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Periodic solutions of the Einstein equations for binary systems
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Solutions of the Einstein equations which are periodic and have standing gravitational waves, in
the weak-field zone, are valuable approximations to more physically realistic solutions with outgoing
waves. A variational principle for the periodic solutions is found which has the power to provide, for
binary systems with weak gravitational radiation, an accurate estimate of the relationship between
the mass and angular momentum of the system, the masses and angular momenta of the components,
the rotational &equency of the &arne of reference in which the system is periodic, the &equency
of the periodicity of the system, and the amplitude and phase of each multipole component of
gravitational radiation. Examination of the boundary terms of the variational principle leads to
definitions of the efFective mass and efFective angular momentum of a periodic geometry which
capture the concepts of mass and angular momentum of the source alone with no contribution &om
the gravitational radiation. These efFective quantities are surface integrals in the weak-field zone
which are independent of the surface over which they are evaluated, through second order in the
deviations of the metric &om Sat space. The variational principle provides a powerful method to
examine the evolution of, say, a binary black hole system &om the time when the holes are far apart,
through the stage of slow evolution caused by gravitational radiation reaction, up until the moment
when the radiation reaction time scale, is comparable to the dynamical time scale.

PACS number(s): 04.20.Fy, 04.30.Db, 95.30.Sf, 97.60.—s

I. INTRODUCTION

The Difficulti associated with the study of solutions
of the Einstein equations are well known. However, a
number of specialized techniques have been developed
which allow analyses in rather narrow circumstances. For
example, the post-Newtonian approximation yields rela-
tivistic corrections for systems which are restricted to
slow speeds and weak gravitational fields. Or symmet-
ric geometries with two or three Killing vectors allow
for study of Kerr or Schwarzschild black holes and both
rotating and nonrotating neutron star models. A partic-
ularly &uitful technique involves the perturbation analy-
sis of analytically known solutions —perturbations of Bat
space comprise linearized gravity [1]; the perturbations
of spherically symmetric geometries are used to study the
emission of radiation from test particles orbiting a black
hole and the quasinormal oscillations of black holes [2]
and neutron stars [3].

This paper presents a new restriction of the Einstein
equations which is sufBciently limiting that analysis can
proceed and yet suKciently general to encompass a wide
variety of interesting applications. Interest focuses on
those solutions of the Einstein equations which allow a
coordinate system in which the geometry is periodic in
time inside a bounded region of space-time. Such a ge-
ometry might have strong fields, gravitational waves, and
high speeds; and it might involve black holes or neutron
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stars.
In quantum mechanics the physically realistic solutions

of the Schrodinger equation with, say, an incoming wave
packet being scattered into an outgoing wave packet are
constructed &om a linear combination of the periodic
solutions which contain standing waves. Thus, the scat-
tering problem is reduced to the analysis of periodic so-
lutions.

In general relativity the nonlinearity of the Einstein
equations intrudes on using this same idea of constructing
physically interesting solutions &om the periodic ones.
But with care and some limitations, the basic process
still provides an avenue toward otherwise unapproachable
physical systems.

Periodic solutions of the Einstein equations with radi-
ation are not asymptotically Bat [4]—this is not surpris-
ing: In the weak-field zone, where the linearized Einstein
equations give an approximate description of the gravi-
tational field, the mass density of standing waves falls oK
as r 2. Thus, the contribution of radiation to the mass
content inside a radius r grows linearly with r; and the
linearized Einstein equations cannot give an accurate de-
scription of the gravitational field out to either spatial
or null infinity. But this is not a critical limitation to
periodic geometries.

In this paper much attention is focused on the "weak-
field zone" —a region of space-time, surrounding a fully
relativistic source, throughout which the linearized Ein-
stein equations give an accurate description of the grav-
itational field. A further requirement which we impose
upon our use of the weak-field zone is that its total en-
ergy content in gravitational waves be much less than
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the mass of the source. Thus the w'eak-field zone is re-
stricted to a region where the nonlinear eHects of the
radiation are small. For modeling realistic binary sys-
tems the boundary of our region of interest is always
within the weak-field zone. Thus, for periodic geometries
use consider only a bounded region of space, and describe
and impose boundary conditions mell auiay from spatial
or null infinity, which might not even exist for some con-
tinuations past the boundary of a periodic geometry.

For a periodic example, consider the binary pulsar-
the neutron stars thexnselves are relativistic, collapsed
objects, and the system has an orbital period of a bit
less than 8 h and a total mass of about 3Mo. A re-
gion bounded at a distance of 1 light month contains
approximately 200 wavelengths of quadrupole radiation
from the source; m/r 10 ii; the approximate energy
content in the gravitational waves out to this distance is
10 Mo, and the approximate binding energy of the
system is Gm /R 7 x 10 Mo. The true, physi-
cal system has outgoing radiation near the boundary,
and the orbit decays as a consequence. But a similar
bounded, periodic, exact solution to the Einstein equa-
tions could be constructed &om this physically realistic
one by sending gravitational radiation inward &om the
boundary with amplitude and phase chosen to keep the
system &om evolving. The nature of the periodic geom-
etry outside the boundary need not be considered. How-
ever, if the periodic geometry were extended outward to
a distance of about 10 light years, then the energy of
the radiation would dominate that of the source; and,
even at linearized order and with ignorance of the time
evolution, the periodic geometry would no longer resem-
ble the physically realistic one. For this system, only at
such a large distance does the lack of asymptotic Hatness
of the periodic geometry intrude upon the analysis.

A second example is provided by a test particle of small
mass p, close to the innermost stable circular orbit about
a black hole of mass M with p « M. A perturbation
analysis shows that the test particle nearly moves along a
geodesic; the secular corrections are &om radiation reac-
tion effects at order (p/M)~. The physically reasonable
solution to this system involves only outgoing radiation.
But a corresponding exact periodic solution can be con-
structed by dexnanding standing wave boundary condi-
tions at a large but finite distance Rom the black hole.
The energy density of the gravitational waves at a dis-
tance r is proportional to (y/Mr)2 As long as th. e radius
r of the boundary is large enough that r &) M but small
enough that r(IJ, /M)2 « M, then the energy content
of the radiation will be dwarfed by the mass of the black
hole, and the boundary will still be in the weak-6eld zone.

These periodic solutions of the Einstein equations
are interesting, involve strong gravitational fields, high
speeds, are not asyxnptotically Hat, and cannot be de-
scribed by the linearized Einstein equations except in
the weak-field zone. These are typical of the solutions
of interest in this paper.

The relationship between periodic geometries and
physically realistic ones with outgoing waves was care-
fully considered in paper I [5]. There it was shown that
a specific linear combination of similar periodic geome-

tries, of cMering &equencies with each geometry contain-
ing only standing waves in the weak-field zone, was an
approximation to an exact solution of the Einstein equa-
tions with outgoing waves. Similar methods were first
used in the context of general relativity by Thorne [6]
who analyzed perturbations of neutron star models.

The error in this approxixnation was also carefully an-

alyzed in paper I. When the eH'ect of radiation reaction is

weak, the linear combination is sharply peaked at a res-
onant frequency. And some physical quantity, describing
an aspect of the linear combination of metrics, difkrs
f'rom the corresponding quantity for the exact outgoing-
wave metric by an axnount comparable to its change in
one cycle due to the eH'ects of radiation reaction. Thus,
a resonant periodic solution alone accurately models an
outgoing-wave solution as long as the radiation reaction
time scale is much longer than the dynamical time scale.
And the error in the linear combination is inversely pro-
portional to the ratio of these two time scales; this is
also proportional to the ratio of the &equency width of
the linear combination to the resonant f]L.equency.

Relativistic binary systems are, perhaps, the most in-

teresting of the systems which can be approximated in
this way. In particular the gravitational wave luminos-

ity and the location of the innermost stable orbit in a
relativistic, binary system can be studied. Other phe-
nomena of interest which are approachable via periodic
geometries include axisymmetric, rapidly rotating neu-

tron star models, and quasinormal oscillations of black
holes or neutron stars. However, even in circumstances
when radiation reaction forces are strong and evolution is

normally rapid, the periodic solutions are still interesting
in their own right —after all they are solutions of the Ein-
stein equations with generally strong gravitational 6elds
and gravitational radiation.

Thus far the two most useful methods of studying rel-
ativistic binaries are the post-Newtonian approximation
and the test particle approximation. In both of these ap-
proaches the eEects of radiation reaction are ignored at
the 6rst order of a small quantity, and the consequent or-

bits studied are conservative and periodic. The periodic
assumption includes both of these approaches as special
cases and is, therefore, of more general validity.

Paper I contains a variational principle restricted to
time independent geometries; in this paper the varia-
tional principle is generalized to include periodic geome-
tries. The generalization reveals the role of gravitational
radiation more clearly and substantially simpli6es the
treatment of the radiative boundary terms in the weak-

field zone. Also, in paper I the boundary terms had to
be evaluated in the local wave zone; in this paper it is

necessary to go out only to the weak-6eld zone where the
geometry is accurately approximated by the linearized
Einstein equations —for the Sun-Earth system this is the
difference between going out to Alpha Centauri for the
local wave zone and out to the orbit of Jupiter for the
weak-field zone. And given an approximate periodic ge-

ometry, which divers from an exact solution to the Ein-
stein equations by order b, the variational principle has
the power to yield accurate estixnates, with an error of
order b, of all the interesting quantities which describe
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the geometry, except the actual metric itself. These ac-
curately estimated quantities include the eHective mass
and angular moment»m of the total system as well as
its individual components, the &equency of periodicity,
the angular frequency of rotation, and the amplitudes
and phases of the gravitational radiation in a multipole
decomposition.

The quantity being extremized in the variational prin-
ciple is called the effective mass of the system. It is de-
fined as a surface integral in the weak-field zone, and
has the interesting property of being independent of the
actual surface chosen for the integral, through terms of
second order in the deviation of the metric &om Hat space
as long as the surface is in the weak-Beld zone. In par-
ticular, the efFective mass does not include the mass con-
tent of the standing gravitational waves, which diverges
and keeps the geometry &om being asymptotically Bat.
And a second surface integral, involved in the variational
principle, defines the effective angular momentum in a
similar manner which also does not include a divergent
contribution &om the standing gravitational waves.

Section II first reviews the 3+1 formalism of gen-
eral relativity and, then, reviews and modestly modi-
fies Thorne's [1]unique notation for symmetric-trace-free
tensors, outlines his general solution of the linearized Ein-
stein equations, and transforms to a gauge more suitable
for present purposes. Previous familiarity with Thorne's
notation greatly facilitates the reading of this paper. Sec-
tion III gives a variational principle for a generic, periodic
solution to the Einstein equations. The actual quantity
being extremized is closely related to the quasilocal en-
ergy as developed by Brown and York [7], and the appro-
priate boundary conditions for the variational principle
include the specification of the three-metric on the sides
of the bounded region of space-time under consideration.
In Sec. IV the variational principle is modified for the
special case that the boundary is in the weak-field zone,
and the boundary integrals are rewritten in terms of the
amplitude and phase of the gravitational waves of dHFer-
ent multipoles. The variational principle leads to formal
definitions of the effective mass and efFective angular mo-
ment»m of a periodic geometry. Some of the complicated
analyses are described in the Appendix.

with a metric p s [8]:

g gdz dz = N—dt +p s(dz +N dt)(dz +N dt).

(1)

g~s
—= 2NK—~g+ 2D(~Ng) = Cgp~g,

where l:t is the Lie derivative with respect to the time
translation vector, t 8/8z—:8/8t, which points in the
direction of increasing t with all spatial coordinates held
fixed. In the Hamiltonian formulation of general relativ-
ity [9], the momentum conjugate to p s is x s/16m where

~/~ (K~b
cg )

and p is the determinant of p b.
The constraint equations on a given hypersurface are

restrictions on p b and m b &om the Einstein equations.
These are the Hamiltonian constraint

JV= R+7 (2m xs —m 7t s) = 16xp

and the momentum constraint

N = D,(~"/&'~—') = -S~~,

where p is the energy density and j is the momentum
density of the stress energy of matter,

p
—N2Ttt

a N abT t

(6)

The quantity N is the lapse function, and N is the shift
vector. The three-dimensional metric has a derivative
operator D and Ricci tensor R b.

The extrinsic curvature K b of the hypersurface is de-
fined &om

II. BACKGROUND AND NOTATION

A. Initial value formalism
and dynamics of general relativity

A four-dimensional space-time with a metric g b may
be foliated into spacelike hypersurfaces of constant t,

I

and the spatial part of the stress-energy tensor,

c d
Sob = Pe Pb Tcd~

is used below.
The dynamical part of the Einstein equations gives

P-~= N '~'~ R' — &'R ~+ N&-( 1 ) 1 ( 1

)
(—2N~-'~'

~

~-~.' ——~ ~'
I
+ ~'~' (D D'N —p'D D.N)

/ D, / vrbN' —x D,N —x DN +SvrNp~ S —py

(9)
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B. Linearired analysis in the weak-Seld sone and

The space-times of interest in this paper are periodic
and may contain gravitational standing waves far from
the source. And periodic, standing waves cannot extend
to spatial infinity in an asymptotically fiat geometry [4].
However, if the amplitude of the waves is small enough,
then a weak-field zone around the source exists wherein
the geometry is well approximated by the linearized Ein-
stein equations. It is in this weak-field zone that we ana-
lyze the gravitational waves and define quantities similar
to the mass and angular momentum of the system.

X. Notation

For the geometry in the weak-field zone, a slight mod-
ification is made of Thorne's [1] notation for coordinates
and symmetric-trace-free tensors. The lapse function at
zeroth order in the deviation from Bat space is a constant
No, not necessarily unity; thus the Minkowskii time co-
ordinate is Npt, and the Cartesian coordinates (x, y, z)
are the traditional flat space coordinates, with (r, 8, P)
being the corresponding spherical coordinates. Indices

(i, j, k, p, q, r, s) run over (z, y, z) and denote the Carte-
sian components of a spatial tensor with a Bat metric.
Summation is implied when these indices are repeated,
and such indices are sometimes both lowered without am-

biguity. The Bat space derivative operator is V';. A
comma denotes a partial derivative with respect to a
Cartesian coordinate. And the quantity r; —= V';r is the
unit outward radial vector.

Tensors with large numbers (say l) of indices are com-
mon. Thus in the convenient abbreviation

87'(/88 = 0, 87'(/Q = 0.

Also the abbreviation

Kl —rA:1 re:2 rA:l (14)

is useful to represent the outer product of many unit
radial vectors.

A convenient decomposition of the STF t tensors is in
terms of a basis set of 2l + 1 constant STF tensors P&~

with —l & m & l, defined by Thorne [his Eq. (2.12 ].
Two useful properties of the P& are

Y' = P' R, ,

where Y' is the usual spherical harmonic function, and
their orthogonality

(2l + 1)!!
~A (16)

Also if 7~, (t, r)/r is a solution to the fiat space wave

equation then it may be separated into outgoing and in-

going parts:

7, (t, r) = 7,"'(N t —r) + 7, (N t + r).

With this basis set of STF tensors the decomposition of

7~, (t, r) yields

(io)
And the decompositions

11212$ Jl

(ii)

(»)

the indices represent tensor components in a Cartesian
coordinate system, just like (i,j,k, p, q, r, s) do. Further-
more, often such tensors are both symmetric and trace
free (STF) on all pairs of indices and also have Cartesian
components which are functions only of t and r and in-

dependent of 8 and P; the Cartesian components of such
STF tensors are written as capital script letters. For ex-

ample,

l

W (N, t+.) = ) r,'"(Npt+. )y,'-,
m= —l

(2o)

are natural. Furthermore, if T&
" and T&'" are each com-

posed of a sum of periodic pieces of different frequencies

„, then complex amplitudes T&" and phases 8&
" are

defined from

TP"'(Npt —r) = ) Ti" exp[ —i8, "+ 2ilm+ ice „(Npt —r)] (21)

and

T,'" (Npt+r) = ) TP exp[i8, "—2il~+. i(u „(Npt+ r)]. (22)

If the waves are standing, then the 8& are real so that the outgoing and ingoing magnitudes are equal. The above

equations lead to

Ti (t, r) = ) 2' cos(8, "—ilier+(u „r)e' -"
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and

l

7g, (t, r) = ) ) 2Tt" P~ cos(et "—ln-+~ „r)e' (24)

Thorne defines P&t as a special STF tensor which depends upon a particular orientation of the Cartesian axes.
Thus one kame of reference rotated with respect to a second has a different corresponding P&~. For a kame of
reference rotating with a coordinate angular velocity 0 about the z axis with respect to an inertial kame,

lm —AnAt q) lm,
Zg rot

—~ inertial ' (25)

kom Thorne's Eq. (2.12) if the axes are aligned at t = 0. And, as viewed kom the rotating kaine,

l

(t ) ) ) 2Tii ylm (gTn il + ) ( + 0/No) Pt (26)

The final specialization of interest is that 7~i be peri-
odic with fundamental &equency ~0 as viewed from the
rotating frame of reference. Equation (26) then requires
that

and

( I)
1+na T ne—

(31)

„=n(up —mO/Np, (27)
Genenal linea&sed solution

&z, =(—1) &z, (2S)

for n an integer.
If 7g, is constant in time in the inertial kame of

reference, then u „must vanish for all m and n for
which T& is not zero. If, in addition, 0 is nonzero and
0/srpNp is not rational, then the constant Tt" = 0 unless
m = n = 0, i.e., 7g, is constant in time and axisymmetric,
or if 0 is zero, then Tt = 0 for n g 0. Also, if 0/upNp
is an integer, then 7~, is also periodic when viewed kom
an inertial kame of reference.

From Thorne's definition of g&t it follows that

Thorne [1] gives a general solution to the linearized
Einstein equations in terms of the mass and current mo-
ments evaluated at a retarded time, Sic, (Npt —r) and
8~i (Npt —r), in one specialization of the Lorentz gauge.
It is convenient to separate the stationary, time indepen-
dent parts of the metric kom the (often radiative) time-
dependent parts. The superscript zero refers to the con-
stant moments so that X and 8P are the constant mass
monopole and current dipole moment of the geometry-
the mass and angular momentum of the geometry if there
is no gravitational radiation. Useful de6nitions are

and consequently if 7g, is real then

rn, n — ~—m, —n ) (29)

(30) and

2Z .2(2l —1)!!+ ) - '+il! X~, Rx,
l=2

2f~*e;pq8prq —.; . 4l(2l —1)!!) t+i(l + )i &pq pKi i q i —t'
l=2

(33)

The boldface e~~ is the Levi-Civita tensor.
Thorne's metric is just a perturbation away kom fiat space-time, and consequences of his Eq. (S.13), through first

order in the perturbation, are

:(—&)' - -iN =No ]. ——I — r Z~, Not —cr
l=2

(34)

and

¹
= NpS~ +Npf~'), [r e;~8pJc, , (Npt —~r)],q~(

.4l(-.)'+'
l+1!

+Npf ) [" i'&i 1( o ~")]i&i-1
l=2
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for the lapse and shift; a dot represents a derivative with respect to the function argument (Npt —er) and e is +1 for
outgoing radiation and —1 for ingoing. The three-metric, through 6rst order, has the stationary part separated from
the time-dependent part by

~,, = f,,(1+I)+h;,,

where f;~ is the Hat three-metric in Cartesian components, and the time-dependent terms are all contained in

h;, = f;,), r X~, (Npt —er)I,~, +), r X;,~, , (Npt —er)
~ 2(—e) - 1 '4( &) —1"

1=2 l=2

"8&(-)"'-
+ ). r epq( 8~j)p~i- 2(Npt er) ~q~~'+1'-

A different version of the Lorentz gauge is preferred here wherein all of the time dependence is removed from the
lapse and shift vector. The gauge change generated by ((q, (;), where

8(g/Bt = No )— ,
r T~, (Npt —er)

l=2

8(z/Bt = V'zf—s —(Nj —NoS~),

accomplishes this. The ultimate result is that the general solution to the linearized Einstein equations, in the preferred

gauge, has a lapse and shift vector

N = Np(1 —I/2) (3S)

and

N~ = NOS~.

And p;~ is still given by Eq. (86) but with

(41)

&v=) (—')' —(fvf~ '41~+21" '*,'~", I«-. +I" '4, '1'jÃ 41" '*« t'I, &« )--
l=2

~ - (—&)'+'@ -i (+~) -i (-~)+ 2. 1~+ &1~
1" ~e(', )r«, 1 e«-. 1" y« . ~e('1 i)s«-

l=2

1 Oh~
K;~ = — ' + V(,S~).

o &
(42)

where the parenthesized superscript, e.g. , 8I, de-pK]
notes diff'erentiation with respect to the implied argu-
ment (Npt —er) the appropriate number of times, positive
or negative. Also

r, S' =0,
V;S' =0,

VI,V"I = 0,

VgV" S' = 0,

(46)

(47)

(48)

(49)

In this gauge a number of useful identities hold:

f"h;, =0,
fUK, J

——0,

V;h'~ = 0,

(43)

(44)

(45)

1 8

hing

VaV h,~
—

N2
o

(50)

In the local wave zone the leading 1/r contributions to
h;~ from the time-dependent moments give

~J 2 ~ pqKq q+W —m(+o(q+oj) 2 0 «2)P 9 1~PC~

l=2

—2

~+ 1 )»p q~rc& & w ~( o(' oz) 20'o &o&j) + O(r )
l=2

where o'p, ~ is the two-dimensional metric of a constant-r two-sphere. Also in the wave zone r'h; =O(r.
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8. Standing mane solutions in the rotating frame of reference

The amplitudes I&" and phases 8& of the gravitational radiation are defined in an inertial frame of reference in a
manner similar to Eqs. (21) and (22):

(—e) XK, (Npt —er) = ) Il" pK exp[—ie(8l" —2l7r) + iu (Npt —er)]

and similarly for 8~, .
For the special case that the geometry is periodic in a rotating kame of reference, and contains no traveling waves

(only standing waves) the notation of Sec. IIB 1 allows the linearized geometry in the rotating frame of reference to
be written in terms of the stationary moments I& and S& and the periodic, radiative moments I&" and S&" as

N = Np(1 —I/2)

and

N~ = NOSED+04~,

where

C '8/8x' —= 8/8$, (55)

2X ) .2(2l —1)!!
r l»84 Kl Kl 4

L,m

(56)

2fs'e;~r~8r, .4l(2l —1)!!
I

l,m

Also

4
h;s = ) ,

Il" e'" ' —'(f s+K, [r cos(8)" —elm + (d~„r)]qK, —2(d „p;.K, , [r cos(8) —zlz'+ (d~„r)],K, ,l

„V» (r cos(8q" —-l»+ sq r)]„,—4)(» (;Ir cos(8" —-I»+ o „r)], i, )
i6l

S( s {s ssq( Vq)r» (r s(o(8& —pl» + Iq r)]
l,na, n

+m Xr», , srq(;]r sio(l q
—sl»+ w r)l, ()q», , ) . (58)

In the wave zone this becomes

h; = ) Il cos(8l + (d r)QK, QK, ( p, (r() (r— .nn, .)e'—
l,rn, n

+ )
(

"), Sl" os(8l" + ar „r)e„,rp'„K, r'RK, , (harp, op, ——.2lrpo. p;s)e'" '
l,na, n

(59)

These equations give the general periodic solution to
the linearized Einstein equations, in the gauge de-
scribed above, with stationary moments I& and S&

and constant wave amplitudes and phases (Il",8lI") and
(Sl",8l ").And for h;s to represent real, standing waves
it is necessary that

h ) hqqq»4 (62)

[

and similarly for S&" and 8&

Finally, it is useful in Sec. IV and in the Appendix to
separate out the part of h;~ in Eq. (58) which includes
contributions &om both I& and S&" and is summed over
l, with both m and n held fixed. Thus

I»4 ( 1)I+88»I 84e-
s ™

gin gI, —n
lm l, —m&

(Bo)

and

m, n

~k hen 2 harm pij ~non ij
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III. VAMATIONAL PMNCIPLE FOR PERIODIC SOLUTIONS OF THE EINSTEIN EQUATIONS

A variational principle comes from the traditional Hamiltonian formalism of general relativity and is very closely
related to the Hamiltonian and the concept of quasilocal energy as developed by Brown and York [7], their Eq. (4.13).
The starting point is the definition

16vrHg = — N R+ — —ma orb —vr vrab + 2N Db m a p ~ pd xa b ab a b 12 3
'r &2 J

+ 2N p ~ 7rb r ~od x — 2No D rb~od x.
T B &B

&ab = Jab —TaTb (65)

This volume integral is over a spacelike hypersurface of
finite extent which is bounded by a two-surface defined
by a scalar 6eld, r, which is constant on the boundary,
r = r~. Here in Sec. III the vector r is the outward-
pointing unit normal to the bounding two-surface, o b

is both the metric of the two-surface and the projection
operator onto the two-surface,

I

0. is its determinant, and there is no restriction on the
location of the boundary of the 6nite region in which we

are interested —in particular it is necessary neither that
the boundary extend out to the weak-6eld zone nor that
the scalar field r which de6nes the boundary be related
to a Hat space radial coordinate.

An arbitrary, in6nitesimal variation of N, N, p b, and

, which holds the location of the boundary 6xed, re-
sults in an infinitesimal change in Hq.

16mb' ——— bN p+ 2 N a p+ blab — 7r ab d z

a+—1/2~bcb+b + 2bNb+ —1/2~ba& g d2&
&B

Nbo' D rb+ (2bN+No bo)D r +o bar D N +od x (66)

The indices of the perturbed quantities are neither raised
nor lowered by a metric. We now assume that a gauge
may be chosen with r N = 0 on the boundary. Under
some circumstances this might not be possible as recently
emphasized by Hayward [10]; but for the applications
which we currently envision, namely, a static boundary
in the weak-field zone, this is possible. Thus the 6rst
term in the first surface integral of Eq. (66) vanishes,
and a comparison of the coefficients of the variations of
N,¹,p b, and m with the Einstein equations (4), (5),
(9), and (2), respectively, shows that Hj is a Hamiltonian
for the vacuum Einstein equations when the boundary
conditions are that N,¹,and 0 b are given functions of
time on the surface at r~ so that the remaining variations
within the surface terms all vanish.

A tradition in introductory electricity and magnetism
is to consider solutions to Maxwell's equations inside a
"box," with the boundary conditions, say, of the poten-
tial being given on the surface of the box. The Hamil-
tonian Hq and the boundary conditions of the previous
paragraph are appropriate for the gravitational analog of
this tradition.

We have particular interest in periodic geometries,
when all of N, N, p b, and m are periodic in t with pe-
riod T = 27r/No&so. It is most convenient to consider the
geometrical quantities to be functions of the spatial coor-
dinates and a dimensionless time coordinate 7 = 2n't/T,
and T is left as unknown and yet to be determined.

Along with the periodicity, the definition of the time
average of a dynamical quantity, say Hq, is

1
(Hq)—:T Hg d& = — Hg dr.

0 2x p

16+2 = 7r Zgp bd zdt
0

2&

vr Bp b/Brd xdr.
0

It follows from Eqs. (66) and (68) that

(68)

The action used in Maupertuis's principle of least ac-
tion plays an important role here. This is referred to as
the M action A de6ned by

2'
16~b(Hg) = —— bNAf~p+ 2bN A' ~p —blab(dg~ —'P ) + bur (Zg7ab —Gab) d xdr

2K 0

1
1+6vr Ab/ T+ — 2bN7 ~ s br ~'od xdr

2' 0
2'

CNbrr D rb+ (2bN+ Nobo)D r + o b'or D'N ~ad xdr
2' p

(69)
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Equation (69) reveals the use of (Hq) in a variational
principle. Consider the class of (N, N, p s, m s) re-
stricted to periodic functions of ~, with period 2~, with
a speci6c, predetermined value for A and which satisfy
boundary conditions at r~ specified as particular periodic
functions of 7 for N, N, and o s. Then (Hq), consid-
ered a functional of the (N, N, 7 s, w s) in this class, is
an extremum under arbitrary infinitesimal variations of
the (N, N, p &, vr s), remaining in the class, if and only
if the (N, N, p s, ~ s) satisfy the Einstein equations.

Furthermore, the unknown T can be found &om the
variational principle as well. If only A is changed
by a small amount, AA, and the variational principle
reapplied to find a corresponding change E(Hq), then
Eq. (69) shows that

T = b,A/b, (Hg). (70)

IV. VARIATIONAL PRINCIPLE EXTENDED TO
THE WEAK-FIELD ZONE

The importance of boundary terms in the Hamilto-
nian of general relativity was emphasized by Regge and
Teitelboim [llj—difFerent boundary conditions necessi-
tate the inclusion of different boundary integrals in the
Hamiltonian. For data consisting of N, N, and u ~

on the boundary, Hq is the appropriate Hamiltonian. In-
stead the data could consist of, essentially, the derivatives
of some of these quantities normal to the boundary, in
which case the appropriate Hamiltonian would be that of
Eq. (64) but without the boundary integrals at re. The
variational principle of Sec. III is closely related to an ac-
tion principle, which is usually the source of definitions
for quantities such as mass and angular momentum as
particular boundary integrals. Thus, for each different
choice of a description of the data at the boundary, sim-
ilar analysis results in a variational principle involving
different appropriate boundary integrals, different defini-
tions of quantities similar to the mass and angular mo-
ment»m, and a difFerent (H). For the periodic, radia-
tive geometries of this paper the amplitudes and phases
of the multipole components (rather than the Belds and
their normal derivatives) are the convenient independent
boundary data. And this choice determines the boundary
integrals of the variational principle and the quantities
which correspond to mass and angular moment»m.

In this section we discuss quantities similar to the
mass, angular momentum, and amplitude and phase of
gravitational radiation, all in the context of periodic so-
lutions of the Einstein equations. Now, these quantities
are generally not well de6ned except at spatial or null in-
6nity; and even there technical diKculties persist except
under the best of circ»~stances. In addition our anal-
ysis is limited to a bounded region of space-time which
specifically excludes any infinity. It is not surprising then
that our approach does not directly involve an elegant,
gauge invariant definition of any of these quantities.

Thus we forsake explicit gauge invariance for a precise
variational principle involving the multipole moments of
the geometry. While the physical interpretation of these

quantities may be suspect, they have the virtues of being
precisely defined in the context of the chosen gauge and
straightforward to calculate. Furthermore, after the fact,
a periodic geometry can be analyzed and if the amplitude
of gravitational radiation (as de6ned in this gauge depen-
dent manner) is sufBciently small, then the geometry near
the boundary is of the form of the general linearized solu-
tion of Sec. IIB. And the mass monopole X and. current
dipole 8. are reminiscent of mass and angular momen-
turn.

A. Speci6cation of boundary data

The first task of this section is to describe the data
on the boundary in terms of the amplitudes (IP, SP )
and phases (Hf", HP" ) of the multipole moments. The
physical metric near the boundary is not necessarily Bat
and may, in fact, be far &om Hat. None the less, in
the vicinity of the boundary we sometimes use a spatial,
Cartesian coordinate system, (2:, y, z) along with the
Euclidean tensors h;~ and S', defined in Eqs. (58) and

(57), in terms of the multipole moments; also, the two-
sphere at constant r has a unit normal ro when embedded
in Bat space and r when embedded in the geometry
described by the metric p p. The notation of Sec. IIB is
employed here except that the symbol r used as a tensor
index on one of the Cartesian tensors denotes the implied
contraction of the index with ro.

The geometry is still ass»med to be periodic, and so all
tensors are periodic functions of the dimensionless time
coordinate v with period 2m. Also the kame in which the
geometry is periodic is assumed to be uniformly rotating
with respect to the frame of reference tied to (z, y, z)
with angular velocity 0 about the z axis.

A prescription for uniquely specifying data on the
boundary follows: Choose No and r~, once and for all-
these are never changed. Now choose values of T, 0, I&",
8&", 8&", and 8& ". In terms of these chosen values let
each of the following geometrical quantities have a value
exactly equal to that given by just the linearized the-
ory as described in Eqs. (53)—(58): ~cr, N2~o, ~oo s,

~~2m srs~o Also, let S. and 4 represent the con-
travariant tensors in generic coordinates whose compo-
nents in the Cartesian coordinates are given in Eqs. (57)
and (55), respectively. Note that each of these quanti-
ties is independent of the others. For example, the de-
terminant of ~on s is»»sty and does not depend upon
~o. And N(o o&D,r~ —20 sD,r ) is trace free and in-
dependent of D r . These speci6c choices for data on
the boundary are made so that the boundary integrals
in Eq. (73) below are precisely equal to what would be
expected through second order in an expansion in powers
of the deviation &om Bat space.

B. Variational principle

The next step toward a variational principle is the def-
inition
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16-H N R+ +2K D pit .d
)'1 o s ~s l o b 3

&&2 )
+ 2N, S ~ '~' .",~d'* — 2N~ 'D...d'*.

1'B t'B

An arbitrary, infinitesimal variation of N,¹,p p, and x ~, which holds fixed the location of the boundary, results in
an infinitesimal change of (H2) which is similar to the change in (Hi) in Eq. (69) and is simplified by the substitutions
of A, defined in Eq. (68), and of a quantity, J, which reduces to the current dipole moment for the specific boundary
data given:

1
Sm J —= —— 4 p ~ n rs~od zdr

2K Q

Then

= 8+8, . (72)

2' 1 2

16~6(H2) = —— EEq, d zdr+16mbA/T+16s06J+ — 6(NOS )p ~ n rs~od zdr
2K 0 Ã 0

2'
[6(~o'o' )N(D rs —2osD, r'') + 6(N ~o)N D r + 26(~o)r D N]d2zdr.

7r 0 rB
(73)

The symbol EEq, is an abbreviation for the first integrand in Eq. (69) and vanishes when the Einstein equations are
satisfied.

The two surface integrals in Eq. (73) are examined in the Appendix where it is shown that

1
6(N()S )p ~ m rs~od zdr

7C Q

1
[6(~oo )N(D rs —2iosD, r') +'6(N ~o)N D r + 26(~o)r D N) d zd7

7r 0 pB

0 o —i/2S p n~sr — D r ~od zdr
7r 0 PB 0

2'
[qh roVi, h qropV ('h opqqh') +'2h h /r h hl, /r + IroVI'

7r 0 ~B

+S'S;/r —S'r~&V&S; + zrr~&V&(ho)rsqVq(h'~ ) —
2 he r&V&(rrsqVqh'~)]~oqd z dr)'

2') ~

rrrr — ~6 tr (rrrrVr(h; ")rrrVr(h; "') —h, "'rrVr(rrrrVrh; ")]~npd rdr)Ss g N y

8((u „)2'+i(l+ 1)(L+ 2) „,r„32(~ „)2'+il(L+ 1)(l+ 2)
/ (lt)2)(l 1) lm bn lrn

[() 1)/]2(l 1) Im lna lna

The different terms on the right hand side of this equation come from expressions in the Appendix. Inside the
total 6, the first term is built into expression (All); the next three are the second integral of expression (A14); the
three terms involving the stationary moments are expressions (A13) and (A10); and the last two terms come from
expression (A20). The part of Eq. (74) proportional to (ruuo —mO/Ns) is the second integral of expression (A20).
And the last summation in Eq. (74), which is proportional to the variation of the phases, is expression (A16).

Consideration of Eqs. (73) and (74) leads to natural re-definitions of J and A which move the parts of Eq. (74)
proportional to 16s'0 into 6J and the parts proportional to SNp(a)p(= 16m'/T) into 6A. These changes dramatically
simplify Eq. (73) to the result in Eq. (79) below. Thus the efFective angular momentum J, is defined by

S~J. —= —— O'~ '~'~, r.~~d'zdr
2Ã Q

+ ) [rroVp(h, ")rsqVq(h; "'") —Ii; "'re.Vp(rroqV. qh, ")]~od z"
flWl PB

(75)

And the effective M action A, is defined by

2m

16mA = ir c)p s/Brd zdr —) [rr~V&(h;. )r~qVq(h; ) —Ih; roV&(rr&Vq. &;& )]~&od z
0 2~md1'$ fL

(76)



50 PERIODIC SOLUTIONS OF THE EINSTEIN EQUATIONS FOR. . . 4939

Sing&arly it seems natural to redefine (Hz) by having it absorb the terms inside the total h in Eq. (74). But, instead,
we introduce the effective mass which is a boundary integral independent of NQ..

1 2N 2
21'

16m.m, —:—— D r ~od zdr + — 2V;rp~opd zdr
2X 0 r NQ 2' Q

2&

+— 2S ~ '~'~.brb~~d'*dr
2K Q

~

~

~

2'
[2h rpVbhij rpVi(h trpjqhqp) + 2hrrhrr/r high /r

4x

+IrpV;I + S'S;/r —S'rtpV; S;

+ zrrpV&(h t)rpqVq(h t) —2h tr~&V&(rrpqVqh t)]~o'p d zdr (77)

The elation of the second lnteg al ls ldentlcally zero; lt ls included so that m. has the expected value for say the
Schwarzschild geometry.

Now a variational principle for m, is based upon

16&Npm = —— N &+ —
~

—z ti'b —tr n' b
~

+ 2N Db(x /p ~ ) ~pd zdra b ob ~ a b

2m

+Np x [right hand side of Eq. (77)]. (7s)

And the variation of this equation yields

21K

16'Nphm, = — EEq, d z dr + 16tibA, /T + 16trOb J,2' Q

S(ur „) '+i(l+1)(l+2), i„32((u „) '+il(l+1)(l+2)
(l))zl(l I) lrra lns lan +

[(l + I)t)z(l I) lan lm lna (79)

To apply the variational principle, choose specific values for J„A„and each of the 8f" and 8&~", and consider the
class of periodic geometries described by (N, N, p b, tr b) which have these specific values. Equation (79) shows that
m„evaluated by Eq. (7S), is an extremum for a member of this class if and only if the geometry is a solution of the
Einstein equations.

As might be anticipated, the coefficients of 68f"/2' and b8f "/2x are just 16tr times the energy in one wavelength
of the gravitational waves in the wave zone as derived from Thorne's Eq. (4.16') [1].

C. Interpretations of A„J„and m,

In this section we show that when the boundary is in the weak-field zone, each of the effective quantities is
independent of the exact location of the boundary through terms of second order in the deviation of the geometry
from fiat space. Thus, for each of the equations of this section, equality is understood to hold only through terms of
second order.

The quantity A, is defined as a sum of a volume integral and a surface integral in Eq. (76). And the difFerence in
A, corresponding to two diferent boundary surfaces, at rl and r2, is

21l'

16s'AA, :—16tr(Az, —Ag, ) = Bp b/Brd zdr
0 rg

tin (—) ~

—
~

[rrt'V (h. )rqpVq(h; ) —h; rpV&(rrpVqh;z )]~ed z
mnm, n

(so)

Through terms of second order in the weak-Beld zone this is

16~RA. = ) f mnw h;, "h;,"'~01 x
m, n r

—) Vz[rV&(h )rpqVq(h ) .—. h &V&(.rrpVqh™.
z )]~odz'

mn mn
t

(s1)

And by use of the wave equation, Eq. (63), for h; ." this simplifies to
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r2 ~n16zKA = ) s.nor „h; "h; "*.~a() d z —) 2cu „h;~"h; "'~o() d z
r1 Tnn

7 m)n

=0

Thus the effective M action is independent of the surface over which it is evaluated, through second order in the
deviation &om Hat space.

Similarly, the difference in effective angular momentum evaluated at two diff'erent surfaces in the weak-field zone is

8z(J2+ Jxe) =
l l

C' 7
~ ms r ~od zd7

1

o &. ..)
+) ~

—
~

[rr~&V&(h; )roqVq(h; ) —h; r~&V&(rroqVqh; )j~.od2z'.m

Tnn T2 T1
(83)

The first integral may be rewritten as

1 2~ r2

D.(& x~'~, -C')~~d'zdr = —— D.(~-x~'~, )e'+~-x~'~"D.e, ~~d'zdr. (84)

The first term vanishes from the xnomentum constraint, Eq. (5), and the second is easily written in terms of the
deviation from Hat space. Also use of the wave equation, Eq. (63), for h; "in Eq. (83) results in

"' 1 7n
T'2

87rb, J = —) u„m—h;~"h,~"'~oq d z+ ) 2' „h, "h;. "'~oo d z.
(d

mn m, n

Thus the effective angular momentum is independent of
the surface over which it is evaluated in the weak-field
zone, through second order in the deviation from Hat
space. At first order J, is just the first term in Eq. (75),
which evaluates to 8, , the current dipole moment as de-
fined by the multipole structure of the geometry in the
weak-field zone. Thus we have the following interpreta-
tion of the effective angular momentum: In the weak-field
zone, at linear order, J, is the constant current dipole
moment 8, . But when the second order corrections are
added to the linearized theory, then 8, , has a small con-
tribution from the standing gravitational waves which is
linear in r. However, J, does not change at second or-
der. Thus, through second order in the deviation froxn
Bat space J, is the current dipole moment of the source
alone without a contribution from the standing gravita-
tional waves.

In a similar fashion the difference in the effective mass
evaluated at two different surfaces, Am„ is defined Rom
Eq. (77).

Now, Am, is quadratic in the deviation of the geome-
try kom Bat space —the linear contribution vanishes from
Eq. (79) and the fact that Am, is zero for Hat space.
It is straightforward but an exceedingly tedious task to
substitute the linearized geometry of Sec. IIB into the
definition of Am, . In the later stages the details of the
substitution and reduction are similar to that for LA,
and AJ, . And the result is that Am„ too, vanishes
through second order in the deviation &om fIat space in
the weak-field zone.

Thus the effective mass is independent of the location
of the surface over which it is evaluated in the weak-field
zone through second order in the deviation of the geom-
etry &om fiat space. At first order the effective mass is
the first two terms in Eq. (77) which evaluates to X,
the mass monopole moment of the linearized geometry

of Sec. II B. Thus we have the following interpretation of
the effective mass: In the weak-field zone, at linear or-
der, m, is the constant mass monopole of the linearized
geometry. But, when the second order corrections are
included, then the mass monopole has a small contribu-
tion, linear in r, &om the standing gravitational waves.
However, m, does not change through second order in
the deviation &om Bat space. Thus, to the extent that
it is possible to define such a quantity, m, is the mass
monopole of the source alone without a contribution from
the standing gravitational waves.

V. CONCLUSIONS

Paper I showed that the periodic solutions of the Ein-
stein equations, with standing waves, give valuable infor-
mation about physically realistic systems, with outgoing
radiation. And the variational principle of Eq. (78) is a
valuable tool for studying the periodic solutions. In a
preliminary application in paper I, the variational prin-
ciple has been relatively easy to apply in the study of
close orbits of equal mass black holes, without regard to
the gravitational radiation. The next paper in this series
will use more sophisticated trial geometries which form a
complete set via an infinite sequence of possible param-
eters. In particular these geometries will clearly contain
gravitational radiation.

For specific values of J„A„0&1",and 8& and an ap-
prox~mate solution to the Einstein equations, accurate
to order b, the variational principle directly gives an es-
timate of m, which is accurate to order 82. But the vari-
ational principle can be used to estimate 0, uo, ~ix" I,
and ~Sx ~z to order bz as well. For example, « find an
accurate estimate of 0 just apply the variational princi-
ple a second time with a slightly difFerent choice for the
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e8ective angular momentum, say a value of J, + LJ,.
The resulting value of the efFective mass will change by
an amount, say, b,m, ; then Eq. (79) shows that

0 = Npb, m, /AJ, +O(b ) (86)

accurately estimates O. The other interesting quantities
describing the geometry can be found similarly.

Perhaps the most interesting results of this paper are
the definitions of the efFective quantities —Eq. (77) for
the efFective mass, Eq. (75) for the efFective angular mo-
ment»m and Eq. (??) for the efFective M action. These
definitions capture the concept of the mass monopole,
current dipole, and M action of the source without con-
tribution &om the gravitational radiation in the weak-
Beld zone. They are independent of the location of the
boundary, through second order in the deviations &om
Bat space, as long as the boundary is in the weak-field
zone. A similar analysis has been made of a toy prob-
lem of a mass, confined to oscillations along the z axis
under the in8uence of a generic potential, and attached
to a semi-infinitely long string stretching out along the z
axis. For that case the analogous variational principle is

for the average energy of the mass alon- the energy of
the string does not contribute.

To add matter to this analysis it is simple to include
matter terms in H2. And to allow for black hole sources
Eq. (78) for m, still provides the variational principle.
But the vol»me integral has boundaries in the weak-field
zone surrounding the spatial infinity within each black
hole as discussed in paper I. Then the variations bring in
additional surface terms, resembling the ones in Eq. (79),
but evaluated at these additional boundaries. These new
surface terms correspond to the efFective mass and an-
gular momentum and the phase of the radiation in the
weak-field zone within the holes.

ACKNOWLEDGMENTS

Part of this research was supported by the National
Science Foundation, Grant No. 91-07007 with the Uni-
versity of Florida. It was completed when the author
was visiting the Jet Propulsion Laboratory, and enjoy-
ing the support and hospitality of Frank Estabrook and
Hugo Wahlquist.

APPENDIX: BOUNDARY INTEGRALS IN THE WEAK-FIELD ZONE

The detailed analysis leading to Eq. (74) is relegated to this appendix.
The geometry on the boundary is described at the beginning of Sec. IV A. In particular on the boundary a number

of quantities are exactly equal to their linearized counterparts. Thus,

~o = ~op(1+ I —i2h„„), (A1)

N ~o = Np ~op(1 —2h„„),

~iso = ~op[op (1 —2h„„)—op'h, pop ], (As)

N = NpS +04, (A4)

2N(oaobDcrz —2oabDcr ) = Np ——o'pahccfo'pb+ o'pabo'p hcg+opaopbr +ehcd, 2o'pabop r +chef
r r

c d e c d e cd e—CTp~CTpgr Vehde —CTp~CTpgr %dhole + Op~pop r V'ehde (A5)

N iD r =Np i —+ ""+rpV' (I+ ih„„)
r r (A6)

r DN= — rpV I,Np

2
(A7)

-1/2 b V p ae b
vr rb~o = —~oprpV'( Sb).

2Np Bt
(A8)

Now, consider the term proportional to the stationary bS on the left hand side of Eq. (74). It has no contribu-
tion from time-dependent terms: All time-dependent terms are multiplied by stationary terms and drop out when
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integrated over a full period of r. With application of Eqs. (3), (42), (46) and use of the periodicity, the terms
proportional to hS in Eq. (74) contribute

2' 2'
2bS p '~ vr rs~od xdr= — bS'(V;S; + V~S;)r~p~opd zdr

2'
b r S'S;~o() d zdr4' p

bS'(V~S;)re~op d x dr.
27' o

i
i

(A9)

If there are no stationary sources at infinity, then S' is of the form given in Eq. (57) and orthogonality of the P&~,

implies that the second term above is symmetric in S' and bS'. Thus the right hand side of Eq. (A9) is

2'
b (S'S,/r —S'r(~)V~S;)~o() d zdr

o
(A10)

The other surface integral on the left hand side of Eq. (74) is closely related to

1 2

b(y oo)N'(D'rs —zosD r'') + b(N y 'o)N D r + 2b(~o)r D N dzzdr
o

b(h'~rp V—I,h;~)~o& d zdr.
x o . 4

The part of expression (All) depending upon the stationary moments is

2K

bIrpV;I~o() d z dr.i . 2

2x p
(A12)

And if there are no sources at infinity, then Eq. (56) and the orthogonality of the P~™imply that the first term is
symmetric in I and bI and expression (A12) is

21l

b IrpV;Ivtopd zdr
4x o

Expressions (Alo) and (A13) are the contributions from the stationary moments to the right hand side of Eq. (74).
The radiative terms in expression (All) follow with the substitutions from Eqs. (Al) to (AS) along with liberal use

of Stoke's theorem, Eqs. (43), (45) and the orthogonality of the P~~, the result is

2'
(zbh'~rpV I,h;~ —qh'~rp Vgbh;~) ~(r() d z dr

o

2'
+ b [ rod%; (h,"~o,qh~~—) + ~ h„„h,„/r —h, "ha;/r]~a~ d'x dr') .

4x o
(A14)

The focus remains on the first integral of expression (A14); the second integral appears directly in Eq. (74).
The quantity h;~ is decomposed into its m, n components as in Eq. (62), where h;." is an exact solution to the

flat space wave equation (63) with frequency p/ „and dependence upon IP, Hf", SP, 8P" and also upon 0 and urp

through the dependence upon cu „.Thus
- $htnn ghrnn $hmn $I rnn $I rnn

(A15)

Now, the substitution of Eq. (A15) into the first integral of expression (A14) and the use of orthogonality properties
of the P~~ lead to a sum of terms each involving a single choice of l, m, n and either I&" or S&" . The resulting terms
that are proportional to bIP and to N&1" are easy to evaluate because the coefficients of bIP and Nf" in Eq. (A15)
are also solutions to Eq. (63); and the terms in the first integral of expression (A14), which involve these, form the
Wronskian of two solutions to Eq. (63). In fact, the term involving bI& is just proportional to the Wronskian of two
dependent solutions of the same linear equation and, hence, vanishes. The surface integral of the Wronskian involving

be is independent of the surface over which it is evaluated; and it is easiest to evaluate in the wave zone. The terms
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in the first integral of expression (A14) involving bSP and NP may be handled in a completely analogous manner.
This results in

) 8((o „) '+ (l+1)(l+2), r„32((d „) '+ l(l+1)(l+2)
(l')'l(l-1) '- '- '- [(l+1)']2(l-1) (A16)

for the b-phase contribution to the first integral of expression (A14); this appears directly in Eq. (74).
The term in the first integral of expression (A14) [after substitution from Eq. (A15)] which involves b(d „is rather

more complicated. From Eq. (63) it is clear that the product rh; may be written so that r and ur „only appear in
the combination ru, except for a possible overall amplitude dependence upon u . Thus

hhmaa g(rhmn )
(A17)

and h(rh, )/b.(r(d ) is closely related to just the r derivative of rh, , so that

h hmfl
v

nun
~(dmra

hmn) ~~maa IaV ( hmra)
(dmra ~r ~mn

(AIS)

Now, the b(o „contribution to the first integral of expression (A14) is [let h;~ -+ h; ' and hh;~
bur „r0Vs(rh; ")/(d „., saaaaa over m and n and do the integral over r]

P gy fYL1L

The term in the curly brackets simplifies, and a b variation by parts and average over r result in

2m

6 (rroV&(hz)rov&hh —h;zr~&V&(rr~&Vqh'')]~apd xdvI

(AIO)

2&) i
nco0 — ib (o '„[rroVp(h;, ")rosVsh;, "'

mrs 0 ra aS 0 S ag

this appears directly in Eq. (74).

h; "'r~oV~(rr~&—Vzh, ")]~irgd xdvI; (A2O)
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