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Quasilocal energy for a Kerr black hole
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The quasilocal energy associated with a constant stationary time slice of the Kerr spacetime
is presented. The calculations are based on a recent proposal in which quasilocal energy is de-
rived from the Hamiltonian of spatially bounded gravitational systems. Three difFerent classes of
boundary surfaces for the Kerr slice are considered (constant radius surfaces, round spheres, and the
ergosurface). Their embeddings in both the Kerr slice and Sat three-dimensional space (required
as a normalization of the energy) are analyzed. The energy contained within each surface is explic-
itly calculated in the slow rotation regime and its properties are discussed in detail. The energy
is a positive, monotonically decreasing function of the boundary surface radius. It approaches the
Arnowitt-Deser-Misner (ADM) mass at'spatial infinity and reduces to (twice) the irreducible mass
at the horizon of the Kerr black hole. The expressions possess the correct static limit and include
negative contributions due to gravitational binding. The energy at the ergosurface is compared with
the energies at other surfaces. Finally, the difBculties involved in an estimation of the energy in the
fast rotation regime are discussed.

PACS number(s): 04.20.Cv, 05.30.Ch, 97.60.Lf

I. INTRODUCTION

Even at the classical level, general relativity diHers
from other physical theories in that it accepts several
alternative "definitions" of quasilocal energy. Despite
considerable effort, no definite expression for quasilocal
energy has yet appeared. In fact, diferent proposals pro-
vide satisfactory definitions of energy when applied to the
appropriate physical situations. In the present paper we
study the quasilocal energy recently proposed in Ref. [1)
as applied to a Kerr black hole [2].

One of the appealing features of the de6nition of
quasilocal energy adopted in this paper is its straight-
forward derivation from the gravitational action for a
spatially bounded region [1). Consider a spacetime W
foliated by spacelike hypersurfaces denoted by Z. The
spacetime is spatially bounded by the three-dimensional
surface 3B, and the intersection of Z with the boundary
B is a two-dimensional surface B with induced two-

metric cr p. The quasilocal energy of Z contained within
the two-dimensional boundary 2B arises &om the action
as the value of the Hamiltonian that generates unit time
translations in sB orthogonal to the surface 2B It can.
be expressed as the proper surface integral [1]

involving the trace k of extrinsic curvature of B as exn-
bedded in Z. The extrinsic curvature is de6ned so that
k equals (minus) the expansion of the unit outward-
pointing spacelike normal to B in Z, and units are chosen
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so that G = c = 5 = 1, and ~—:Sx. This expression for
the energy also appears in the study of self-gravitating
systems in thermal equilibrium, where it plays the role
of the thermodynamical energy conjugate to inverse tem-
perature [3,4]. A definition of quasilocal energy inti-
mately related to the energy (1.1) has been proposed in
Ref. [5]. For a discussion of quasilocal energy proposals,
see Refs. [1,6] and references cited therein.

The expression (1.1) includes a subtraction term e .
This term re8ects the subtraction term proposed in Ref.
[7] for the gravitational action and represents a normal-
ization of the energy with respect to a reference space.
The reference space is a 6xed hypersurface of some 6xed
spacetime and ko the trace of extrinsic curvature of a two-
dimensional surface in this space whose induced metric
is o b. The proposal (1.1) is only sensible if the met-
ric o p can be embedded imiquely in the reference space.
The reference space is usually assumed to be a Bat three-
dimensional slice E of Bat spacetime. In this case sev-
eral theorems exist [1] that guarantee that the function
k is uniquely determined for all topologically spherical
surfaces with positive curvature two-metrics. To specify
the quasilocal energy one requires therefore the intrinsic
metric of the surface 2B and its embedding in Z as well as
the embedding in the three-dimensional reference space
E of a surface whose intrinsic geometry equals that of
B.

The energy (1.1) has been previously calculated for
static spacetimes [1],where the negative contributions to
the energy arising &om gravitational binding have been
studied. It is of interest to extend this analysis to sta-
tionary spacetimes, and particularly to Kerr black holes.
Besides its possible astrophysical applications, this anal-
ysis is necessary in the study of rotating black holes in
thermal eq»Ibbrium with a heat bath. For instance, one
of the boundary data speci6ed at the boundary surface

0556-2821/94/5+8)/4920(9)/$06. 00 50 4920 1994 The American Physical Society



QUASILOCAL ENERGY FOR A KERR BLACK HOLE 4921

for the density of states in a microcanonical ensemble
description of rotating black holes [8,4] is precisely the
quasilocal energy (1.1).

We evaluate in what follows the quasilocal energy
(1.1) for constant stationary time Kerr slices Z spatially
bounded by three different types of boundary surfaces
B with two-sphere topology. However, it is not easy

to evaluate (1.1) exactly. In addition to the technical
problexns arising &om the complicated structure of the
spacetime, it is not possible to embed an arbitrary two-
dimensional boundary surface of the Kerr space Z in E
and therefore to calculate the subtraction term I

0. While
exact results will be provided whenever possible, most
of the energy calculations have to be performed in the
slow rotation regime. This regixne consists of assuxning

~a~/r (( 1 (with a denoting the specific angular momen-
tum of the black hole and r an appropriately defined
radial distance), but imposes no constraints on the be-
havior of the Arnowitt-Deser-Misner (ADM) mass M [9].
While this approximation cannot give a fair description
of the fast rotation regime, it is nevertheless physically
interesting and allows one to study the effects of angular
momentum on the quasilocal energy. We discuss in detail
the embedding for all choices of boundary surface in this
approximation and estimate separately the terms s and
~0

In Sec. II we present general expressions for the proper
integrals involved in the quasilocal energy for arbitrary
stationary axisymmetric spacetimes (that is, without as-
suming the Kerr metric form). These expressions will be
useful to calculate not only e for different choices of sur-
faces embedded in the Kerr slice Z but also e for appro-
priate surfaces embedded in Es. In Sec. III we consider
the quasilocal energy contained within two-surfaces 2B
defined by the constant value of the Boyer-Lindquist ra-
dial coordinate. These surfaces are natural counterparts
(in the case of nonzero angular moment»m) to surfaces
of constant Schwarzschild radius. They are naturally
adapted to the coordinates and considerably simplify the
calculation of the energy. In particular, the outer horizon
of the Kerr spacetime is a surface of this type. We then
present various properties and limiting values of the en-
ergy for these surfaces and discuss the contributions due
to gravitational binding.

We turn in Sec. IV to the energy contained within.
a round spherical boundary of the Kerr slice Z. There
are two advantages in the use of round spheres in the
present calculation: first, a sphere can be always embed-
ded in Hat three-dixnensional space and consequently the
subtraction term c can be easily deterxnined. Second,
a spherical surface is particularly useful in the study of
black hole thermodynamics. Besides the quasilocal en-
ergy mentioned above, the boundary data for rotating
black holes in a microcanonical ensemble include a chem-
ical potential (associated with the conserved angular mo-
mentum) and the two-geometry cr of the two-dimensional
boundary 2B [4,8]. The ADM mass M and specific an-
gular momentum a of rotating black hole configurations
in therxnal equilibrium inside the cavity are not &ee pa-
rameters but have to be determined as functions of those
boundary data by inverting the boundary data equations

[3,4]. Though this procedure will not be discussed here,
it is greatly simplified whenever the boundary surface
is a sphere; in this case the information about the two-

geometry of the boundary surface is fully contained in
the area of the sphere, which does not depend explicitly
on the parameters M and a [4]. The quasilocal energy
expressions obtained in this section are then contrasted
in the appropriate limits with the corresponding expres-
sions obtained in Sec. III.

The quasilocal energy within the ergosurface is calcu-
lated in Sec. V. The result is contrasted with the energy
at the horizon evaluated in Sec. III, with the energy
within a r = 2M surface, and with the energy within
a constant radius surface whose area equals the surface
area of the ergosurface. We conclude with a summary of
the results and some comments regarding their general-
ization beyond the slow rotation regime.

II. GENERAL EXPRESSIONS

Consider a four-dimensional stationary axisymmetric
spacetime. A three-dixnensional axisymmetric spacelike
hypersurface Z of this spacetime is described by the line
element

h; dx'dx~ = b dy +c d8 +d dp (2.1)

where x'(i = y, 8, y) denote arbitrary coordinates adapt-
ed to the symmetry and the metric functions b, c, and
d depend only on the "radial" coordinate y and the "az-
imuthal" coordinate 8. An arbitrary two-dimensional ax-
isymmetric surface 2B (with the topology of a two-sphere)
embedded in the three-dixnensional space Z is defined by
the relation y = F(8), where F is a function of the az-
imuthal angle and the paraxneters of the solution. Its
two-dimensional line element is of the form

0 gdz dz = (b F' +c )d8 +d dp (2 2)

where a prixne denotes differentiation with respect to the
coordinate 8. The functions b, c, and d in (2.2) are eval-
uated at y = F(8).

Let n' denote the unit outward-pointing spacelike nor-
mal to 2B as embedded in the hypersurface Z. In terms
of metric functions its components are

n", n, n~ 1
(c/b, bF'/c, 0) . (2—.3)gc2 + b2F/2

k = — (cxA '~') —(pA '~')
bed iS

u=&(+)

(2.4)

while its proper surface integral becomes

The extrinsic curvature of the two-surface B as embed-
ded in E is denoted by k„„.Its trace k represents (minus)
the expansion of the norxnal vector n' and can be writ-
ten in terxns of a Lie derivative with respect to n' as
k = —8 lurch. Using (2.3) and the notation a = c d,
P—:b d F', A—:c + b F'2, and 8—:ink, the trace is
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1
k ~ad8drp

K

1 a pd8 —(a „—P o ——h „+—b,o)4 0 bc '" ' 2 '" 2 ' „~(~)
(2.5)

This integral is evaluated at the surface y = I"(8). Both
integrals in expression (1.1) are of the general form (2.5),
but each one involves different values for the functions b,
c, and d, as well as different coordinate definitions.

Consider in particular the Kerr line element expressed
in Boyer-Lindquist [10,11]coordinates (t, r, 8, P) in which
the rotational Killing vector field takes the form (" =
(8/8$)". The spacelike hypersurfaces Z are slices of con-
stant stationary time t. Their line element in Boyer-
Lindquist coordinates is of the form (2.1) with bs

p~/b„c~ = p~, and d:—Z~ sin 8/p~. The Kerr func-
tions p, 6, and Z are functions of position and the pa-
rameters (M, a) of the solution, and are explicitly given
by

J/M denotes its specific angular momentum. For non-
extremal black holes IaI (M. A two-dimensional surface
~B in Z is described by the equation r = f (8; M, a), and
its line element is of the form (2.2). It is not difficult to
see from the structure (2.6) of the Kerr metric functions
that the evaluation of e for the Kerr slice Z bounded by
the surface r = f(8; M, a) is technically involved.

For later purposes we note that the line element of 2B
in the slow rotation approximation becomes

2

ds ~ 1 + —cos 8r2

x I1 — + —
I I

—
I

+r d8
Cdf l'

r r ) Id8)
a~ ( 2M+r 1+—

I

1+ sin 8
I

sin 8dg, (2.7)r )

where r = f(8; M, a), and terms of order O(1/r ) and
higher have been neglected.

p =r +a cos 8

6 = r —2Mr+a,
Z = (r +a ) —b.a sin 8.

(2.6)

(The metric function Z~ is not to be confused with the
spacelike hypersurfaces denoted by Z. ) The symbol M
denotes the ADM mass of the Kerr black hole, and a =

I

III. A CONSTANT RADIUS SURFACE

We calculate Grst the energy within the simplest choice
of surface B, defined by r = rp = constant. We assume
that rp & r+, where r+ represents the outer horizon of
the Kerr black hole. Using (2.5), the integral s' for the
surface r = rp can be written explicitly as

rp 2M a2
1 — + 2

d8sin8
2 rp rp 1+ — =; cos28 1+, 1+cos28 +, sin 8+ 4 cos28

Unfortunately, this integral cannot be expressed in terms of simple functions. While it is possible that the inclusion
of the subtraction term simplifies the total integral (1.1) for the quasilocal energy, we turn our attention to the slow
rotation regime defined by IaI/ro (( l. In this approximation the integral becomes

rp 2M a2 a~ M ~ ( M) (a
1 — + d8sin8 1 — —+ cos 8I 1 ——

I
+ OI

2 rp rp 0 2ro~ ro L ro ) (ro4) (3 2)

where only leading order terms in the expansion around
the small paraxneter IaI/ro are considered. This is easily
integrated in terms of polynomials with the result

2M
E' = —rp 1—

rp

a2
+

r02

f 2M& (
«o & ro) pro )

It is important to note that no approximations have been
made inside the square root appearing in e (in fact, the
square root times ro is equal to b ~~). For large values
of rp, e -+ M —rp. The presence of the divergent term
indicates the need of a subtraction term for the energy,
which we consider below.

In order to calculate the subtraction term e it is nec-
essary to find a two-dimensional surface immersed in
flat three-dimensional space E3 whose intrinsic geome-
try equals the intrinsic geometry of the r = rp surface
in the Kerr space. Once this surface is known, the trace

of its extrinsic curvature as eInbedded in E will al-
low us to calculate c . Since the intrinsic geometry of
a two-dimensional surface is completely characterized by
its scalar curvature, we can obtain the equation for the
surface by requiring its scalar curvature to be equal to
the scalar curvature of the r = rp surface in the Kerr
space. Because of the complicated structure of the Kerr
spacetime, the construction will be confined to the regime

I I/o«1.
Using (2.7), the intrinsic line element of the r = ro

surface in the Kerr space is
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ds =rp
~

1+ cos 8 ~d8
)

a 2Ma
+rp san 8 1+ + san 8

TQ TQ

+O(a /rp ) ~,
and its scalar curvature is readily calculated to be

(3.4)

r +a2 2

cos 8= cos 0,
T2 + a2 cos2 0

r2
sin 8= sin 0,r2 + a2 cos2 0

which in the approximation ~a~ && r reduce to

cos 8 = (1+a /r sin 0) cos 0,

(3.9)

8+ (1 —4cos 8)
2M 2

7Q
sin 8 (1 —a /r cos 0) sin2 8 .

(3.10)

+0(a4/ro~)
I

.
A «t three-dimensional slice of the flat spacetime (3.6)

(3 5) has line element

In our approximation regime the curvature (3.5) is posi-
tive for all values of the azimuthal angle 8, and the sur-
face can be embedded globally in three-dimensional Eu-
clidean space Es. [It is well known [12] that the Kerr
horizon cannot be embedded globally in E3 whenever
a2 ) r~2/3, or equivalently, a ) ~3M/2. In this case
part of the surface, centered around the equator, remains
embedded in E while another part, centered around the
polar caps, becomes embedded in Bat pseudo-Euclidean
(pEs) space. ]

Consider now the line element

+ ~ dO + ~ sin20d4 (3.11)

2

g(0) = rp 1+ (u(O) +O(a /rp ), (3.12)

The equation for the desired two-dimensional surface in
the «t slice is denoted by R = g(0), where g is a
function of the azimuthal angle 0 and the parameters
(M, a, rp) of the surface in E. Its intrinsic metric is ob-
tained from (3.11). By virtue of (3.10), it is enough in
the slow rotation approximation to assume

dss, ———(dx ) +de + dy +dzz

(dx ) +d—R +R de +R sin OdC (3.6)

of a four-dimensional Bat spacetime. The Hat coordi-
nates (R, e, @) should not be confused with the Boyer-
Lindquist coordinates (r, 8, P). The relationship between
both coordinate systems is important in the construc-
tion of the desired two-dimensional surfaces embedded
in Bat space and deserves to be discussed. The line el-
ement (3.6) can be written in terms of Boyer-Lindquist
coordinates by defining

where ur(O), a function of order one, is to be determined.
The scalar curvature of this surface is

R'= 2

rp2

a2

70Q 2 (
~"+ (u' cot 0 + 2(u

~
+ O(a /rp ))

(3.13)

where a prime denotes di8erentiation with respect to O.
By equating the scalar curvatures (3.5) and (3.13) and
using (3.10) we obtain a differential equation for u(e),
whose solution is w(O) = ( M/rp) cos28 + —

2 sin e.
This implies that the radius of the surface in E3, as a
function of the azimuthal angle is given by

z = du+ dr,

z = (r cos P+ a sing) sin8,

y = (r sin P —a cos P) sin 8,
z = rcos8, (3.7)

R = g(0)

= rp 1+ 2 ~

—sin 8 ——cos20
~

+O(a /rp )
a2 t'1. , M & 4 4

rp2 (2 rp )
(3.i4)

where the Kerr-Schild [10,11]coordinates (u, 4) are given

by du = dt —(r2 + a2)/b, dr, and dP = dP —ajA dr. [In
fact, in terms of these coordinates the Kerr line element
can be written as the direct sum of two line elements, one
of them being the «t element (3.6).] The relationship
between (R, 0, 4) and (r, 8, P) can be obtained easily by
noting that the coordinates (x, y, z) satisfy [10]

This equation describes a surface in Bat Euclidean space
E whose intrinsic curvature equals the intrinsic curva-
ture of a 7 = rp surface in the Kerr slice. This surface,
as embedded in E, is plotted in Fig. 1 for particular
values of M and a that satisfy the condition a2 « rpz. It
is a distorted sphere with its major axis along the equa-
tor. For fixed a, the surface becomes more oblate as M
increases. Its intrinsic metric is given by

x2+ y2 z2
+ —1

T2 + a2 r2 (3.8)

and x + y + z = R . In particular, one obtains R
r +a sin Hand

a ( 2M
ds rp 1+ ~sin 0—

rp2 E 7Q

x(dO + sin Od@ ),
whereas its area is

cos 20

(3.i5)



4924 ERIK A. MARTINEZ 50

which, as expected, is the quasilocal energy {within a
surface of radius r = ro) for a Schwarzschild black hole
of ADM mass M. The small mass limit (or equivalently,
the large radius limit) of the energy (3.18) is obtained by
assuming M « ro in (3.18). In this case

5M48=M+
2Tp 2TQ 8Tp

7M a 4 4+ ro O(a /ro ),
6T 3

(3.20)

2a2 ( Ml
A = 4z.ro' 1+,

I
1+ —

I
+ O(a'/rp') . (3.16)

3rp2 l rp )

The extrinsic curvature ko of the surface (3.14) as em-
bedded in the Hat space (3.11), and its proper integral
can be calculated now using the expressions (2.4) and
(2.5) adapted to the coordinates (R, O, 4). A long but
direct computation gives the desired integral

Icosa dOdc
~B

a' t' Ml
ro 1+

I

1—+ —
I +O(a /ro )3rp2 1 rp)

(3.17)

FIG. 1. Embedding diagram (in three-dimensional Eu-

clidean space E ) of a two-dimensional surface whose intrinsic

geometry coincides with the intrinsic geometry of a r = To sur-

face in the Kerr space Z. The 6gure corresponds to particular
values of M and a that satisfy the condition a (( To . For
6xed a, the surface becomes more oblate as M increases.

where terms of order O(M4/rp4) and O(M2a2/ro4) have
been preserved while terms of order O(a /ro ) and higher
have been neglected. The first term in (3.20) represents
the total energy at spatial infinity while the second term
represents (minus) the Newtonian gravitational poten-
tial energy associated with building a shell of radius Tp

and mass M by bringing the individual constituent par-
ticles from spatial infinity. As discussed in Ref. [1] for
the static case, the energy E in this approximation has
the natural interpretation of the total energy associated
with assembling the gravitational system starting Rom
the boundary of radius Tp, and it re6ects indeed the en-

ergy within this boundary. Notice that no terms of order
rp 0{a2/ro2) are present in (3.20).

It is of interest to invert the energy equation (3.18)
to obtain the ADM mass M as a function of the energy
E, the size Tp of the cavity, and the specific angular mo-
mentum a. This not only illustrates the interpretation of
the different terms in the energy expression but also, as
mentioned in the introductory paragraphs, has relevance
in the study of black hole stable configurations in a grav-
itational microcanonical ensemble. In the limit of small
energy, the desired equation is

The energy is obtained by subtracting (3.17) from
(3.3), with the result M=EI 1 — I+O(a E/rp ).( E)

2rp j (3.2i)

2ME=Tp 1 — 1—
TQ

g, 2+ + 2+
Tp Tp

( 2M) 2M+ 1+ 1 — +
TQ Tp TQ

+rp O(a /rp4) (3.i8)

where terms of order rp O(a4/r p4) and higher are consid-
ered negligible. Expression (3.18) is the quasilocal grav-
itational energy of a (slowly rotating) Kerr slice Z spa-
tially bounded by a surface of constant Boyer-Lindquist
radial coordinate Tp. We stress that no restrictions on
the mass M have been imposed in the calculation of the
energy expression (3.18).

Several features of the above expression are notewor-
thy. In the asymptotic limit Tp —+ oo, the energy ap-
proaches the ADM energy M. In the limit of zero angular
moment»m the quasilocal energy reduces to

Q2
E(ro —r+) = r+ 1+ + O(a /r+ )2T+'

2
= 2M 1 — +O(a /r+ )8M2

(3.22)

In the limit a —+ 0 this expression is exact for all values
of E and reduces to the expression for the Schwarzschild
ADM mass in terms of boundary radius and energy [3].

Expression (3.18) can be used to calculate the en-

ergy at the horizon whenever Ia[ « r+ (or equiva-
lently, whenever Ia[ « M). The two-dimensional outer
horizon [11] of a Kerr black hole is a topological (but
not a round) sphere of constant coordinate radius ro ——

r+ ——M + (M —a )
ii 2. In the present approximation,

r+ ——2M[1 —a2/4M + O(a4/M4)]. Since s(r+) = 0, the
energy becomes

2ME=Tp —Tp 1— (3.ig)
Recall now that the irreducible mass M; of a Kerr black
hole [13) is proportional to the square root of the surface
area of the horizon and can be written as
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M; = —fr+ +a1&
2 E )

2+ 1+ + O(a'/r+4)
2 . 2r+'

(3.23)

E Ji

2M(

Therefore the quasilocal energy (3.22) at the horizon
equals twice the irreducible mass:

E(rp —r+) = 2M;[1+0(a /M; )j, (3.24)
"0

to leading order in the slow rotation regime. This is a
very attractive property of the energy (3.18), valid per-
haps beyond the present approximations, and constitutes
one of the main results of this paper.

The quasilocal energy (3.18) contained within the con-
stant radius surface is positive for all values of rp & r+.
This can be seen directly from (3.18), since the two terms
of this expression are positive whenever rp is larger than
the radius of the outer Kerr horizon. The behavior of the
quasilocal energy as a function of rp is illustrated in Fig.
2 for ~a~ && r+. Notice that the energy monotonically in-
creases from E(rp ——oo) = M to E(rp ——r+) = 2M~. As
shown in (3.18), the quasilocal energy has contributions
related to the irreducible mass and to rotational energy.
The interaction of the different energy contributions is
nonlinear and shows itself even in the slow rotation ap-
proximation.

For later purposes we observe that the energy within
a surface of constant radius rp ——2M is

FIG. 2. The quasilocal energy as a function of the coordi-
nate radius r 0 of I3 in the case ~a~ && r+.

IV. A SPHERICAL TWO-DIMENSIONAL
BOUNDARY

We turn now our attention to the quasilocal energy
of the Kerr space Z contained within a round spheri-
cal surface B = S of curvature radius R and surface
area A = 4+R2. The construction of a round sphere in
Z and the energy calculation will be computed in the
slow rotation regime a « R supplemented with the
additional condition M « R. Under this approximation
terms of order O(Mzaz/R4) and O(M4/R4) will be con-
sidered while terms of order O(a4/R4) and higher will be
neglected.

The equation r = h(8) describing Sz in Z can be ob-
tained by requiring its scalar curvature to be

a a
E( p r——2M) =2M 1 — + +O(a /M )2M 8Mz

2
R2' (4.1)

(3.25)

Notice that E(rp ——r+) ) E(rp = 2M).
Finally, the quasilocal energy for an extreme Kerr hole

for which M = ~a) (( rp is
2

h(8) =R~ 1+,g(8)+O(a'/R') ~, (4.2)

where R is a positive constant. The function h depends
on the azimuthal angle and the parameters (M, a, R), and
in the slow rotation approximation takes the form

E = M+ + +rpO(M /rp ),4 4

rp rp

in agreement with the small mass limit (3.20).

(3.26) where g(8) is a function of order one. Substitution of
(4.2) in (2.7) gives us a surface line element whose in-

trinsic curvature is

2

R = 1 — ri" +rI'cot8+2rI j2cos 8+ (4cos 8 —1)
~

+O(a /R )R2 )
(4.3)

where a prixne in this section denotes differentiation with respect to the Boyer-Lindquist coordinate 8. By equating
the scalar curvatures (4.3) with the scalar curvature (4.1) of a round sphere one obtains a differential equation for

ri(8), whose solution is g(8) =
& cos 28 —

z sin 8. Therefore, a two-dimensional round sphere S2 of curvature radius
R in a slowly rotating Kerr space Z is described by the equation

a2 a2M
r = h(8) = R 1 — sin 8+ cos28+0(a /R )2R2

(4.4)

As expected from the behavior of the Boyer-Lindquist coordinates, the coordinate radius of the sphere S is larger at
the poles than at the equator. Its line elexnent in the current approxixnation is

a2 ( 2M) az ( 2M'
ds = R 1+

~

1+
~

cos28+O(a /R ) d8 +R sin 8 1+
~

1+
~

cos 8+O(a /R ) dye . (4.5)Rzl, R) Rzg R&
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It can easily be verified that the area of this surface is A = 4mR2.
The quasilocal energy integral s can now be calculated directly from the general expression (2.5) with b2 = p2/4,

c = p2, and d = Z sin 8/pz, and by replacing the coordinates (y, 8, p) by (r, 8, $). The Kerr metric functions p,
b, , and Z2, evaluated at the spherical surface (4.4), are

2 2a2M
p (8) = R 1+ (2cos 8 —1) + (2cos 8 —1) + O(a /R )

a2 a2M a2
b, (8) = R 1 — + z cos 8+ (Scos 8 —1) + (1 —2cos 8) + O(a /R )R4 (4.6)

2 2a2M
Z (8) = R 1+ (Scos 8 —1) + (3cos 8 —1) + O(a /R )

in the present approximation. The integrand becomes a
function of (M, a, R) and the coordinate 8. A long but
direct calculation gives the total integral

1/2
s= Ri1 ——

R y

M2a2 t' 2M)
x

R4
g R) + O(a /R ) . (4.7)

As expected, this expression is divergent for large R. The
subtraction term is easily calculated in the present case
since a two-dimensional sphere can always be embedded
in Es Astrai. ghtforward calculation gives k = —2/R
and

~' = —R. (4.8)

By subtracting (4.8) from (4.7) one obtains the total en-
ergy, which can be written in our approximation as

M2 M 5M M2a2E=M+ +,+,—,+ RO(a'/R') .
2R 8R3 R

(4.9)

This expression gives the quasilocal gravitational energy
of a Kerr space Z (with specific angular momentum
a2 « Rz and mass M « R) spatially bounded by a
round sphere of surface area A = 4+R2. Observe that
the specific angular momentum a shows itself only at
fourth order in E.

We discuss now some properties of the expression (4.9).
The energy tends to M as R tends to infinity and in the
zero angular momentum limit one recovers the energy ex-
pression (3.19) for a Schwarzschild black hole (this limit
is expected since a two-surface of constant radius ro in
the Schwarzschild spacetime is also a round sphere). Ob-
serve from expression (4.7) that a round spherical surface
of area A = 4mR2 surrounding a (slowly) rotating Kerr
black hole of mass M (& R contains less energy than
a round spherical surface of the same area surrounding
a Schwarzschild black hole of mass M. Figure 3 illus-
trates the behavior of the energy (4.9) as a function of
the quantity R whenever M &( R.

It is interesting to contrast the values of quasilocal en-

ergy of Z within different surfaces. Comparing (4.9) with
(3.20), we observe that the energy contained within a
round sphere of curvature radius R = /0 is larger than
the energy contained within a topologically spherical sur-
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1.04

1.03

FIG. 3. The quasilocal energy as a func-
tion of the curvature radius R of a round
spherical surface for the case M = 1,
~a~ = 0.2. The energy approaches M at spa-
tial infinity.

1.02

10 15 20 25 30
k

35 40 45
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face of Boyer-Lindquist radius rp = lp whenever lp is large
(that is, ~a~ && lp, M && lp). We can compare also the
energy associated with a round sphere of area A = 4+R
with the energy associated with a constant radius bound-
ary of the same surface area. Under our approximation
the two areas coincide if

face in Bat space, we can obtain the desired surface
R = l(8;M, a) in the regime ~a~ && M. A direct cal-
culation gives

Sa~ f
' 3

l(O;M, a) = 2M 1+
~

1 ——cos 8
~4M' l 2

a2 f' M)R=rp 1+
~

1+—
~Srp2 l rp )

(4.10) +O( '/M') (s.4)

As can be seen by substituting this in (4.9) and compar-
ing the resulting energy with (3.20), the energy within
the sphere equals the energy within the constant radius
surface in the present approximation whenever R and ro
are large. This is not surprising since the relative distor-
tion between the constant radius surface and the sphere
is very small for large radii.

V. ERGOSURPACE

ds =4M 1+
~

1 ——cos 8 ~+O(a /M )
3a ( 3 z ) 4 4
2M2 l 2

x(do +sin 8d@ ), (s.s)

while its area is

Notice that the coordinate radius of this surface in E3 is
larger than 2M at the equator and smaller than 2M(l-
a /4M ) at the poles. The line element of this surface is

(
I — +O(a/M) ).n fa[ ( 9a2

(s.1)

In order to calculate e we need to construct a sur-
face R = l(O; M, a) embedded in Es possessing the same
intrinsic geometry as the ergosurface. Since in the slow
rotation approximation r, 2M(1 —a2/4M2 cos2 8), the
intrinsic metric of the ergosurface is, to leading order,

The timelike limit surface (or ergosurface) of a Kerr
black hole is the boundary of the region in which parti-
cles travelling on a timelike curve can remain on an orbit
of the Killing vector field g~" = (8/Bt)" (and so remain
at rest with respect to spatial infinity) [llj. The ergo-
surface is a topologically spherical surface described by
r = r, = M + (M2 —a2 cos2 8) i~2; r, coincides with the
outer horizon radius r+ at the poles and equals 2M at
the equator. Since the ergosurface is neither a constant
radius surface nor a round sphere, expressions (3.18) and
(4.9) cannot be used to estimate the quasilocal energy
within it. However, the energy can be evaluated in the
slow rotation approximation ~a~ && M. The term s can in
fact be evaluated directly from (2.5) for arbitrary values
of angular momentum. The result will not be presented
here because, as for previous surfaces, the integral can-
not be written in terms of simple functions. However, in
the small rotation regime the integral can be evaluated
explicitly, with the result

A = 16zM 1+Sa /4M +O(a /M ) (5.6)

The extrinsic curvature kP of the surface (5.4) as embed-
ded in Bat space provides the subtraction term

2
s = —2M' 1+ +O(a/M ) i.

l )
(5 7)

The energy can be obtained now by subtracting (5.7)
from (5.1), with the result

z /a[ 3a2 9+[a[sE =8-8'=2M- + 4M+ 256M2

+MO(a /M ) . (5.8)

mfa/ a2 9vr)a[s
E(r = r+) —E(r = r, ) =

4 M 256M2
+MO(a'/M') . (S.9)

This is the quasilocal gravitational energy (in the approx-
imation ~a~ && M) of a Kerr slice Z spatially bounded by
the ergosurface r = r, The above. expression shows that
the quasilocal energy contained within the ergosurface is
positive in the present approximation.

It is interesting to calculate the difFerence between the
energy (3.22) evaluated at the horizon and the energy
(5.8) evaluated at the ergosurface. Because of gravita-
tional binding energy contributions, the former is larger
than the latter, and

ds =4M 1+ cos 8 d8
4M2

2

+4M 1+ 2 ~

1 ——cos 8
~

sin Hdg, (5.2)2M2 l 2 )
while its scalar curvature is

R=
~

1+ (1 —6cos 8)+O(a /M ) ~

. (53)
1 ( Sa'

2M2 l 4M

By equating (5.3) with the scalar curvature of a sur-

This quantity measures the difFerence between (twice)
the irreducible mass and the energy contained within the
ergosurface. It is naturally zero when a = 0.

The surface of coordinate radius r = 2M and the ergo-
surface r = r, touch at the equator but are well-separated
elsewhere, with the former surface enclosing the latter.
The energy within the ergosurface is larger than the en-

ergy (3.25) within the surface r = 2M, and

E(r = r.) —E(r = 2M) = ~a)(I —~/4) + a'/2M
+MO(a /M ) . (5.10)
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To conclude, observe that the area of the constant ra-
dius surface ro ——r, = 2M(1+ a2/4M2) equals the area
of the ergosurface in the approximation [a] « M. [The
former surface is located outside the horizon since, in this
approximation, r+ -- 2M(1 —a2/4M ).] From (3.18) the
quasilocal energy at this surface is

E(r,) =2M~ 1 — + +O(a /M ) . (5.11)
al 3a s s
2M 8M'

A comparison with (5.8) shows that the energy within
the ergosurface is larger than the energy (5.11) contained
within the r = r, surface.

VI. SUMMARY

We have calculated the quasilocal energy (1.1) for the
constant stationary time slice of the Kerr spacetime con-
tained within three diferent classes of boundary surfaces,
namely, constant radius surfaces, round spheres, and the
ergosurface. These surfaces were chosen because they
play a special role in the physics of Kerr black holes. The
calculations were confined to the slow rotation regime
[a] « r Unles. s explicitly stated, the mass M was not re-
stricted by any approximation. Energy expressions in the
small mass (large radius) limit were also presented. For
surfaces close to the outer horizon of the Kerr black hole,
the quasilocal energy was explicitly calculated under the
assumption that [a] « r+ (or equivalently, ]a] (& M).
Under these approximations, the curvature of the sur-

faces involved was positive everywhere, and the embed-
ding in E could be done explicitly. In particular, the
quasilocal energy within constant radius surfaces and
spherical surfaces is a monotonically decreasing function
of the radius. The energy within the ergosurface is larger
than M, and the energy at the horizon equals twice the
irreducible mass of the black hole. These results consti-
tute a natural extension to stationary black holes of pre-
viously known results concerning quasilocal energy for
static black holes.

Short of an exact evaluation of (1.1), it is perhaps not
unreasonable to look for a quasilocal energy expression
(say, for r = ro surfaces) that satisfies the four conditions:
(1) E~Masr +oo, (2) E~2M; asr-or+, (3) E~
ro ro(1—2M/—ro) ~ as a ~ 0, and (4) E m Eq. (3.18) in
the limit ]a[ (& ro Whe. reas it is easy to find expressions
that fulfill conditions (1)—(3), it is difficult to satisfy (4).
In particular, relations of the form ro ro (1——r+/ro) i~2 or
ro ro (I——2M;/ro) ~ do not satisfy the above criteria. In
any case, the desired expression for the quasilocal energy
of the Kerr space Z has to re8ect the peculiarities of the
embedding of boundary surfaces in E in the fast rotation
regime. We hope to return to this issue elsewhere.
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