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The Hamiltonian framework for (2+1)-dimensional gravity coupled with matter (satisfying pos-
itive energy conditions) is considered in the asymptotically flat context. It is shown that the total
energy of the system is non-negative, vanishing if and only if space-time is (globally) Minkowskian.
Furthermore, contrary to one’s experience with usual field theories, the Hamiltonian is bounded
from above. This is a genuinely nonperturbative result. In the presence of a spacelike Killing field,
(3+1)-dimensional vacuum general relativity is equivalent to (2+1)-dimensional general relativity
coupled to certain matter fields. Therefore, our expression provides, in particular, a formula for
energy per-unit length (along the symmetry direction) of gravitational waves with a spacelike sym-
metry in 3+1 dimensions. A special case is that of cylindrical waves which have two hypersurface
orthogonal, spacelike Killing fields. In this case, our expression is related to the “c energy” in a
nonpolynomial fashion. While in the weak field limit the two agree, in the strong field regime they
differ significantly. By construction, our expression yields the generator of the time translation in
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the full theory, and therefore represents the physical energy in the gravitational field.

PACS number(s): 09.20.Fy, 04.20.Ha, 04.60.Kz

I. INTRODUCTION

Spaces of solutions to Einstein’s equations admitting
isometries have provided a useful and simplified arena to
analyze a number of issues in (3+1)-dimensional classical
and quantum gravity. An outstanding example is that of
stationary space-times where the presence of the timelike
Killing vector field can be used to introduce the notion
of multipole moments, energy and angular momentum
being only the first of a doubly infinite series. These mo-
ments can then be used to characterize the space-time
geometry completely [1]. This class of space-time is of
particular interest in astrophysics where sources can of-
ten be idealized as being stationary. Another class of
models of interest is provided by Bianchi cosmologies.
In this case, the isometries are spacelike and Einstein’s
equations are reduced to ordinary differential equations
in time. The analysis therefore simplifies considerably. In
some cases, the equations can be integrated completely
by making appropriate canonical transformations in the
phase space and the models can then be used to get in-
sight into the conceptual issues of nonperturbative quan-
tum gravity such as the problem of time (see, e.g., [2]).
In other cases, particularly the Bianchi type-IX models,
the equations continue to be sufficiently complicated so
as to provide interesting examples of chaotic dynamical
systems (see, e.g., [3]). These analyses have shed con-
siderable light on the “generic behavior” of solutions of
Einstein’s equations as one approaches a singularity. Nei-
ther of these truncations of full general relativity is, how-

0556-2821/94/50(8)/4944(13)/$06.00 50

ever, well suited to tackle dynamical issues that are re-
lated to the fact that the gravitational field has an infinite
number of degrees of freedom: In the stationary context,
there is no time evolution, while in the Bianchi models
the truncation is so severe that one is left with only a
finite number of degrees of freedom.

There are two sets of dynamical issues that hinge on
the presence of an infinite number of degrees of freedom.
The first refers just to the classical theory: One would
like to get insight into the nature of gravitational waves
beyond the linear approximation. Of particular interest
is the notion of energy in these waves and its proper-
ties. The second is quantum mechanical: One would like
to learn more about the field theoretic difficulties asso-
ciated with the existence of infinitely many modes that
can be excited. To study these problems, a “midisu-
perspace” of solutions to Einstein’s equations was stud-
ied in some detail in the 1970’s. It consists of solutions
to four-dimensional vacuum equations with cylindrical
symmetry. In this case, the field equations again sim-
plify. Because there still remains an infinite number of
degrees of freedom, one continues to deal with partial
differential equations. However, the presence of the two
hypersurface orthogonal Killing fields reduces the prob-
lem to that of solving the linear wave equation for a scalar
field in a three-dimensional (fictitious) Minkowski space.
More precisely, given a solution to the wave equation on a
three-dimensional Minkowski space, one can simply write
down a four-metric with cylindrical symmetry which sat-
isfies the full, nonlinear vacuum equations. In the clas-
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sical theory, one is then led to the issue of the physical
interpretation. What, in particular, is the energy carried
by these waves? Is it always positive? Can one write
down a simple “mass-loss” formula at null infinity?
These and related problems were examined by several
authors, in particular, by Thorne [4] (using Cauchy sur-
faces), Stachel [5] (in terms of falloff at null infinity),
and Kuchaf [6] (in the context of canonical quantiza-
tion). The analysis is far from being straightforward be-
cause of the following complication: Since the solutions

have a “translational Killing field” (8/0z, parallel to the
axis of rotation), the solution cannot be asymptotically

flat either at spatial or null infinity in four-dimensions,
whence the standard machinery of the Arnowitt-Deser-
Misner (ADM) framework (see, e.g., [7]) at spatial infin-
ity or of the Bondi-Penrose [8,9] framework at null infin-
ity is simply not available. Indeed, the symmetry consid-
erations tell us that the total energy in the wave must be
infinite (or identically zero). The physically meaningful
quantity would be the energy per unit length along 8/9>.
Thorne succeeded in making this notion, which he called
the “c energy,” precise. His final expression can be un-
derstood as follows. Since the four-metric is completely
characterized by the solution to the wave equation in
a three-dimensional reference Minkowski space, one can
just compute the conserved energy of the scalar field (in
Minkowski space) and declare that to be the total energy
of the cylindrical wave per unit length. The quantity is
then manifestly positive and, at least intuitively, satis-
fies the anticipated mass-loss formula. Furthermore, in
the weak field limit, it reduces to the expected expres-
sion. Kuchaf’s strategy [6] to the problem of quantiza-
tion can be understood in a similar fashion. The four-
metric can be gauge fixed in such a way that the only
degree of freedom in it is the solution to the wave equa-
tion. Since one knows how to quantize the free scalar
field in three-dimensional Minkowski space, one can take
over that operator-valued distribution ® and insert it in
the gauge-fixed metric to provide the quantum operator
corresponding to the four-geometry. (The same strat-
egy has been used [10] in the “one polarization Gowdy
models,” which again have two commuting Killing fields,
where, however, the spatial topology is that of a three-
torus rather than R3. The fact that the spacelike sections
are compact does give rise to the usual problems in the
definition of total energy. However, the essence of the
quantization procedure is not affected.)

There is, however, another, and much more general,
strategy. It is well known (see, e.g., [11]) that in the
presence of a spacelike Killing field, Einstein’s vacuum
equations in 3+1 dimensions are equivalent to Einstein’s
equations in 241 dimensions with a source consisting of
a triplet of scalar field constituting a [SO(2,1)] nonlin-
ear 0 model. If the 3+1 Killing field is “translational,”
it is natural to expect the (2+1)-dimensional fields to
by asymptotically flat (both at spatial and null infinity).
For such fields, one can imagine extending the (3+1)-
dimensional ADM strategy [7] to define conserved quan-
tities at spatial infinity and the Bondi-Penrose strategy
[8,9] to define fluxes of energy momentum at null infin-
ity. From the (2+1)-dimensional perspective, the Hamil-

‘cal waves of [4,6] as a special case.
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tonian generating asymptotic time translations at spatial
infinity would represent the total energy of the given iso-
lated system. From the (3+1)-dimensional perspective,
this would represent the energy per unit length (along
the Killing trajectories). There is a similar dual inter-
pretation of quantities at null infinity. Thus one can go
back and forth between the two pictures. The strategy
is attractive because it avoids the introduction and use
of fictitious Minkowski spaces—the energy would arise
as the generator of time translation directly in the phys-
ical picture. It is also natural from the perspective of
quantum theory. Indeed, there exists a nonperturbative
quantization of 2+1 gravity without sources. The next
step from the (2+1)-dimensional perspective is to bring
in matter. An exact Hamiltonian framework in the clas-
sical theory would be the first step toward such an analy-
sis. Is the energy positive? If so, one can hope that there
would be no problems with stability and/or unitarity of
the quantum theory. Are the ultraviolet difficulties dif-
ferent, now that we have effectively a theory only in 2+1
dimensions?

Finally, this framework will encompass the cylindri-
These (3+1)-
dimensional space-times have two spacelike Killing fields,
which, moreover, are hypersurface orthogonal. In the
2+1 reduction with respect to the translational Killing
field (8/9z), hypersurface orthogonality introduces a key
simplification: The triplet of matter fields reduces simply
to a single scalar field ® (the logarithm of the norm of
the translational Killing field) satisfying the wave equa-
tion in the (curved) (2+1)-dimensional geometry. The
presence of the second Killing field then imposes a fur-
ther rotational symmetry, which in turn implies that the
scalar field ® satisfies the wave equation with respect to
the physical (2+1)-dimensional geometry if and only if it
does so with respect to a fictitious Minkowskian metric on
the (2+1)-dimensional manifold; we can thus recover the
description used in the analysis of cylindrical waves. One
can therefore ask: Does the notion of energy obtained
here from the perspective of (2+1)-dimensional gravity
reduced to the c energy? There is no a priori reason why
the two should be the same: While the c¢ energy is the
generator of time translations for the scalar field propa-
gating in a (2+1)-dimensional Minkowski space, the new
energy would be the generator of time translations for
the full 241 theory consisting of gravity plus matter.
Similarly, in the quantum theory, new avenues open up.
From the work of Allen [12], we can deduce that there
is a consistent quantization of axisymmetric 2+1 grav-
ity coupled to a scalar field satisfying the wave equation,
which is equivalent to Kuchai’s [6] quantization of cylin-
drical waves. However, from the general perspective of
(2+1)-dimensional gravity, a number of new avenues also
become available.

These considerations suggest that it is natural to inves-
tigate a more general “midisuperspace” consisting of 2+1
gravity coupled to physically reasonable matter fields.
The purpose of this paper is to present a Hamiltonian
framework for this system. In particular, we will show
that the Hamiltonian has two interesting properties, one
expected on physical grounds and the second somewhat
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unexpected and, at least at first, quite surprising. The
first property is that, provided the matter fields satisfy a
local energy condition, which they do if they are obtained
by a symmetry reduction of the 3+1 theory, the total en-
ergy is non-negative and vanishes if and only if all mat-
ter fields vanish and space-time is globally Minkowskian.
The second property is that the total energy is bounded
from above as well. More precisely, the canonical frame-
work breaks down beyond this limit in the sense that
there is no function which can generate “the asymptotic
time translation” in the part of the phase space where the
bound would have been violated. Thus the Hamiltonian
we obtain is quite different from the c energy. We will see
that the two are nonpolynomially related. In the weak
field limit, they agree. However, in the strong field limit,
there is quite a difference. The existence of an upper
bound for the Hamiltonian suggests that in the quantum
theory the ultraviolet behavior may well be quite differ-
ent from the one encountered in the 3+1 theory. This
difference may well be the underlying reason behind the
finding [13] that 241 gravity coupled to scalar fields is
perturbatively finite.

Can we intuitively understand the existence of this up-
per bound? We will see that from a space-time point of
view, when the bound on the Hamiltonian is violated,
all resemblance to asymptotic flatness is lost in the sense
that the points “at spatial infinity” can be reached by
curves of finite length from any point in the interior.
The qualitative picture of this “closing up” of space is
perhaps not surprising in the light of the work by Deser,
Jackiw, and 't Hooft [14] on 2+1 gravity in the presence
of point particle sources. However, when one looks at
the issue in detail, one sees that there are some impor-
tant differences between point particles and smooth field
sources. In geometrical terms, the locations of point par-
ticles do not, strictly speaking, belong to the space-time
manifold since the geometry there has conical singular-
ities. As a result, a complete Hamiltonian description
is difficult to comnstruct in that case: One must specify
the boundary conditions not only at spatial infinity, but
also at the location of the point particles, and then show
that the resulting phase space has a well-defined symplec-
tic structure and continuous Hamiltonian flows. Strictly
speaking, therefore, in the case of point particle sources
there is no clear-cut relation between the closing up of
space and properties of the Hamiltonian. On the other
hand, when the sources of smooth fields, the Cauchy sur-
faces can be taken to be topologically R? and geometry is
smooth everywhere. There are no conical singularities in
the physical space-time and no points need to be excised.
Consequently, boundary conditions on all fields need to
be specified only at spatial infinity and the task of con-
structing a complete Hamiltonian description is signifi-
cantly simpler. Finally, at first, the phenomenon of the
“closing up” of space may seem [15] to have an analogue
also in the 3+1 theory in the vacuum initial data stud-
ied by Brill [16]. However, in that case, space closes up
when the total energy is infinite, whence the result is not
surprising—one does not expect a solution with infinite
energy to be asymptotically flat. Here the “closing up”
occurs for a finite value of the total Hamiltonian, and on
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general physical grounds, without the knowledge of the
asymptotic behavior of the solutions to the constraint
equations, it is hard to see why this should occur. In-
deed, for cylindrical waves, for example, one can imagine
just tuning up the value of the scalar field ® by scaling it
by an arbitrarily large constant factor, thereby obtaining
a perfectly reasonable initial data for the scalar field (say,
of compact support) with an arbitrarily large energy. It is
therefore puzzling at first that the total Hamiltonian can
be bounded from above. What actually happens is rather
subtle: The total energy is a nonpolynomial function of
the c energy, the Minkowskian energy of the scalar field
®, and as one tunes the scalar field up, while the c energy
diverges, the Hamiltonian tends to its upper bound.

In Sec. II, we will present the basic Hamiltonian frame-
work. The boundary conditions, and hence also the de-
tails of the construction, are quite different from the 3+1
theory: There is no fixed, fiducial metric to which all met-
rics approach at spatial infinity, and extra care is needed
in a number of steps. In Sec. III, we show that the
Hamiltonian is bounded from above in the sense indi-
cated above. In Sec. IV, we establish the positivity of
the Hamiltonian. Again, while the general ideas are sim-
ilar to those used in the proofs in the 3+1 theory [17], a
number of subtle differences arise from the peculiar fea-
tures of the (2+1)-dimensional boundary conditions. In
Sec. V, we summarize the main results and discuss their
implications to cylindrical waves.

This is a detailed account of the results presented by
one of us (A.A.) at the Brill-Misner symposium.

II. HAMILTONIAN FRAMEWORK FOR 2+1
GRAVITY WITH MATTER FIELDS

Since we are interested in the Hamiltonian framework,
we will assume that space-times M under consideration
have a topology ¥ X R, where ¥ is an arbitrary but fixed
noncompact two-manifold, the complement of a compact
set of which is diffeomorphic to the complement of a com-
pact set in R2. Thus the topological complications, if
any, are confined to a world tube in the space-time M
with compact spatial sections; outside this world tube
M resembles R3. The Cauchy surfaces in M are to be
diffeomorphic to X. In the geometrodynamical frame-
work, the basic phase space variables are the two-metrics
gap o0 ¥ and their canonically conjugate momenta Peab,
The momenta are related to the extrinsic curvature Kb
via P = | /g(K® — K¢°%), where ,/g is the square root
of the determinant of the metric gq5 and K = ¢®°K,, is
the trace of the extrinsic curvature.

Our first task is to specify boundary conditions on gqp
and P®®. As in (3+1)-dimensional general relativity, the
choice of boundary conditions will be motivated by the
asymptotic behavior of simple exact solutions. Let us
therefore make a small detour to recall [14] the solution
corresponding to a static point particle.

The spatial slice  in this case is topologically R?. Fix
a global “Cartesian” chart z,y on . The particle resides
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at the origin, ¢ = y = 0. The solution to the Einstein’s
equation is given by

dS? = —(dt)® + r~8°M[(dr)? + r%(d6)?] , (2.1)
where G is Newton’s constant (which in three dimensions
has the dimensions of inverse mass) and (r,6) are the
polar coordinates obtained from the Cartesian ones in
the usual way [i.e., (£ = 4 cos@, y = r sinf)]. Thus r €
[0,00) and @ € [0,27). A direct calculation shows that,
as required, the stress-energy tensor T, is distributional
and localized at the origin, Top = M62(z,y)VatVpt.

Let us recast (2.1) in a more transparent form. Since
the Ricci tensor vanishes for » > 0 and since we are
in three space-time dimensions, the full Riemann tensor
vanishes there as well. Thus, for r > 0, the metric (2.1)
is flat. To exhibit it in the manifestly flat form, let us set

a

a:=1-4GM andp:=%, 0=af. (2.2)

The metric (2.1) then takes the manifestly flat form

dS? = —(dt)? + (dp)? + (p)?(dB)? , (2.3)
where, however, 0 < 8 < |a|. From the restricted range
of #, we immediately see that there is a conical singu-
larity at p = 0. We also see that the deficit angle is di-
rectly related to the value of the mass M of the particle.
Thus, although the space-time is flat, unless M = 0, it is
not globally isometric to the three-dimensional Minkowski
space. Indeed, the deficit angle persists even at infinity.
Thus space-time metrics with different values of M differ
from each other already in the leading-order terms at in-
finity. In four dimensions, all asymptotically flat metrics
approach a fixed globally Minkowskian metric near in-
finity and the information about the mass resides in the
leading-order 1/7 deviations from this Minkowski metric.
In three-dimensions, by contrast, the information about
the mass resides already in the “zeroth-order” behavior
of the metric at infinity; there is no universal Minkowski
metric that they approach.

With these motivating remarks, we are ready to specify
the boundary conditions. Since, outside the compact set,
¥ is diffeomorphic to the complement of a compact set in
R?| in the asymptotic region of ¥ we can fix coordinates
7,6, with 7¢ < r < oo and 0 < 0 < 27. Let z,y be the
Cartesian coordinates corresponding to r,6. Denote by
eqb the Euclidean metric defined by these coordinates,
eab = VazrVipz + V,ayVey. Note that the coordinates
(r,0),(z,y) and the metric e,; are defined only in the
asymptotic region of ¥ where there are no topological
nontrivialities. We will require that the metric g, have
the asymptotic form

Gab = 1 Pleas + O(1/1)) (2.4)
for some real constant (3, which we leave arbitrary for
the time being. [As in the 3+1 theory, the falloff con-
ditions will refer to the components of the tensor field
being considered in the Cartesian chart x,y, which is
fixed in the asymptotic region. Also, if f = O(r"), we
assume that the derivatives in the Cartesian chart fall off
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as 8o f = O(r™71), 8,8sf = O(r™~2), etc.] Comparison
with (2.1) leads one to expect that, in the final picture,
the ADM mass would be coded in 8 through 8 = 8GM.
This will turn out to be the case. To begin with, we
will allow 8 to assume negative values; it is the positive
energy theorem of Sec. IV that will force 3 to be positive.

Thus the gravitational or geometric part C8° of our
configuration space will consist of smooth metrics on ¥
which have the asymptotic behavior given by (2.4). Note
that gup is assumed to be smooth everywhere on ¥; in
particular, it cannot have conical singularities such as
the one at the origin in the point particle geometry. Put
differently, ¥ is assumed not to have “interior bound-
aries.” This in particular means that we will only con-
sider smooth matter sources. Had we allowed singular
sources such as point particles, the Hamiltonian analysis
would have been significantly more difficult: To obtain a
consistent framework, all sources must be included in the
construction of the phase space and it is generally diffi-
cult to do symplectic geometry with singular fields. Thus
the metric (2.1) was used only to motivate the boundary
conditions at infinity; in the interior, the geometries in-
cluded in the phase space will be quite different.

Since the geometric part I'8%° of the phase space is the
cotangent bundle over C8%°, it is completely determined
by C8%°. To exhibit the induced boundary conditions on
the momenta, let us first examine the asymptotic behav-
ior of tangent vectors dgqp at a generic point gq; of C8°.
By varying (2.4), we obtain

54as ~ rP[~3B In(r)eas + O(1/r)] - (25)

(Note that, unlike in the 341 theory, the fall off of the
tangent vectors dgqp varies from point to point on C8°°.)
The momenta P?® are to be such that, regarded as cotan-
gent vectors, their action Po[dg] on any tangent vector dq
should be well defined; i.e., the following integral should
exist:

Poldq] := /Edzm P°%8qqy .

(Here and in what follows, we integrate only scalar densi-
ties over ¥; a fiducial volume element is therefore unnec-

essary.) This requirement fixes the boundary conditions
on P°b:

Pobeyy ~ B3 | P = P%g, ~ 73
(2.6)
[Pab _ %anb] ~ ,.ﬂ—z .

Thus the phase space I'8%° is to consist of smooth fields
(@ab, P°?), where g,p is a positive definite metric on ¥ and
P 3 tensor density of weight 1, satisfying the boundary
conditions (2.4) and (2.6). Since the momenta P®® have
a well-defined action on tangent vectors, it follows that
the gravitational part of the symplectic structure is well
defined.

Let us next consider matter fields. We do not wish to
commit ourselves to specific types of sources; our main
restriction will only be that the matter fields satisfy the
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energy condition Topt®n® > 0, where T,; is the stress-
energy tensor of matter and ¢t* and n® are any future-
directed timelike vector fields. Consequently, the form
of the boundary conditions will now be rather general.
First, we require that the falloff on the fields and their
momenta should be such that the matter part of the sym-
plectic structure is well defined. Second, we demand that
the components of the matter stress-energy tensor Ty
in the Cartesian chart should be O(r#~3). Note that it
is easy to satisfy this last condition and have interest-
ing solutions to the constraints. For example, the mat-
ter sources could have compact spatial support. In this
case, the space-time metric would be flat in a neighbor-
hood of spatial infinity. Nonetheless, in contrast with
the situation in the four-dimensional case where the con-
straints would have forced the initial data to correspond
to Minkowski space-time globally, there is an infinite di-
mensional family of nontrivial solutions to constraints
(e.g., the ones corresponding to cylindrical waves.)

To conclude this section, let us list some consequences
of these conditions which will be needed in the subse-
quent analysis. Equation (2.4) implies that the asymp-
totic behavior of ,/q is given by

Va~rP (2.7)
and that of the Ricci scalar is given by
R~7rP"3 and \/qR~17% . (2.8)

Finally, (2.6) implies that the asymptotic behavior of the
extrinsic curvature is given by

Kp~r2 and K = Kabq“b ~rP3 (2.9)

III. CONSTRAINTS AND THE HAMILTONIAN

Let us begin by recalling the situation in the (3+1)-
dimensional case in the asymptotically flat context. The
phase space has two sets of constraints, a vector C,(x)
and a scalar C(z). To analyze the canonical transfor-
mations they generate, one smears them by shift N*(z)
and lapse N(z) fields to obtain functions Cn(q,p) and
Cn(q,p) on the phase space and computes the corre-
sponding Hamiltonian vector fields, i.e., the infinitesimal
canonical transformations they generate. Now, because
of the falloff conditions [of the (3+1)-dimensional theory]
on the canonical variables, it follows that the constraint
functions fail to be differentiable unless the smearing
fields N and N°® go to zero at infinity. Thus what con-
straints generate are spatial diffeomorphisms and time
evolutions which are asymptotically identity. Assuming
these falloffs on the lapse-shift pairs, one can compute the
Poisson brackets between Cn and Cpy. They constitute
a first-class system. Hence the canonical transformations
they generate should be thought of as a gauge. The
space-time translations, on the other hand, correspond
to lapse-shift pairs which are asymptotically constants.
These do induce canonical transformations on the phase
space, but to obtain their generating functions, one must
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add suitable boundary terms to the smeared versions of
the constraint functions. Consequently, even when the
constraints are satisfied, the generating functions do not
vanish; they are simply reduced to surface terms, the
ADM three-momentum and energy [7]. To summarize,
on the mathematical side, there is a delicate interplay
between the boundary conditions and the differentiabil-
ity of the constraint functions. This in turn gives rise to
a physical distinction between gauge and dynamics. The
former corresponds to spatial diffeomorphisms which are
asymptotically identity and the bubble-time evolutions
which fail to move the Cauchy surfaces at infinity. The
latter correspond to asymptotic space and time transla-
tions. On the constraint surface, the numerical values
of the generators of gauge transformations vanish, while
those of dynamics are given by boundary terms. Thus
there is a clean separation between gauge and dynamics.
(For further details, see, e.g., [19].)

The overall structure is similar in 241 dimensions. In
Sec. IIT A, we will analyze the vector constraint and, in
Sec. IIIB, the scalar constraint. Section IIIC discusses
these results from various angles.

A. Vector constraint

Given a shift N* on ¥, the smeared vector constraint
can be written as

Cn = 2/ d*z N°D.(P°%q4,) + matter terms . (3.1)
b

With our assumptions on the matter fields, the integral
involving matter fields is well defined and will play no
role in the discussion of this section. We will therefore
focus just on the gravitational part, i.e., the first term
on the right-hand side of (3.1), which we will refer to as
C¥°. Using the boundary conditions (2.4) and (2.6) on
gas and P we conclude that Dy(P%q,.) = O(1/r%).
Since the volume element is d?z = r dr d#, it follows that
CE° is well defined (i.e., finite) provided the shift N¢
behaves asymptotically as N® ~ N§(0) + O(1/r). Thus,
as far as the issue of existence of Cg,e ° is concerned, we
can let N° be a vector field which remains asymptotically
bounded with respect to eqp; it does not have to vanish
in the limit.

The question then is that of differentiability of C& ~.
Let us begin with differentiability with respect to P%b.
Let us first write (3.1) as an integral over the interior of
the disk » < Ry, integrate by parts, use Stokes’ theorem,
and then take the limit as Ry — co. We then have

Cy° = lim
Ro—o00

+2 f dorN “Pbcqabac'r] .
r=Ro

[— / d?z(LNgas) P*®

r<Ro
(3.2)
Now the integrand in the surface integral behaves asymp-

totically as Ry '; the surface integral therefore vanishes in
the limit. Hence the expression of the smeared constraint
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reduces to

CEe = / Pa(Lrgas) P . (3.3)
b

The volume integral is now manifestly differentiable with

respect to P%®. We have

SCE°

?—P}:—b = —LNYab , (3.4)
which confirms our expectation that the canonical trans-
formations generated by C§° should correspond to the
diffeomorphisms generated by N© on ¥. Let us now con-
sider differentiability with respect to g,3. For this, let us
again write CR;° of (3.3) as a limit of the integral over a
disk r < Ry, integrate by parts, and use Stokes’ theorem
to obtain

geo __ . 2 ab
Cn' = R}){’-’_Poo [/rSRo d*z gap(LnP*°)

- }{ Rodf N€qay P01 (3.5)
r=Ro

Because of our boundary conditions, the integrand in the
surface term now falls off as Ry %, whence in the limit we
have

Cg‘eo = / dz.’I: qab(ENpab) . (36)
b
Thus C§° is now manifestly differentiable with respect

to gas, .
sCEe

0qab

= LnP*? (3.7)

and the value of the derivative again confirms our ex-
pectation that CR° is the generator of spatial diffeomor-
phisms. For simplicity, in the above discussion, we have
left out matter terms. When they are added, the to-
tal constraint function Cny = C§° + CF**" generates
diffeomorphisms on the entire phase space consisting of
geometrical and matter variables.

We conclude this subsection with two remarks.

(1) While the general structure of the argunient is the
same as the one normally used in 3+1 theories, there is
nonetheless a key difference in the final result. In the 3+1
analysis, the vector constraint generates only those dif-
feomorphisms which are asymptotically identity. These,
in turn, are interpreted as a gauge. In the present case,
we have found that the vector constraints generate dif-
feomorphisms which can remain bounded asymptotically;
the shifts do not have to vanish asymptotically. This
conclusion may seem counterintuitive at first since in the
3+1 theory, space translations on ¥ remain asymptoti-
cally bounded and their generator on the phase space is
the ADM three-momentum [7]. In the present case, on
the other hand, because of the presence of deficit angles
at infinity, asymptotic space translations are not symme-
tries of the theory. That is, unless 8 = 0, the translation
Killing fields of the fiducial e, are not asymptotic Killing
fields of the g4p being considered because of the =B term
in the boundary condition (2.4). The only asymptotic
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symmetries of the class of space-times under considera-
tion are the ones associated with time translation and
spatial rotation. (This observation was made by sev-
eral authors; see, in particular, [14,18]. Note incidentally
that, had we introduced a 6 dependence in the confor-
mal factor relating g5 and eqp, we would not have had
the rotational symmetry.) Thus there is complete con-
sistency: There are neither space translations nor non-
vanishing Hamiltonians associated with asymptotically
bounded diffeomorphisms which could have, potentially,
played the role of a (generalized) ADM two-momentum.

(2) We could have carried out the above analysis for a
shift field N® which is an asymptotic rotational Killing
field, i.e., behaves asymptotically as N® ~ (9/96)* +
N§(6). We would then have found that the surface term
is nonzero, whence CR° would not have been a differen-
tiable function in the phase space I'. Thus the asymp-
totic rotation is not generated by the constraint it does
not correspond to a gauge transformation. Indeed, it
is easy to find the Hamiltonian Jn on the phase space
I" which generates the corresponding canonical transfor-
mation. As in the 3+1 theory, one just has to add to the
constraint functional the appropriate boundary term to
restore differentiability and rescale the result by 1/16xG
to conform to the standard normalization (which comes
from the overall constant in the expression of the action):

1
" 167G

JIN [ / &z q.,b([.NP“b) + matter terms
o

~ glg' f dS.N°P%q,, , (3.8)
where dS. = r 9.r df is the line element on the boundary
that arises in the Stokes’ theorem and it is understood
that the expression is first evaluated on a circle r = R
in the asymptotic region and then the limit Ry — oo is
taken. The last step provides the numerical value of the
angular momentum JN on the constraint surface. Our
boundary conditions ensure that the integral is well de-
fined over the entire phase space I'. As in the 3+1 the-
ory, the surface integral involves only the gravitational
variables; the matter terms enter only through the con-
straints. The expression (3.7) agrees with the formulas
for angular momentum given by Deser, Jackiw, and 't
Hooft [14] and by Henneaux [18].

B. Scalar constraint

The steps in this analysis are the same as in the pre-
vious subsection. However, since the final result is some-
what unexpected, we will provide the relevant details.

Given a lapse function N on X, we can write the
smeared constraint function as

Cn = / dzzN[\/&R—
=
+matter terms
— C?Veo + Cﬁatter .

1

ﬁ (PabPab _ PZ)]

(3.9)

Again, matter terms will play no role in our discussion.
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Now, from (2.8), we see that the “potential term” ,/qR
falls off as r—3, independently of the value of 3, while
(2.4), (2.6), and (2.7) imply that the falloff of the “kinetic
term” does depend on 8: (1/,/q)(P®®Pa, — P?) ~ rf~4,
Hence the integral containing the potential term will ex-
ist only if N/r goes to zero, while that containing the
kinetic term will exist if Nr8~2 goes to zero, in the limit
r — oo. Now an asymptotic time translation corresponds
to N ~ 1+ 0O(1/r). We therefore see that the kinetic in-
tegral will not exist for the N corresponding to time trans-
lations unless 3 is less than 2. Furthermore, the addition
of surface terms cannot improve the situation since the
kinetic terms are purely algebraic in the canonical vari-
ables. From the phase space viewpoint, this, in essence,
will turn out to be the reason why the Hamiltonian is
forced to the bounded from above.

Next, we turn to the analysis of differentiability. It
is straightforward to verify that if we demand that the
lapse go to zero asymptotically as (i) O(1/r) if 3 < 2 and
(ii) O(r=P*1) if B > 2, not only does C%° exist, but it
is also differentiable on the phase space. The canonical
transformations it generates correspond to “bubble-time
evolutions”; the time translation vanishes identically at
infinity. As in the (3+1)-dimensional theory, these corre-
spond to “gauge motions” in the sense that they can be
taken care of by appropriate gauge fixing. (For details
on this interpretation, see, e.g., [19].)

Let us now consider lapse functions which correspond
to time translations, i.e., have the asymptotic behavior
N ~ 14 0(1/r). Using evolution equations of the initial
value formulation, we can formally write an infinitesimal
transformation on the phase space corresponding to this
time translation. Since the evolution equation (for zero
shift) on g, is simply

. 1
dab = 2N Kgp = E(Pab — Pgas) ,

it follows that, if a Hamiltonian is to exist, its kinetic
piece must be the same as that in (3.9). Since this does
not converge for 3 > 2, it follows that on the 8 > 2 part
of the phase space, there is simply no Hamiltonian which
can generate a canonical transformation corresponding to
this evolution. Thus, while one can formally write down
the “evolution equations,” they do not induce canonical
transformations on this part of the phase space. We will
discuss this point in some detail at the end of this section.

From now on, therefore, let us focus on the “physical”
part of the phase space defined by 3 < 2.

Now, if N ~ N, + O(1/r), where N, is a constant,
the functional C%° does exist on the physical part of the
phase space. However, as in the (3+1)-dimensional case,
it is not differentiable. Thus, again, the “evolution equa-
tions” are not generated by the scalar constraints. How-
ever, as in the (3+1)-dimensional theory, this evolution
does correspond to a well-defined canonical transforma-
tion and its generator is obtained by adding a suitable
surface term to the constraint functional. Let us now see
how this arises. It is clear by inspection that the kinetic
integral, being algebraic in the canonical variables, is dif-
ferentiable with respect to both g,; and P?*. Thus we
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can focus just on the potential term. Furthermore, since
this term is independent of momenta, we need only be
concerned with its derivative with respect to the configu-
ration variable go5. Taking the variation of the potential
term, we obtain

5 / d*z N,/qR
=

= / d*z,/q(—DaDyN + D DN qa3)6q°®
P

+ f{ dOVh[Nv, + (DaN)g*®8gsa — D°Nguc|r® ,
Mo (3.10)
where
vq = D% qap — Do(q*40gba)

r? is the unit normal to the circle at spatial infinity, and
V/h is the determinant of the induced metric hgp, on this
circle. [As before, it is understood that the integrals are
first evaluated at a fixed radius where integrations by
parts are carried out and then the radius is made to ap-
proach infinity. Also, in (3.10), we have used the fact that
the Einstein tensor R, — %Rgab vanishes identically in
two dimensions.] The second and third terms in the sur-
face integral, involving derivatives of the lapse function,
vanish identically because of the choice of the boundary
conditions, while the first term can be simplified. The
final result is

) / d*z N\/qR = / d*z\/q(—DaDyN + D.D°Nqa3)8q%®
z =

+5ﬂfd0 Neo . (3.11)
It is the presence of the surface term that spoils the differ-
entiability of C5 °. In the case when N goes to zero, the
surface integral vanishes and —C%° generates canonical
transformations corresponding to the “bubble-time evo-
lution” by an amount dictated by N. Hence we have an
obvious strategy to obtain the generator of the canon-
ical transformation: Subtract the surface integral from
—C%°. This strategy does work, and the Hamiltonian
generating the time translation which is unit at infinity
is given by

27
H=—_t [C,%;” 4 Cpatter _ g }( do} . (3.12)
1]

" 167G

where we again divided by the factor 1/167G to conform
to the standard normalization.

Let us summarize. In the part of the phase space cor-
responding to B > 2, “time translations” do not induce
canonical transformations; there is no Hamiltonian gen-
erating them. In the part with 8 < 2, the Hamiltonian
does exist and is given by (3.12). On physical states,
constraints are satisfied and its numerical value is given
simply by 3/8G. Together, these results lead us to the
conclusion that the Hamiltonian is bounded from above,

H < 1/4G.
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C. Discussion

(1) The result that the Hamiltonian is bounded from
above is quite unsettling at first. Let us therefore probe
it from various angles.

In certain Bianchi type-II models, although the space-
time picture and the initial value formulation are per-
fectly well defined, the standard ADM-type Hamiltonian
formulation fails to exist (see, e.g., [20]), and as of now,
one does not have viable replacements. Is the situation
similar here? That is, does the main result of this sec-
tion have to do only with the Hamiltonian framework or
does something strange happen at 3 = 2 also from the
viewpoint of space-time geometry? Let us begin with the
point particle example [14] discussed in the beginning of
Sec. II. For 8 < 2, there is a conical singularity at the ori-
gin. At § = 2, on the other hand, the cone simply opens
up to become a cylinder and the distinction between the
origin and infinity is blurred. For 8 > 2, the old ori-
gin becomes the point at infinity and the particle can be
thought of as residing at the old point at infinity. Thus
something strange does happen to the geometry. How-
ever, in our case, there are only smooth matter sources,
and in particular, there are no conical singularities or
even preferred points on ¥. Therefore the point particle
picture can only be taken as an indication.

This indication is correct. Something remarkable does
happen to the spatial geometry at 8 = 2 even in the
smooth case. For 3 < 2, the points » = oo are, as one
would expect, at an infinite proper distance from any
point in the interior. Indeed, assuming that the mat-
ter sources have compact support, one can calculate the
geodesic distance from any point in the asymptotic re-
gion to a point at infinity and find that it diverges as a
power of 7. For 8 = 2, the divergence is logarithmic. For
B > 2, there is no divergence; the points r = co are at
a finite distance with respect to any point on . Thus,
for B > 2, space simply “curls up” and there is no re-
semblance to asymptotic flatness. Note, however, that &
is not compactified; the two-metric g,; does not extend
to “the point at infinity” in a smooth manner. ¥ is still
noncompact, but it is geodesically incomplete; there is,
effectively, a singularity at “the point at infinity.”

Indeed, it is not clear if there are any physically admis-
sible solutions to the constraints on the Cauchy surface
Y when 8 > 2. The simplest case would be to con-
sider matter fields in the (2+1)-dimensional theory which
arise from the symmetry reduction of (3+1)-dimensional
cylindrically symmetric space-times. In this case, global
analysis has recently been carried out, without requir-
ing that the two Killing fields be hypersurface orthogo-
nal [21]. It was found that asymptotically flat solutions
to constraints exist only if 0 < # < 2. This may seem
surprising at first since one might expect the energy to
grow unboundedly as one keeps scaling the matter fields
by a constant. However, as one “tunes up” the matter
fields, as a result of the curling up of X, the effective
gravitational “potential energy” also goes up such that
B remains bounded below 2. (This point is discussed
further in Sec. V.)

Even if one assumes that physically reasonable solu-
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tions with 8 > 2 exist to the constraint equations, at
least on heuristic grounds it would appear that, as a re-
sult of the effective singularity at the point at infinity,
difficulties should arise witl finite evolution. Given any
€ > 0, one would expect under the evolution by proper
time € that singularities would appear in the neighbor-
hood of the point at infinity of radius € since “the past
light cones of points in this neighborhood would contain
the singular point at infinity.”

Thus it is reasonable to expect that the difficulties we
encountered at 3 = 2 are not artifacts of the Hamiltonian
fornmlation. These points of the phase space are patho-
logical also from the viewpoint of space-time geometry.

(2) Let us restrict ourselves to the part of the phase
space where 3 < 2. It is easy to check that the Hamil-
tonian H and the angular momentum J have vanishing
Poisson brackets with all the constraints. Hence they are
gauge invariant; they are observables of the theory in the
sense of Dirac [22]. Since H and J are differentiable func-
tions on the (restricted) phase space, one can take their
Poisson brackets. It vanishes, reflecting the fact that the
time translation and the rotation symmetries commute.
Thus the overall picture is internally consistent and the
situation is completely analogous to that in the 3+1 the-
ory.

(3) The surface term which provides the numerical
value of the Hamiltonian on the constraint surface agrees
with that of Deser, Jackiw, and 't Hooft [14] and of Hen-
neaux [18]. As was pointed out by Henneaux, in two-
dimensions, the Ricci scalar is a pure divergence and
therefore can be expressed as a surface term which, apart
from an overall constant, coincides with the surface term
in the Hamiltonian. Note, however, that the Hamilto-
nian is not given by the integral of the Ricci scalar; in-
deed, as we saw above, this term is not even differentiable
with respect to g,;. Thus, to obtain the correct evolu-
tion even at points of the constraint surface, we must
use the full Hamiltonian given in (3.12). Finally, after
this work was completed, it was pointed out to us that
a number of authors had noted that in special contexts,
such as cylindrical symmetry [21], time symmetric initial
data or cosmic strings [23], etc., the deficit angle at infin-
ity is bounded both from above and below. However, the
generality of the result and especially its relation to the
boundedness of the Hamiltonian generating time trans-
lations in a proper phase space formulation were not an-
alyzed in these references.

IV. POSITIVITY OF ENERGY

In the previous section we saw that the Haniiltonian
is bounded from above. We now wish to show that it is
also bounded below; when the constraints are satisfied
with matter fields satisfying our energy condition, the
Hamiltonian is non-negative and vanishes if and only if
the matter fields vanish and the initial data is that of
Minkowski space. Under certain restrictive assumptions,
positivity was established by a number of authors. For
example, if one restricts oneself to matter fields that arise
from a symmetry reduction of (3+1)-dimensional cylin-
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drically symmetric space-times, a theorem due to Berger
et al. [21] ensures that 8 > 0 and vanishes if and only if
we are in Minkowski space. Similarly, Henneaux [18] has
observed that since the surface integral in the expres-
sion of the Hamiltonian is proportional to the integral
J dza:\/(}R, it is straightforward to establish positivity of
the Hamiltonian on a K = 0 surface. Here we will use
techniques similar to those introduced by Witten [17] in
the 3+1 theory to establish positivity without such re-
strictions.

In the first part of this section, we recall basic facts
about SU(1,1) spinors and, in the second part, establish
the main result.

A. SU(1,1) spinors

Since the reader is likely to be more familiar with SU(2)
spinors than SU(1,1), we will adopt conventions that are
geared to the SU(2) case.

Let us begin by recalling the elements of spinor al-
gebra. Let S denote a two-dimensional complex vector
space and let a4, 8P, ... denote its elements. These will
be called (one index) spinors. Let us fix a second-rank
nonzero tensor €48 over S and denote its inverse by € 4p;
thus e4c€®¢ = §5. Following the Penrose-Rindler [24]
convention, we will raise and lower the spinor indices us-
ing these tensors: aesp = ap and e4Bag = o4, Next,
we introduce a Hermitian conjugation operation (1) on S
satisfying

(a® + kg4 = (o)A + E(BH)*
(4.1)

(@) = —a*, atay >0,

where k is any complex number and the equality in the
last condition holds if and only if a4 = 0. We then
extend this operation to spinors of arbitrary rank by de-
manding that

P... C---D HtP---
(") ap = ean and (o884 %) = IC P8I R -
(4.2)

(For details, see, e.g., [25], Chap. 5.)

We can now consider the space V of trace-free Hermi-
tian, second-rank spinors a4 B. V is a three-dimensional
real vector space, equipped with a natural positive-
definite inner product: (a,8) := —as BBp4 = —traf.
To define SU(2) spinor fields on a three-dimensional Rie-
mannian manifold, one sets up a metric preserving iso-
morphism between V and the tangent space at each point
of the manifold. In our case, the space-time manifold
M is equipped with a metric of signature — + + and
hence a “Wick rotation” is required. To accomplish this,
choose a spinor n,p satisfying nLB = —nap, nad =0,
and trn - n = 1. Denote the one-dimensional real sub-
space spanned by the real multiples of n4B by N and
the two-dimensional real subspace of Hermitian spinors
a4 B, which is orthogonal to nap (so tran = 0), by V,
and let V' = N@® V. Then V' is a real three-dimensional
vector space, equipped with a natural metric of signature
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— + +. To define SU(1,1) spinor fields, one then has to
fix a metric preserving isomorphism, or, soldering form,
eAB between V' and the tangent space at each point M.

Since we are interested in the canonical framework,
however, we will need a slightly weaker structure. Let
us fix a foliation of M by spacelike two-manifolds ¥ and
denote by n® the vector field which is unity, future point-
ing, and everywhere orthogonal to X. Let us assume
that e, 4B is so chosen that it maps n® to n4B. Set
E,AB = ¢,4B 4 n,n4B, Then E,4 B solders the two-
dimensional real tangent space at any point of ¥ to the
vector space V of trace-free Hermitian spinors which are
orthogonal to nap. In particular, therefore, the two-
metric gqp on X is given by qup = —trE,E,. For future
use, we note the following algebraic properties of the X-
soldering forms E,4F, which will be useful in the next
subsection:

1
FEq.a CEbC B _ —%qabéf + ﬁeabnA B s (4.3)
7
E 4 c’nC B = '\"/_iema aA B ) (44)

where €, is the alternating tensor on ¥ compatible with
gab- This completes the discussion of spinor algebra.

We can now introduce the basic notions of spinor calcu-
lus. First, it is straightforward to establish that ¥ admits
a unique derivative operator D (which acts on both the
spinor and the tensor indices) which is compatible with
the given E,4 B: The equation

0=DoEpa® = 0,Epa B 4+ [Ta, Ep)a® —TSEa B
(4.5)

determines the Christoffel symbols I',3 © and the spin con-
nection I'y4 B uniquely. A particularly convenient con-
nection A,4 © on spinors is obtained by adding to the
spin connection a suitable multiple of the extrinsic cur-
vature K 4 B := KabEftB:

K. 2.

GAaA B = FaA B_ (4.6)

V2
In the (2+1)-dimensional theory, A,4 & will play essen-
tially the same role as that played by the Sen connection
in (3+1)-dimensional general relativity. We will therefore
refer to it as the Sen connection also in the present case.
Denote by D the derivative operator on spinors defined
by the Sen connection: Dgay := 8,04 + GAgs Bagp.
Then we have the two useful properties

(Daca)t =: Diat 4 = Daal 4 +ivV2K,.4 Bal 5,
(4.7)

D,ES8 =0,

where, in the second equation, we have used the fact
that Kgp is symmetric and Kgn® = 0. Finally, as in
the (3+1)-dimensional theory, the constraints can be ex-
pressed succinctly in terms of the curvature of the Sen
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connection. We have

trE®F,p = 4V2niGT,un® and trE®E®F,, = 87GT,en’nb.

(4.8)
B. Positivity of the Hamiltonian
With the machinery of SU(1,1) spinors at hand, we are

now ready to prove the positive energy theorem. The be-
J
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ginning of the argument is the same as in the 3+1 theory.
However, because of the difference in the boundary con-
ditions, there is a departure from the (3+1)-dimensional
procedure at an intermediate stage, and unlike in the
(3+1)-dimensional case, the proof is now by contradic-
tion.

Let us begin with the analogue of the (3+1)-
dimensional Witten identity [17]. For any spinor field
A4 on X, we have

(ELAD)(ES BD.)Ap = —1D1DoAp + ESAEL PD, Dy

(2
= —1D"D\p — —4ﬁ€°bFab EFpngrAp + 1€ F 0 PFE™ premn ED 424

where, in the last step, we have used (4.3) and (4.8).
Now let us choose for the spinor field A\p a solution to
the analogue of the (3+1)-dimensional Witten equation:

E$BD,Ap =0, (4.10)

so that the left-hand side of the Witten identity (4.9)
vanishes. Then, if we multiply both sides by AtD| inte-
grate over the disk r < Ry, and use Stokes’ theorem to
simplify the first term on the right-hand side, we obtain

]( dOVRr* (AP DyAp)
r=Ro

- / ., “aVaA(DAP)(DAp)

+47G / d®z\/qTesn®(Nn® + N°) , (4.11)
r<Ro

where

N=(NPAp and N* =iv2E" 4B 0L . (412)
It is straightforward to verify that (N° is real and) N° +
Nn? is timelike.

The idea now is to take the limit of this equation as
Ry — oo. For this, we need a control over the asymp-
totic behavior of the solution A 4 to (4.10). In the proof of
the (3+1)-dimensional positive energy theorem, one sim-
ply requires A4 to asymptotically approach a constant
spinor. In the present case, however, a more subtle choice
is necessary because of the difference in the asymptotic
conditions on the metric and extrinsic curvature. For-
tunately, the analysis is simplified because Eq. (4.10)
is again conformally invariant [with, however, a confor-
mal weight for A4 which is different from the one of the
(3+1)-dimensional theory]: A4 solves (4.10) with respect
to (gab, Ko B) if and only if $=1/2) 4 solves (4.10) with
respect 1o (¢%qqp, Koa B) for any smooth, positive func-
tion ¢ on X.

In view of the boundary condition (2.4) on the metric
qab, let us consider Gop = 7Pqq (and set Koy B = K, B),
Then ap ~ €ap + O(1/r) [and Kog B ~ O(r—2+8/2)).

—1D1D,Ap + 47G(Tapn®n®Ap — iV2ER AN g Tupn®) |

(4.9)

—

Therefore, for the pair (tjab,f{,,A B), we can apply ar-
guments which are completely parallel to the ones used
in the (3+1)-dimensional theory (see, e.g., [26], Sec. 3).
The conclusion is the following: Given a spinor field A%
in the asymptotic region of ¥, which is constant with re-
spect to the connection D° defined by (an °E,4 B com-
patible with) egp, there is a unique solution 4 to (4.10)
with respect to (qa,,,K’., 4 B) with the asymptotic behav-
ior Agq ~ A% + O(1/r). Using the conformal invariance
of (4.10), we therefore conclude that there is a unique
solution A4 to (4.10) with respect to (gas, Kaa Z), with
the asymptotic falloff A4 ~ rP/4)9 + O(1/r).

We can now return to (4.11) and the main argument.
Let us suppose that 3 < 0. Then, not only do the limits
of all integrals in (4.11) exist, but the surface term goes to
zero. Therefore, for § < 0, the sum of the volume terms is
zero. However, the first of these terms is manifestly non-
negative and our energy condition is precisely that the
integrand of the second term is also non-negative. Hence
each must vanish in the limit Ry — oo. The vanishing
of the first term implies D,A 4 = 0 everywhere on ¥. As
in the 3+1 theory, (4.10) admits two solutions which are
linearly independent almost everywhere on . The avail-
ability of two independent spinors which are constant
with respect to D implies that the curvature F,p4 B of
D must vanish, which in turn implies that the matter
terms must vanish and that the initial data are that for
Minkowski space. Thus, if 3 < 0, we must have § = 0:
for 3 < 0, there are no (globally well-defined) solutions
to the constraints satisfying the asymptotic conditions if
the matter fields are to obey our energy condition. Thus
we have established the desired result.

As we indicated above, the final argument is somewhat
different from that in the (3+1)-dimensional theory. In
particular, we do not have a manifestly positive expres-
sion for energy in the case B > 0; both the surface and
volume integrals in (4.11) diverge in that case.

V. CONCLUSION

In the last three sections, we analyzed the Hamilto-
nian formulation of general relativity coupled to mat-
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ter in 2+1 dimensions in the asymptotically flat context.
The analysis we presented can also be carried out in the
connection-dynamics framework, which is in fact simpler
in 241 dimensions since all canonical variables can be
taken to be real [25]. Furthermore, the proof of the posi-
tive energy theorem would have been more direct in that
framework. However, since some of the results are rather
unexpected, we chose to present the material in the more
familiar geometrodynamical language to emphasize the
fact that they are not artifacts of connection dynamics.

We saw that the Hamiltonian framework differs from
that in 341 dimensions in a number of important re-
spects. First, the boundary conditions on the geomet-
rical fields are such that, while we can fix an Euclidean
metric eqp near infinity, if the mass in the space-time is
nonzero, the physical two-metrics g4, do not approach it
even asymptotically. The two are related by a conformal
factor r—#, which goes to zero or diverges at infinity de-
pending on the sign of 3. Therefore the construction of
the Hamiltonian framework is somewhat more involved.
In particular, the asymptotic symmetry group is just the
two-dimensional Abelian group of time translation and
spatial rotation.

We carried out a detailed analysis of constraints of
the theory and found that their role is somewhat dif-
ferent from that in the 3+1 theory. The smeared vec-
tor constraint is differentiable on the phase space even
when the smearing shift field N remains asymptotically
bounded, i.e., even when N® ~ N§(6) + O(1/r). Thus
the diffeomorphisms generated by all such shifts N¢ are
to be regarded as a gauge in the 2+1 theory. In the 3+1
case, by contrast, only the diffeomorphisms generated by
shifts which vanish asymptotically that are regarded as a
gauge; the generators of asymptotically constant vector
fields are the ADM three-momenta. In the present case,
there is no conserved quantity analogous to the three-
momentum, in agreement with the fact that the asymp-
totic symmetry group does not admit space translations.
Spatial rotations, on the other hand, are not generated
by constraints since their falloff is given by N¢ ~ r. They
do induce canonical transformations on the phase space
whose generating function can be obtained by adding a
surface term to the constraint functional. The genera-
tor is the angular momentum. Thus, when we are “on
shell,” angular momentum is given by a surface integral
at infinity.

In the case of the scalar constraint, we found that the
differentiability requirement forces the lapse to go to zero
at infinity at a rate that depends on 8. Thus, to obtain
a constraint function which is differentiable on the en-
tire phase space, the lapse has to vanish faster than any
inverse power of r. A more significant surprise is that,
if we ask that the lapse be asymptotically constant, say,
N =1+ O(1/r) so that it corresponds to an unit time
translation at infinity, the resulting infinitesimal motion
on the phase space, although formally defined, fails to
be a canonical transformation unless 3 < 2. Thus the
Hamiltonian framework simply fails to exist if 3 > 2. [In
retrospect, therefore, without loss of generality, we could
have added the requirement 8 < 2 in the boundary condi-
tion (2.4), i.e., in the very construction of the configura-
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tion space C8°.] We then focused on the “physical part”
of the phase space where 3 < 2 and computed the Hamil-
tonian generating the unit time translation. We found
that it can be obtained by adding a surface terms to the
smeared constraint. The value of the surface term is sim-
ply B/8G. Thus, on the physically relevant phase space,
when the constraints are satisfied, the numerical value
of the Hamiltonian is bounded from above by 1/4G. Fi-
nally, using SU(1,1) spinors, we analyzed the issue of the
lower bound. Using an argument along the lines given by
Witten [17] in the (3+1)-dimensional theory, we showed,
if the matter fields satisfy a local energy condition, 3, and
hence the value of the Hamiltonian on physical states, is
necessarily non-negative, vanishing if and only if space-
time is globally Minkowskian. Thus, on physical states,
the Haniiltonian is bounded by 0 < H < 1/4G.

We will now discuss the implications of these results
to general relativity in 3+1 dimensions.

As we recalled in Sec. I, (3+1)-dimensional vacuum
general relativity in the presence of a spacelike Killing
field is equivalent to (2+1)-dimensional general relativity
coupled to certain scalar fields [11] (which satisfy our en-
ergy condition). If the spatial Killing field in the (3+1)-
dimensional theory is translational, the induced geome-
try in 241 dimensions can be expected to be asymptoti-
cally flat. An exhaustive analysis of such space-times was
carried out recently under the assumption that there is an
additional axial Killing field, and it was shown, in partic-
ular, that there exists a large class of examples in which
the scalar fields have spatially compact support [21]. In
all these cases, we can use our expression of the Hamilto-
nian to represent the energy per unit length (along trans-
lational isometry) in (3+1)-dimensional gravity waves.
In particular, contrary to what one might have initially
expected, this energy is bounded from above.

For concreteness and simplicity, let us restrict our de-
tailed discussion to cylindrical waves [4-6] where both
8/0z and 8/86 Killing fields are hypersurface orthogonal.
In the (2+1)-dimensional picture, these space-times cor-
respond to gravity coupled to a single scalar field, where
the scalar field and, well, the geometry have an additional
rotational symmetry. In this case, one can go to coordi-
nates t,r,0 with —oo <t < 00,0 <r < 00,0< 0 < 2m,
in which the space-time metric takes the form

ds? = T (—dt? + dr?) + r2df? , (5.1)

where the coefficient I is completely determined by the
scalar field ® via

L(r,t) = ;A dr' v'[(8: @)% + (6 ®)?] , (5.2)
the integration being performed on a t =const slice. The
scalar field ® satisfies the wave equation with respect to
the space-time metric (5.1). However, as remarked in
Sec. I, because of axisymmetry, this is equivalent to the
condition that it satisfy the wave equation with respect
to the globally Minkowskian metric, obtained by setting
T'(r,t) =0, i.e., with respect to

dS2 = —dt? + dr? + r2d6® . (5.3)
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Because of this, the problem decouples: One can first
solve for the scalar field  on the Minkowski space (5.3),
construct T from @ using (5.2), and just write down the
resulting metric (5.1) to obtain a solution to the com-
bined Einstein—scalar-field equations. (A similar decou-
pling occurs also when the Killing fields are not hyper-
surface orthogonal.) '

Thorne’s ¢ energy [7] is easy to express in this frame-
work: Apart from an overall constant, it is just the con-
served energy associated with ® propagating on the flat
metric (5.2),

oo
ci= 1 / r dr[(8,8) + (8,)7] , (5.4)
o

which, however, is to be interpreted as the energy asso-
ciated with the coupled system, consisting of gravity and
the scalar field. It is obvious that the c energy is non-
negative, vanishes if and only if & = 0, and dS? is the flat
Minkowskian metric dS2, and that, even if one restricts
oneself to scalar fields with compact spatial support, it
is unbounded from above.

Let us compare it with our Hamiltonian. For the met-
ric (5.1), the value of the Hamiltonian reduces to

1 —4Gc

H= y G(l e ).
Thus the relation is nonpolynomial. However, H is a
monotonic function of ¢; both attain the value zero, their
minimum, simultaneously, and as c tends to infinity, H
tends to its upper bound 1/4G. In the weak field limit,
where the field ® and hence the c energy can be taken to
be small compared to 1/G, the two agree. However, as
one scales up ®, space “curls up” and the “gravitational
contribution” to the energy becomes significant. The to-
tal energy then is quite different from the c energy. Note
also that the boundedness of the Hamiltonian is a gen-
uinely nonperturbative result. Indeed, if we expand out
the exponent, we obtain a power series in G:

(5.5)

H=c—2Gcz+§G2c3+--- , (5.6)
where the individual terms, being proportional to the
powers of ¢, are all unbounded. One can take the c en-
ergy as a function on the (gauge-fixed) phase space and
ask for the canonical transformation it generates. Since
it is a function only of H, one would expect it also to
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correspond to a time evolution for some lapse. This ex-
pectation is correct. The lapse is simply N = exp(T'/2),
which tends asymptotically to exp(4c). Thus, while the
lapse corresponding to the Hamiltonian H is asymptoti-
cally identity (by the very definition of the Hamiltonian),
that corresponding to c is not; even its asymptotic value
is a “g number”—it depends on the phase space variables.
Furthermore, as we approach the bound 3 = 2, the lapse
corresponding to the c energy diverges. Within symplec-
tic geometry, this is the origin of the unboundedness of
the c energy. Note also that H is defined more gener-
ally, e.g., in the case when the four-geometry has only
one (space-translational) Killing field which is not neces-
sarily hypersurface orthogonal. Finally, the example of
cylindrical waves brings out the fact that although the
Hamiltonian is bounded, there is nothing unusual about
time; it is not cyclic. This is because the points at which
H = 0 and 1/4G are not identified; they correspond to
entirely different geometries.

Let us briefly compare our results with those obtained
in the twistorial approach to “quasilocal” quantities [27].
Cylindrical waves have been analyzed by Tod (28] in this
framework. He found that in the limit appropriate to
obtaining the total ADM-like energy per unit length, the
prescription of [27] yields twice the c energy and is thus
nonpolynomially related to our Hamiltonian. This is per-
haps not surprising because it is known that the results of
[27] are not always in agreement with those obtained by
Hamiltonian methods. Quasilocal expressions which are
geared to Hamiltonian methods were proposed in [29].
It would be interesting to evaluate them for cylindrical
waves and compare the result with the one obtained here.

Finally, in this paper we have restricted ourselves to
the behavior of the (2+1)-dimensional gravitational field
at spatial infinity. A similar analysis can be carried out
also at null infinity and again leads to some result which
are surprising from a (3+1)-dimensional perspective [30].
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