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We propose a hoop conjecture in the presence of a positive cosmological constant A: when an

apparent horizon forms in a gravitational collapse, the matter must be sufBciently compactiSed such

that the circumference C satis6es the condition C & 4+M & 4+M„;t, where M is the Abbott-Deser

mass of the collapsed body and M„h ——1/3~A. To confirm our conjecture, we investigate two cases;

(1) initial data of a prolate or oblate dust spheroid, and (2) the Kastor-Traschen spacetime which

describes a black hole collision with A. We also discuss a relation between the hoop conjecture and

an appearance of a naked singularity.

PACS number(s): 04.20.Dw, 04.20.Cv, 97.60.Lf

I. INTRODUCTION

One of the most important unresolved problems in gen-
eral relativity is the cosmic censorship hypothesis (CCH)
[1]. Many efForts have been devoted to it over the years.

It may be crucial for a resolution of the CCH to un-
derstand aspherical collapse. Unfortunately we have at
present little knowledge about such an aspherical col-
lapse, but there is one conjecture, the so-called hoop
conjecture (HC) [2]. The HC states that a horizon forms
if and only if matter with a mass M gets compacti6ed
enough such that the circumference in all directions sat-
isfies the condition of C & 4+M. Although the HC was
proposed two decades ago, it has recently been inten-
sively studied because of the development of the cora-
puter [3—6]. There is, so far, no compelling counterexam-
ple against the HC.

If the HC is true, then we would have the following
picture for a final state of spacetime after a gravitational
collapse: The gravitational collapse results in a formation
of a black hole if the localized mass satis6es the HC, while
if it is not the case, it results in a naked singularity. This
picture was already in part con6rmed in the numerical
simulation of a prolate dust collapse [7]. The verification
of the HC would have great importance to the CCH and
the investigations so far strongly suggest that the HC is
true.

If there is a cosmological constant A, however, the con-
dition for the HC is not known and even the HC itself
is not formulated. The study of the dynamical behaviors
of inhomogeneous spacetimes with A and of their final
states is, however, a very important subject. The prob-
lem of the generality of inBation is related to the study.
The present isotropy and homogeneity of the Universe
are among the mysteries within the framework of the
standard big bang scenario. The inBationary ii~iverse
scenario is currently the most favorable model to explain
the present homogeneity and isotropy of our universe. In
this scenario, the vacu»m energy of some fundamental

field (the so-called "infiaton") behaves as a positive cos-
mological constant during a period in the early universe.
Although some fundamental problems in the standard
big bang scenario are resolved by the idea of inQation,
there may still be two unsolved problems in the infia-
tionary scenario: One is what is the infiaton field, and
the other is the isotropy-homogeneity problem since most
in8ationary models have been worked within Friedmann-
Robertson-Walker spacetime. To answer the former ques-
tion, we may have to understand the final uni6ed theory
of fundamental forces, while the latter question might
be solved in the context of the classical Einstein the-
ory. If all or most spacetime with a positive cosmologi-
cal constant approaches the de Sitter spacetime, we 6nd
that the universe is isotropic and homogeneous just after
the in8ationary era. This argument is closely related to
the so-called "cosmic no hair conjecture. " This conjec-
ture is true under some restrictions on spacetimes or on
those initial conditions, however, we also know black hole
spacetime in de Sitter background. Schwarzschild-de Sit-
ter spacetime never approaches de Sitter one. Some dust
sphere with a cosmological constant can evolve into the
Schwarzschild-de Sitter spacetime. Therefore, in the case
of more inhomogeneous spacetimes without any symme-
try, it is not clear whether or not the de Sitter-like cosmic
expansion is realized even if there exists a positive cos-
mological constant. In particular, if the inhomogeneities
are very "strong" and "localized" enough, some portions
may gravitationally collapse into black holes or naked
singularities. Therefore, in order to clarify naturalness
of inQation, we have to investigate inhomogeneous space-
times with a cosmological constant and show how plau-
sible inHation is in generic spacetimes.

Prom the previous considerations, we propose an in-
Bationary scenario, in which many black holes could be
formed but they are harmless, for inhomogeneous uni-
verses. There is a critical oalue for the Abbot Deser mass-
of inhomogeneities in an asymptotically de Sitter space
time, beyond tohich no black hole is formed [8]. Since such
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small black holes are diluted away or evaporate in an in-
Hationary era, we naturally find the present isotropic and
homogeneous spacetime. A question may, however, arise.
That is, "Is there any possibility of any naked singularity
which may change the above scenario?" In fact, there is
a suggestion that the CCH may be violated in the space-
time with A [9]. Therefore, it may be of great importance
to investigate a formation mechanism of a naked singular-
ity, in particular, how the cosmological constant should
afI'ect the HC.

In this paper, we investigate the HC in the presence
of a positive cosmological constant. To describe the HC
concretely, in Sec. II we consider three simple models; (1)
Newtonian theory with A, (2) spherical stars with A, and
(3) collapse of dust fiuid in the asymptotically de Sitter
spacetime. To confirm our conjecture, we analyze two
more realistic and interesting cases: First, in Sec. III,
we solve the initial value problem for a class of axisym-
metric prolate or oblate spheroids with the cosmological
constant, following Nakamura, Shapiro, and Teukolsky
(NST) [3], who considered the similar case but without
A. We then search for an apparent horizon to know the
relations of the circumference C of the spheroid to the cos-
mological constant when an apparent horizon will form.
As a second example, we consider the Kastor-Traschen
solution, which describes a black hole collision. In Sec.
V, we then discuss a relation between the CHC and a
naked singularity. From the analysis of dynamical evo-
lution for the time t (& M, we find that the spheroid
with its eccentricity 1 does collapse when A is small
as A & M 2/9, while one with small eccentricity at first
does not collapse. Rather it expands due to the back-
ground cosmic expansion. This suggests that as in the
case of the HC without A, if the circumference of a com-
plete collapsed body is C & 4+1, a naked singularity
may appear. Concluding remarks will follow in Sec. VI.

Our notation and conventions follow Wald [10].

A. Newtonian theory

Since the HC was originally proposed in analogy with
the Newtonian theory of a nonrotating homogeneous dust
spheroid (Lin-Mestel-Shu instability) [12], it is natural to
see the effect of A first in the Newtonian dynamics [13]
(i.e. , LMS instability with A), following Thorne [2].

First, we consider the oblate spheroidal collapse. The
final kinetic energy of the dust particles is roughly equal
to their final potential energy:

12 M A(C)
C/2 +«~ )

Hence, as long as

(2 2)

R03

2 2(M —ARos/3)
(2 4)

M A(Ci+ —
~

—
~

&& 1 (i.e., 47rM && C && 2vr/3/A),
C/4m 3 (2vr)

(2.3)

the collapse is essentially Newtonian and no horizon
will be formed. Under the condition of M & 1/3~A,
which guarantees the system to be still Newtonian, when
C 4aM or C 2m+3/A, the system gets into the rela-
tivistic stage. The latter case may not describe a collapse
of a localized system since 1/~A is the horizon scale of
the universe. Hence, we expect that Eq. (2.1) is the con-
dition to collapse into relativistic region, where a horizon
may be formed. If M ) 1/3~A, then v2 ) l. Since there
are no Newtonian regions, we have to discuss such a case
by a fully relativistic theory.

Second, consider a prolate spheroid with an initial
semiminor axis Ro and eccentricity eo (( 1. After a few
dynamical time tp given by

II. COSMIC HOOP CONJECTURE

Taking the following three simple examples, here we

propose a cosmic hoop conjecture, i.e., the hoop conjec-
ture in the presence of a cosmological constant A. A
semiempirical condition for the formation of an apparent
horizon that we have obtained is as follows: When an
apparent horizon forms, matter must be suKciently com-
pactified into a region where the circumference C satisfies

4'
C &4~M &4~M„;, =

3~A
' (2.1)

where M is the Abbott-Deser (AD) mass [ll] of the col-
lapsed body and M„;t ——1/3~A.

To see that this conjecture may be plausible, in this
section, we consider the efFect of a cosmological constant
A for the following three cases: (1) Newtonian theory
(Sec. II A), (2) spherical stars (Sec. IIB), and (3) col-
lapse of dust fiuid (Sec. IIC).

so long as A ( 3M/Ros, the spheroid gets deformed into
a thin thread of length l((( Ro) and of mass per unit
length A = 3M/2l[1 —(2z/l) ]. Subsequently, the col-
lapse proceeds mainly in its radial direction and we can
deal with the thread as a part of an infinite cylinder.
The equatorial segment of such a thread implodes with
velocity:

- lj2
2 A qln(l/R) + R (2.5)

where A,q denotes the value of A on the equatorial plane.
In our an»tz, AR2 ( Al2 (& ARo2 ( M/Ro & 1, while if
l )) 2M so that A && 1, then the radial inward velocity
approaches the speed of light only when the thread has
become extremely thin; i.e., R lexp( —1/4A, ~) && l,
otherwise the collapse is essentially Newtonian and no
horizon can form.

Prom these crude analysis, we expect that the inclusion
of A makes little difFerence on the criterion of onset of
relativistic deviations from Newtonian collapse, however,
there is an important restriction on A in order for the
collapse to proceed to the relativistic stage, i.e.,
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A & M/R (2.6)

M & 1/~A. (2 7)

Therefore we expect that A brings another inequality for
C in the hoop conjecture as shown in Eq. (2.1).

or, since the horizon radius of a body with a mass M is
about M, the condition (2.6) yields for a black hole

background [14,15). Here "one-dimensional" means ei-
ther "spherically symmetric" or "planar or cylindrically
symmetric. "

Suppose that a dust sphere with Abbott-Deser (AD)
mass [11] M is put into an isotropic and homogeneous
de Sitter universe with a cosmological constant A. We
can easily analyze the dynamical behavior of such a dust
sphere. We consider the Tolman-Bondi spacetime. The
metric is given as

B. Static star arith a cosmological constant
ds' = —dt'+ X'(t, r)dr'+ Y'(t, r)dA' .

The Einstein equations give

(2.10)

C(S ) 1 )vricf ' = cos~~ —+tstt '~~,)4zM 3MII &3
(2.8)

We make a different simple test of our cosmic hoop
conjecture. Consider a static uniform spherical star of
perfect Quid in the spacetime with A. The exterior is the
Schwarzschild-de Sitter spacetime and the surface of the
star locates at the radius r = rs ) r~ = 2/~3IIcos( s +
tan ~ ~~,), where r is the Schwarzschild radial coordi-

nate, H = gA/3, and (d, = (MH) 2 —1 & 0. Let 8 be
a surface with a radius a() ro) We fin. d that

X(t, r) = Y'(t, r)/W(r), (2.11)

and

Y (t, r) — ——Y (t, r) = W (r) —1. (2.12)
2M(")
Y(t r) 3

Here M(r) is the AD mass of a dust sphere within a
comoving radius r and is obtained by integration of the
dust energy density e(t, r) as

Figure 1 shows the function on the right-hand side of Eq.
(2.5). It can be seen that

M(r) = f 4zc'Y Y'dr, (2.13)

C(S ) & 4zM (2.9)

C. One-dimensional collapse of dust fluid arith a
cosmological constant

Finally we look at the dynamical behavior of a one-
dimensional dust Quid in an asymptotically de Sitter

1.5—

1.4—

1.3—

for Va ) rs, and for I & 1/v 27M, or equivalently for
M & 1/3v A.

Since such a spacetime is stable and will never collapse
into a black hole, the condition (2.1) can be a good cri-
terion for the formation of a horizon.

and W(r) is an arbitral function of r to be regarded as
the binding energy of a dust shell at the radius r. We
can analyze the behavior of the dust motion &om the
potential

2M(r) A

Y
(2.14)

Since V(Y) has the maximum of —9M2A at Y
(3M/A)~~s, the dust shell with —9M2A ) —1 is un-
bound. If the spacetime is asymptotically expanding,
such a dust shell will disperse away into infinity, result-
ing in a de Sitter universe, rather than collapse into a
black hole. When a horizon will appear, the circumfer-
ence C must be smaller than 4z'M, we find again Eq.
(2.1) for formation of a horizon [14].

On the other hand, the dynamical behavior of a dust
plane is greatly different [15]. The line element is [16]

ds2 = dt +A (t, z)dz—+B (t, z)(dz +dy ) . (2.15)

The Einstein equations give

1.2—
and

A(t, z) = B'(t, z)/K(z), (2.16)

B2(t )
( ) B2(t )

—K2(z)
B(t,z) 3

(2.17)

1.0
0.00

I

0.05
I

0.15
I

0.20

Here K(z) is an arbitral function of z and M(z) is related
to the dust density p(t, z) as

FIG. 1. C/4z'M for the Schwarzschild-de Sitter spacetime.
M(z) = f 4zttB*B'dz . (2.18)
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Note that M(z) is not always positive definite because B'
can be negative. However, if M(z) is positive, the right-
hand side of Eq. (2.16) is nonnegative, the dust plane
is unbound. In any scale of dust Buid, we can easily
set up an initial data, &om which a naked singularity
will be formed. As for a dust cylinder, we find the same
results. Those are consistent with our CHC because the
circumferences in both cases get infinity in the symmetric
direction.

3M
R(P —sinP cosP),4(ae)2

3MK, = — z(tan p —p),2(ae)2

respectively. P is defined as

sinp = e

(3.7)

III. INITIAL DATA OF A PROLATE/OBLATE
DUST COLLAPSE

for the inside of the spheroid, while

Rsinp+z tan p=ae

We now investigate initial data of a prolate or oblate
dust spheroid in the presence of a cosmological constant
A. This model is more realistic and may help to confirm
our cosmic hoop conjecture. We consider conformally Bat
initial data, which line element is written as Q = 1+ + (RK~—+ zK, ),3MP 1

4ce 2
(3.8)

for the outside.
As for prolate spheroids with the eccentricity e

gl —a2/c2, the analytic solution Q is

dl =@ (dR +dz +Rdg2). (3 1) where

We assume that the dust spheroid has no moment»m and
no "gravitational waves, " which means that the trans-
verse traceless part of the extrinsic curvature K b van-
ishes. We also adopt the constant mean curvature slice.
Hence the extrinsic curvature K b is described as

(3.2)

where H = +/A/3. Then the Einstein equation which
the initial data must satisfy is only the Hamiltonian con-
straint;

3M
K~ = R(P —sinhP coshP),

4(ee)2

3M
K, = z(tanhP —P) .

2(ce)2

Here, P is given by

c
sinhP = —e

G

(3.9)

—8@ 'bQ = 16mp, (3.3)
for the inside of the spheroid, while

0 p=p~5 (3.4)

where p~ is given as

M/(47ra2c/3) for R2/a2 + z2/c2 ( 1
0 otherwise . (3.5)

This ansatz may not be essential in our following re-
sults. For oblate spheroids with the eccentricity e
gl —c2/a2, the solution g is found to be

where 6 is the Laplace operator defined by the Bat space
metric, and p = T bn nb with n being a unit normal to
a spacelike initial hypersurface. Here it should be noted
that the terms with a cosmological constant and with
the extrinsic curvature cancel each other because of our
slicing condition, Eq. (3.2). As a result, the Hamilto-
nian constraint turns out to be the same as that of the
time-symmetric slice in the case without A, i.e., in an
asymptotically Bat spacetime.

To find an analytic solution, we set the density profile
to

R sinh P+ z tanh P = c e'

for the outside.
Thus we obtain the solution @ analytically, which is of

great advantage to determine the apparent horizon nu-
merically. Remember that the above solutions are the
same ones which are already obtained in an asymptoti-
cally Bat spacetime, but the equation to determine ap-
parent horizons becomes different because of the exis-
tence of A. Since at large distance g ~ 1+ M/2r, M
is interpreted as a gravitational mass of the spheroid in
the presence of A, which is called the Abbott-Deser (AD)
mass. It becomes the same as the ADM mass when there
is no momentum density.

For a given g, we now search for an apparent horizon.
In the three-metric Eq. (3.1) and the slicing Eq. (3.2), an
apparent horizon is given by a surface of r = r(e) (where
the radial coordinate r is defined by R = rsin8, z
r cos 8) satisfying the difFerential equation [17],

t r; l &4y, l, /3 44,.'t
r ee+ —'+re

(
'+cot~

~

—r'e
~

—+

g = 1+ + (RKR + zK ), —3MP 1

4ae 2

where K~ and X are given by

(3.6)
4~ 2B@2(&2+ &2 ){2/2)

-2r —r2 = 0 (3.10)
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with the following boundary conditions;

(dmin dmin) (S.12)

re ——0 at8=0, (S.11)

Since we have Q analytically, Eq. (S.10) is an ordinary
difFerential equation. We solve it by the 4th order Runge-
Kutta method.

In order to assess the hoop conjecture, we have to cal-
culate the minimum circumference C outside the matter.
In a previous paper [6], one of the present authors has
proposed a definition of C by using closed geodesics. In
axisymmetric space, t is given by [4,6]

where C '" and C '& are the minimum values of the cir-
cnmferences on the equatorial plane and on the meridi-
anal plane, respectively, both of which are evaluated by
closed geodesics. Clearly, C, ' is evaluated by circles
and C i is by the geodesics which satisfy the following
geodesic equation:

rss —2—' —r+2 1+—'
~

' rs — '"r
~

=0.
)

(3.13)

It is to be noted that C is independent of H, because g
does not contain H.

TABLE I. The existence of apparent horizons and the circumference for various values of H and
c. [(a): prolate spheroids; (b): oblate spheroids. ] We use Y when the apparent horizon exists,
otherwise N. M denotes the AD mass. We also listed H/H„;i, where H„;& ——1/3~3M beyond
which no apparent horizon appears (however, see text for the details).

(a)
c/M
0.10

0.40

1.0

H/M
0.000 00
0.10000
0.19100
0.192 00

—0.10000
—0.19245
—0.19246

0.000 00
0.050 00
0.11000
0.120 00

—0.10000
—0.19245
—0.19246

0.000 00
—0.10000
—0.15000
—0.192 52
—0.192 53

H/Hgzjt,
0.000 00
0.51962
0.992 47
0.99766

—0.51962
—1.000 00
—1.000 05

0.000 00
0.259 81
0.571 58
0.623 54

—0.51962
—1.000 00
—1.000 05

0.000 00
0.51962
0.779 42

—1.00 036
—1.000 42

AH?
Y
Y
Y
N

Y
Y
N
Y
Y
Y
N

Y
Y
N
N

Y
Y
Y
N

C 'i /47IM
1.001 9

1.0281

1.1414

C i /4KMgpii
0.0000
0.5206
0.9943
0.9995
0.5206
1.0019
1.0019
0.0000
0.2671
0.5876
0.6411
0.5342
1.0281
1.0282
0.0000
0.5931
0.8896
1.1418
1.1419

a/M
0.10

0.40

1.0

H/M
0.000 00
0.10000
0.19180
0.19190

—0.10000
—0.19245
—0.19246

0.000 00
0.050 00
0.074 00
0.075 00

—0.10000
—0.192 45
—0.19246

0.000 00
—0.10000
—Q.15000
—0.192 52
—0.192 53

(b)
H/ Hgpii

0.000 00
0.51962
0.996 62
0.997 14

—0.51962
—1.000 00
—1.000 05

0.000 00
0.259 81
0.384 52
0.389 71

—0.51962
—1.000 00
—1.000 05

0.000 00
—0.51962
—0.779 42
—1.000 36
—1.000 42

AH?
Y
Y
Y
N
Y
Y
N
Y
Y
Y
N
Y
Y
N
N
N
Y
Y
N

C,~' /4zM
1.0039

1.0549

1.2483

Q
mlIl
eq /4z'Mgpji

0.0000
0.5216
1.0005
1.0010
0.5216
1.0039
1.0040
0.0000
0.2741
0.4056
0.4111
0.5481
1.0549
1.0550
0.0000
0.6486
0.9730
1.2487
1.2488
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Fixing the AD mass M, we have done a large survey
of parameter space of (H/M ~, a/M, c/M) and searched
for apparent horizons. The results are summarized in
Table I and the typical examples are shown in Fig. 2.
Comparing numerical results with analytical ones for a
spherical source, we are con6rmed that our calculation
has the accuracy of six digits at least.

As is shown in the 6gure, the location of an appar-
ent horizon shrinks inward in coordinate space as H in-

creases, and sometimes the apparent horizon goes inside
the matter.

We have searched for the critical value of C above which
no apparent horizon forms for a given H. The results are
depicted in Fig. 3. It shows that the maximum value of
the circumference C depends on H, and no apparent hori-
zon forms when ~H~ )H„;t ——M /~27. At H H„;t,
the maximum value of C/4aM nearly equals to unity.
We should, however, note that for H & 0, the exact
critical value is slightly moved. Although the deviation
&om —H«,.~ is very little, we 6nd an apparent horizon
for H ( 0 even beyond H„—;t (see Table I).

From Fig. 3, we 6nd that if C & 4aM the apparent

2.0—
(a) c=0.1

H=-1.00000
H =-0.51962
H-0 00000

962
9247

2.0—
(b) a=0. 1

H =-1.00000
H =-0.51 962
H =0.00000
H-0 51962

62

1.5— 1.5—

N1.0— &1.0—

0 5 —."-.-- 0 5 —---- ~-

I

0.0 0.5
l

1.0
I

1.5
I

2.0

0.0-
I

0.0
I

0.5
I

1.0
I

1.5 2.0

2.0—
(a) c=0.4

H=-1.00000
H=-0.51962
H=O 00000

5981
7158

2.0—

1.5—

(b) a=0.4

H=-1.00000
H=-0.51962

0000
5981
8971

N1.0— N1.0—

0.5—

0.0—
I

0.0
I

0.5 1.0
I

1.5
I

2.0
0.0—

I

0.0 0.5
I

1.0
I

1.5

FIG. 2. (a) Shapes and location of apparent horizons for the prolate dust of c/M = 0.1, 0.4, 1.0 and (b) the oblate one of
a/ = 0.1, 0.4, 1.0 for each H/H„;t The innermost solid. line represents the surface of dust spheroid.
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{a}c=1.0

H=-1.00036
77942
51962

(b} a=1.0

H=-1.00036
H=-0.77942

1.5—

1.5—

N1.0—

0.5—
0.5—

0.0—
I

0.0
I

0.5
I

1.0 1.5 2.0

0.0 —
)

0.0
I

0.5
I

1.0
I

1.5
I

2.0

FIG. 2. (Conti nued).

horizon is always formed and more easily forms as the
value of 8 decreases, i.e., the condition for formation of
apparent horizon gets loose for the larger contraction of
the background spacetime.

The above condition for the apparent horizon can be
read as

M ( M„;g —= 1/3~A,

IV. BLACK HOLE COLLISIONS

Next, we claim that our cosmic hoop conjecture may
be valid not only for initial data but also in the dynamical
process. As an example, we consider the Kastor- Traschen
(KT) solution [18], which represents a collision of maxi-
mally charged balck holes with A.

The line element is given as

when A is Gxed and M is regarded as a dynamical vari-
able. Hence, these results support our CHC, which we
presented in the previous section, i.e., Eq. (2.1).

ds = —0 dt +a (t)0 (dz +dy +dz ),
where

(4 1)

1.6— N

a(t) = e~', 0 = 1+) a(t)r; ' (4.2)

1.5—
and the vector potential of the electromagnetic Geld is

1.4— A, =0 (4 3)

~ 1.3—
U

Here r;(i = 1, . . . , N) denotes the location of N black
holes and m;(i = 1, . . . , N) is each mass (=charge be-
cause of the extreme case). When H ( 0, the solution
describes a collision of N black holes.

We consider two black hole collisions for simplicity.
Each black hole is located at z = +d at rest and has
the same mass m. Then the line element in cylindrical
coordinate (R, z, P) is

ds = —0 dt +a (t)0 (dR +dz +R dP ), (4.4)

1.0—
I

-1.0
I

-0.5
I

0.5
I

1.0 0 =1+ +
a(t)QR2+ (z —d) a(t)QR + (z+d)

(4.5)
FIG. 3. Maximum value of C of dust spheroid for an ap-

parent horizon to be formed for each H. Since the three-metric is analytic, we can again determine
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TABLE II. The existence of apparent horizons for extreme (Q = M) Reissner-Nordstrom-de
Sitter black hole.

d/M
0.0

H/M-'
—0.100
—0.200
—0.250
—0.251

H/Hcrir
—0.400
—0.800
—1.000
—1.004

AH?
Y
Y
Y
N

A/16s M
0.3175
0.4775
1.0000

A/16s M (analytic)
0.3175
0.4775
1.0000

an apparent horizon with good accuracy by the method
described in Sec. III.

The results are summarized in Tables II (d = 0) and III
(rt g 0). Physical variables are normalized by the total
mass M = 2m. Without loss of generality, we can set
t = 0. d = 0 corresponds to extreme (Q = M) Reissner-
Nordstrom-de Sitter black hole. For a code check, the
result with d = 0 is compared with the analytic value of
an area of black hole A, which is now

(4.6)

Both numerical and analytical values are in good agree-
ment (see Table II). We cannot find any apparent horizon
for H = 0 numerically, because it is located at B = z = 0
in the coordinate (4.4).

We also have searched for the critical value of C above
which no apparent horizon forms for a given H. The
results are shown in Fig. 4. For d & 0.4, which cor-
responds to C/4aM & 1.06, we find apparent horizons.
For rf & 0.5, which corresponds to C/4m M & 1.07, we
cannot Gnd apparent horizons whatever H might be.
Note that in the extreme Reissner-Nordstrom-deSitter
spacetime a black hole exists only for M~H~ & I/4, i.e. ,

M„;t ——I/4[H[ = ~3/4y A.
We can conclude that the apparent horizon is formed

only when C & 4vrM & 4z'M„;t = ~3m/~A. Our cos-
mic hoop conjecture Eq. (2.1) is consistent with the KT
solution.

mic hoop conjecture Eq. (2.1) is consistent with the KT
solution.

V. NAKED SINGULARITY AND
COSMOLOGICAL CONSTANT

i9(~hp)
Ot

(5.1)

In the rest of the present paper, we discuss a relation-
ship between the hoop conjecture and an appearance of
naked singularities.

It should be noted that in the presence of a positive
H, the absence of an event horizon does not necessarily
imply a naked singularity. Because there exists a back-
ground cosmic expansion and a localized matter may ex-
pand with the cosmic expansion rather than contract and
may disperse away, it is not clear whether or not a grav-
itational collapse really proceeds.

In order to determine whether the spheroid really col-
lapses or expands, we may observe the dynamical behav-
ior of the mass density. In the present approach, we can
just deal with it for a short time period of t &( M. As
a coordinate condition, we set the lapse function N = 1
and the shift vector N = 0. Then the evolution of en-
ergy density p is determined by the dynamical equations;

TABLE III. The existence of apparent horizons in the Kastor-Traschen spacetime and the cir-
cumference for various values of H and d, where d is a separation parameter of two black holes. Y
and N are the same as in Table I. M is the total mass of two black holes. We also listed H/H, „;r,
where H„;r ——1/4M.

d/M
0.10

0.20

0.40

H/M
0.000

—0.100
—0.150
—0.200
—0.250
—0.251

0.000
—0.150
—0.200
—0.250
—0.251
—0.200
—0.250
—0.251
—0.252

H/Hcrit
0.000

—0.400
—0.600
—0.800
—1.000
—1.004

0.000
—0.400
—0.800
—1.000
—1.004
—0.800
—1.000
—1.004
—1.008

AH?
N

N

Y
Y
Y
N

N

N
Y
Y
N

N

Y
Y
N

C ',"/4sM
1.0284

1.0353

1.0591

C&&i /4s'Meric
0.0000
0.4114
0.6170
0.8227
1.0284
1.0325
0.0000
0.6212
0.8282
1.0353
1.0394
0.8473
1.0591
1.0633
1.0676



COSMIC HOOP CONJECl UREY 4911

1.07— From Eqs. (5.1) and (5.7)—(5.9), p(t) is obtained as

1.06—

p(t) = V'~(0)/&(t) p(o)
15H't'= p(0) 1 —3at+ —4g 'g-",t'

2

+O(ts/M') (5.10)

1.05—

1.04—

Figure 5 shows p(t)/p(0) at z = c, B = 0 until t = 0.01M
for each e and H. Prom these, it is seen that vrhen the
eccentricity approaches to unity and H & H„;t then the
collapse proceeds with or without A, while when the ec-
centricity is small and A is nonzero the spheroid expands.
Although the detail of the collapse or expansion may de-

(a)

1.02—
l

-1.0
I

-0.8
I

-0.6
I

0 4
I

-0.2
I

0.0

1.004—

crit

FIG. 4. Maximum value of C in the Kastor- Traschen space-
time for an apparent horizon to be formed for each H.

1.002—

3R (5.2)

~ 1 ~ 000

CL

0.998—

r
0

~1

~a

'l1

hg =2K g. (5.3) 0.996—

Here h is the determinant of the three metric h g and
R g is the Ricci tensor of h g. We expand K g and h g

in a power series of t(« M) as [19]

I

10x10

(5.4) H=0.OO
—H=0.04

H-0 12

(b)

To zeroth order, K g and h g are given as

K s = Irons h s,

(5.5)

(5 6)

1.000

0.998—

~ 0.996-
CL

H-0.30
~o

~ ~

~o
Oy

'~

~ g
~ ~

~ ~

~ ~

~ ~

Inserting Eqs. (5.4)—(5.6) into Eqs. (5.2) and (5.3), we
solve K g and h g order by order. We 6nd that

0.994—

K.g' = 60 '4', o@,s+2V —'t/, os+2@ 'Lsd"0,
+2@ 'b,f .—3II'b,g (5.7)

0.992—

I

10x10

h(', & = 2ah..q',

h~ ——Kq(2) (~)

(5.8)

(5.9)

FIG. 5. The dynamical behavior of dust spheroid in the ini-
tial state. p(t)/p(0) at z = c = 0.4M, R = 0 until t = 0.01M
for (a) e = 0.99 and (b) e = 0.1 for each H
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----- H-0 30
H=0.12

100—

10—

0

t

0.0
I

0.5 1.0
I

1.5
I

2.0
I

2.5

FIG. 6. The Riemann invariant I on the z axis (R = 0) at
t = 0 for the prolate of c/M = 1.0 and e = 0.9999 for each
H.

pend on our coordinate choice, i.e., the proper-time slic-
ing (N = 1,N = 0), we expect that our result may be
generic since dust Quid follows the geodesic.

We also calculate the Riemann invariant:

I=R s,gR =8( R s+2H h s)( R +2H h )

—192 ' —192 ' 32 ' 96H
$12 /11 $10

to estimate the behavior of the singularity with A at
t = 0. As shown in Fig. 6, the singularity appears at
some point on the z axis. The behavior of this singular-
ity is not aH'ected by the inclusion of A. Thus we may
conclude that once the collapse proceeds, a singularity
will be formed with or without A.

VI. CONCLUDING REMARKS

We have investigated how A(& 0) should affect the

hoop conjecture. As estimated in Sec. II and shown

A
MH =M+ —r

6
(6.1)

It does not approach to the AD mass (the asymptotic
mass) in the limit r ~ oo, although MH satisfies criteri-
ons of quasilocal energy in the spacetime without A [21].
At present there is no appropriate definition of quasilocal
mass in the presence of A. Hence we have not adopted
any quasilocal mass in Eq. (2.1).
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for initial data of dust spheroid in Sec. III, besides an
existence of the maximum mass of a black hole, the
same inequality holds as a criterion of horizon formation.
This was also confirmed by the Kastor- Traschen solution.
There is no significant counterexample against the cosmic
hoop conjecture. It seems that the hoop conjecture con-
tains a large patch of truth of aspherical collapse, even
in the presence of a cosmological constant.

From the analysis of initial data and dynamical evolu-
tion for a short time period of t && M, we expect that a
naked or "seminude" singularity, which is called by NST
[3] and means that an apparent horizon runs into the in-
side of matter, might be easily formed in the spacetime
with A. The time evolution &om these initial data would
be of great interest.

Finally, we should comment on the hoop conjecture
and a quasilocal mass in the spacetime with A. There is
a suggestion that the apparent failure of the hoop conjec-
ture can be avoided by using a quasilocal mass [4]. How-

ever, the notion of quasilocal mass in the spacetime with
A is quite ambiguous. For example in the Schwarzschild-
de Sitter spacetime the Hawking mass [20] (or equiva-
lently the Hayward mass [21]) is
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