance 0 . Thus the support of
each term in the sum is a fuzzy patch centered at p(g;)X.
If the patches for various mapping class images overlap,
then one expects to pick up interference terms —this is
the essence of "interactions" in (2+1)-dimensional grav-
ity. We will define "in" and "out" states by demanding
that such overlaps do not occur—practically, this requires
that the X(y) be "sufficiently large" so that for every el-
ement g; of the mapping class group the image of X(y,)
under g; lies in the tail of the wave packet, which is ex-
ponentially suppressed:

(1I2) - ): (~(g.)(X. T.)I""'" "'ls(g')(Xi, Ti))
i,j6(MCG}

(3.15)

) (X,T Ie-'"~ '- ' '~l~(g, ')s(g;)(Xi, Ti)),
~,j6(MCG}

(3.16)

where (Xz, T&} = p(g~)(X2, T2}, etc. Finally, since no
loop of mi(Z) is privileged with respect to any other,
the products (g. g;) will cover the mapping class group
uniformly, and absorbing the in6nite factor equal to the
cardinality of the group,

(112) - ): (X2 T2le '"' ' 'I~(g*)(Xi.Ti)) .
ig(MCG}

Thus the amplitude at (X2, T2} is a sum over the
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D. Stationary phase theorem
and the sum over mapping class images

We will consider an initial wave packet centered
at a suitable X&, where by "suitable" we mean that
the images (X~,T~) have no accumulation point (3e:
Vi, g [X(p) —p(g;)X(p)]2 ) e). The orientation of
the '4eam" is defined in a frame-independent way, to
get an SO(2,1)-invariant wave function. We further re-
quire that the wave packet a(K) have support only over
P's which correspond to solutions of the cycle conditions
which form a faithful representation of the fundamental
group [5,21] (other sheets of solutions include totally col-
lapsed handles or curvature singularities with a surplus
angle equal to a multiple of 4w):

d(Xe, Tq) = /dKa(K)e' (3.IS)

where

K = (P (y,), p = 2, 3, . . . , 2g+N), (3.19)

dK = II„d P(y, ) . (3.2O)

The wave function at (X2, T2) is given by propagat-
ing the initial state (3.18) with the invariant propagator
(3.17). With the notation (d~ = H(K) and the definition

(X(;))T(;)) = p(g;)(Xg, Tg) —(X2, T2), (3.21)

the wave function becomes

d(X„T;)- ) f dKa(K)e
'q(Mcc)

(3.22)

The stationary phase argument implies that the only
contributions to the integral are &om values of K where
the phase varies slowly as compared to a(K); this picks
out the trajectories near the classical solutions:

8
BK (3.23)

where the first factor on the right-hand-side (RHS) is

contribution of each mapping class image of the source,

(Xz, Tz), propagated to (X2, T2) by the "free-particle"
Hamiltonian H(P(p), p = 2, . . . , 2g+ N). Note that the
sum is over an infinite group so the expression (3.17)
is not necessarily well defined. We will argue below that
(3.17) is computable as a distribution on a certain limited
set of wave functions @((Xq,Tq)); it would be very inter-
esting to identify an appropriate space of test functions
for which the distribution (3.17) is well defined, but this
lies beyond the scope of this paper —the difficulties arise
because the mapping class group does not act properly
discontinuously on the space of polygons.

the group velocity of the packet, which can be calculated
explicitly given the Hamiltonian (2.24). In the scattering
problem, the initial state, final state, and i are fixed, so
that (3.23) can be solved for K; let us denote this solution
by K(i). The only elements of the mapping class group
which give a large contribution to the sum (3.22) are such
that K(i) is not in the exponentially suppressed tail of
the wave packet: a(K(i)) ) e for some appropriately
chosen e. Since we have assumed that the images of the
source have no accumulation point, only a finite number
of terms will contribute and the wave function (3.22) has
a finite norm. We have examined a number of specific
examples to various degrees of detail and found that the
expression (3.22) is computable for initial data peaked
about sufficiently nonsingular polygons. One encounters
the following situations.

(1) If the images are widely spaced and their emis-
sions do not interfere, only one of the classical trajecto-
ries K(i) lies within the wave packet a(K); one recovers
the free propagator. This occurs when the images X(i)
are sufficiently distant for each other as compared to the
distance between X2 and Xq, so that the images K(j)
different from K(i) do not lie within the support of the
wave packet a(K). There is no scattering in this case.

(2) Two classical trajectories connect the initial and fi-

nal states, such as with geodesics on a cone (two-particle
scattering). If the initial wave packet is wide enough,
e.g. , includes both P(1) and M(2)P(l), then the scat-
tering amplitude involves the interference between these
two terms, as in a two-slit experiment. Other terms in
the sum, such as [M(2)]"P(1) for n ) 1, correspond to
the events where one particle winds around the other n
times —the corresponding K may lie within the packet
a(K) for small enough n, but these trajectories are not
"nearly classical" and will contribute little, by the sta-
tionary phase argument. According to 't Hooft's more
complete analysis [13], such terms are suppressed by a
factor of order (e/2w)4", where e is the deficit angle at
the conical singularity.

(3) One of the braid generators of the mapping class
group (winding around a small loop) acts as a small
translation, so that one picks up interference &om a large
number of images spaced on a line: This amplitude is re-
lated to scattering of light by a grating and describes
the quantum dynamics of a thin wormhole. If one of the
mapping class generators g modifies K(i) very little,
where K(i) is a classical solution which lies within the
packet a(k), then by applying this generator again and
again one obtains a sequence of contributions from KU ~,
with g~z )

= (g ) g(i). The series (3.22) may be exactly
summable in this case; in the example of the torus, the
result should be related to the Maass forms [16].

(4) Various mapping class generators contribute signif-
icantly to the sum: In the general case where more than
one generator has "almost nonproper" action on K, one
must consider the interference of the amplitudes propa-
gating freely &om a large number of images, which are
distributed in a complicated fashion. This corresponds
to a multiple scattering amplitude, and the expression
(3.22) is related to the scattering by a complicated mul-
tidimensional "grating. "
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E. Quantum gravity near the "big bang"
and through the "big bounce"

Besides the scattering &om asymptotically &ee states,
another problem of interest is the (2+1)-dimensional
equivalent of the "big bang. " Many solutions of the clas-
sical theory expand from an initial singularity (although
smoothly, unlike in 3+1dimensions). For N=O and genus

g & 2, all solutions have either an initial or a final sin-
gularity [27). This brings up a very interesting situation:
As one approaches the singularity, the topological fea-
tures are increasingly tiny and a wave packet of given
variance will contain an increasing amount of mapping
class images. This means that the number of terms in
the invariant wave function (3.22) increases, and it be-
comes less and less reasonable to interpret the result in
the semiclassical picture by referring to a background
geometry with interference terms acting as effective in-
teractions. The "geometry" becomes completely fuzzy,
but the wave function can still be calculated —this gives
one a window on the nonperturbative regime, and small
scale structure, of a theory of quantum geometry.

The wave function (3.22) is probably computable up
to any desired level of accuracy at a given point away
&om the singularity, although the number of terms which
must be considered in the sum can be large if one is close
to the initial singularity. Short of actually performing
this calculation, one can draw a few tentative conclu-
sions. The increasing density of mapping class images as
one approaches the big bang indicates that the inevitable
anisotropy of classical universes with nontrivial topology
is likely to be smoothed out: Any event which occurs be-
fore the quantum gravity efFects lose significance is likely
to appear isotropic to a future observer, even in a topo-
logically nontrivial cosmology. By the same argument, it
appears plausible that the wave function at (X,T) away
&om the big bang would depend very little on the precise
initial condition on @(Xi,Ti). This would be very conve-
nient, since it eliminates the problem of having to specify
an initial condition for the very early universe; it places
all the burden of selecting among the possible histories
on the measurements which are presumably performed
later on and collapse the wave function to something re-
sembling a classical background geometry.

The last compact universe problem which we wish
to discuss is the "big bounce. " The initial state is a
wave packet centered about a contracting universe, which
would classically contract to a singularity and then ex-
pand on the other side. The semiclassical picture breaks
down as one approaches the singularity, since the wave
function becomes a superposition of an increasingly large
number of mapping class images and the wave function
extends to cover all possible universes with the given
topology. It is impossible to think in terms of a "geom-
etry" in this region, yet interference patterns &om the
mapping class images are likely to create "dark regions"
and "bright regions" in the space of geometries. The
large number of mapping class images is likely to lead to
randomization of the wave packet and a very nonlocal-
ized wave function on the other side, as in the previous
case. One arrives at a similar conclusion if one considers

the chaotic behavior of particles close to the singularity
[28], together with the finite spread of the initial wave
packet.

F. Scattering of particles and vrormholes on R~

If the universe has the topology R with g handles
and N punctures, the amplitudes are calculated in much
the same way, but the Hamiltonian function is simpler.
The geometry at infinity is that of a cone with a helical
shift, and the axis of the cone defines the direction of the
"time" vector. The deficit angle of the conical geometry
gives the total energy H, and the helical shift corresponds
to the total angular momentum [29,11].The cycle condi-
tion for closed topologies is replaced by a single equation,
which gives the overall holonomy for a loop which goes
around the circle at infinity; we will consider only wave
functions with support limited by the condition that this
overall holonomy be a rotation, since otherwise closed
timelike curves occur in the semiclassical region (this im-

plies that there is at least one particle, since wormholes
are always tachyonic [21]). The angle of this rotation is
the Hamiltonian

II = arcsin(P), (3.24)

where

P = ie s'[M(1)M (2)M (1)M(2) M(2g+ N)],s

(3.25)

This expression is similar to Carlip's proposal for ex-

This function has been written down explicitly as a,

function of the momenta for two particles [11]and three
particles [14] and can be calculated, with an increasing
amount of work, for any number of particles. Note that
there is an ambiguity in the definition of the Hamiltonian,
which is only given modulo 2m. This ambiguity is related
to the fact that the holonomies are representations of the
fundamental group in the covering group of SO(2,1). It
is usual to restrict one's attention to the case where the
holonomy M(y) associated with each individual particle
(p = 2g + 1, . . . , 2g + N) lies on the component sim-

ply connected to the identity and similarly for the over-
all holonomy at infinity —this corresponds to particles of
reasonably small mass [21] and so-called "physically rea-
sonable" conditions at infinity [30]; the consequence of
these assumptions is that for the g=0 case one can show
that there exists a global spacelike slicing (no time ma-
chines) [31]; this fact was first stated without proof in
[11]. We will enforce these conditions by choosing wave
packets with support limited to these reasonable geome-
tries" for g=0. In the general case, there is no avoiding
this ambiguity, and one must decide if the wave function
is multivalued or if it transforms nontrivially under a 2'
rotation [23]. As before, we will make the choice of a
scalar wave function and postulate
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act scattering amplitudes [23], the only difFerence being
that we are considering wave packets rather than the
pure propagator. This allows us to appeal to the sta-
tionary phase theorem and argue that the sum is limited
to a finite nuxnber of mapping class images, which are
such that the classical trajectory which connects an im-
age to {X,T) corresponds to a momentum K(i) which
lies within the support of the packet a(K). It would be
very interesting to see an explicit solution of the three-
particle scattering problem in a specific situation by using
(3.28) and the expanded expression for the Hamiltonian
[14).

IV. CONCLUSION: THE "PROBLEM OF TIME"

In this paper, we have developed the covariant quanti-
zation program which was initiated by Witten and Carlip
using the "polygon representation" of the reduced phase
space. In this representation, classical (2+1)-dimensional
gravity appears formally similar to a set of &ee particles
propagating in R + . We gave the explicit expression
for the Hamiltonian function and quantized the theory
canonically. The mapping-class-invariant wave function
can be written as a sum of &eely propagating ampli-
tudes, which each term represents the propagation &om
one mapping class image of the initial state. Interactions
occur when these amplitudes interfere. This can produce
interference patterns analogous to either the two-slit ex-
perixnent or the diffraction by a regular grating, in some
special cases.

It is not obvious that the sum over mapping class im-
ages is computable for wave functions which have support
over singular geometries. Since singular geometries occur
rather generically in (2+1)-dimensional gravity, it would
be of great interest to prove that the sum is well defined
for a specific Hilbert space of wave functions.

Also of interest is the opport»~sty to compare this
quantum theory for the torus (g = 1) to other author' s
results in the extrinsic time. Joining our results and
those of Carlip [9], we have indirectly shown that the
theories are closely related if one considers only atatic is-
sues, since it was shown that the ADM, Witten-Carlip,
and polygon variables are difFerent representations of the
same reduced phase space and that the relations between
these representations are consistent with the operator
orderings chosen [9]. However, it is not clear whether
the quantum dynamical theories, given by Schrodinger s
equation in York's time or in our internal time T, are
equivalent. We will argue below that they are not, but
6rst we must de6ne what we mean by "equivalent. " We
will use the terxn "observable" in the traditional sense of
quantum mechanics, without requiring that they should
be constants of the motion. An exaxnple of an observable
might be, e.g. , L2 = E2(p).

Definition. Tw~o quantum systems, described by the
wave functions g and Q' in times t and t', are said to
be "equivalent" if for any set of comxnuting observables
A; (i = 1, . . . , N) the expectation values (A;)q and (A;)q
follow the same trajectories in R

Let (C;, H) be a complete set of commuting observ-

ables (CSCO) where H is the Ha~i&tonian for time t, and
let K be the Hamiltonian for time t'. The wave functions

@ and f' can be expanded in a basis of eigenstates of the
commuting observables. We now explain why the the-
ories of (2+1)-dimensional gravity in difFerent times are
not equivalent.

(1) K must be diagonal in this basis (if it were not, then
the expectation values of the observables in the states
@' would not be constant and the equivalence criterion
would be violated).

(2) The initial state Q'(t' = 0) must have the same
probability for each CSCO eigenstate as g(t = 0) (a triv-
ial consequence of the definition above; set C; = A;).

(3) The wave functions @(t) and g'(t') differ only
by the phase factor of each coefficient in the expan-
sion in the basis of eigenstates. The time dependences
of these phases in the two formulations are given by
P'„(t') = P„'(0) + K„t' and P (t) = P (0) + H„t. One
easily checks, by comparing the form of the Hamiltonian
for our choice of interval time T to that which corre-
sponds to the extrinsic time, that these phases do not
follow the same trajectory in IR" where d is the num-
ber of commuting observables. This further implies that
one can easily find a set of N = 2 observables (which do
not commute with H) such that their expectation values
do not follow the same trajectory in IR . Thus either the
quant»m theories in difFerent times give difFerent dynam-
ics or they cannot be compared in the sense that it is im-
possible to set up the same experiment in both pictures.
The attempts to avoid this fundamental problem by ap-
pealing to the path integral formulation of quantum me-
chanics, as a unified formalism to which both Schrodinger
quantizations are presumably equivalent, usually end up
hiding the problem in either an inadequate de6nition of
the boundary conditions or of the measure: As Guven
and Ryan have emphasized [33], two inequivalent theo-
ries cannot be simultaneously equivalent to a third one.

Until one can gain a better grasp on this prob-
lem and 6nd an appropriate Hilbert space for which
the wave function (3.22) is computable, it is impossi-
ble to claim that this canonical formalism for (2+1)-
dimensional gravity is acceptable as such.

One might consider extending this work to 3+1 di-
mensions along the lines of the exactly solvable theories
proposed by Horowitz [34]. A reduced phase space for
Horowitz's topological BA F theory can be found [35,36],
and it is probable that the canonical quantization pro-
gram can be carried out along the same lines as those
laid out in this paper.

The canonical quantization program of (2+1)-
dimensional gravity was faced with two problems: that of
computing the Hamiltonian to address quant»m dynam-
ical issues and that of 6nding wave functions that are
invariant under the action of the mapping class group.
The 6rst problem has essentially been solved, although
this required abandoning the extrinsic gauge which is fa-
vored by the ADM school for its relevance in 3+1 dimen-
sions; as we argued above, the change of internal tixne
is not a trivial step in a quantuxn theory. As for the
second problem, an explicit construction of the invariant
wave functions was given. Even if the computability can-
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not be established in the general case, we hope that this
paper has provided a practical scheme with which one
can tackle speci6c nonperturbative problems of quantum
gravity in 2+1 dimensions.
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