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We investigate the evolution of rnatter density perturbations in a universe with a cosmological
term that decreases with time as A oc a . For fixed values of 0 0 the power spectrum is constructed
and we show that it is only slightly modified when the parameter m is changed from m = 0 to m = 2.
Some properties concerning the peculiar velocity field are also discussed.
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I. INTRODUCTION

Despite its theoretical appeal and remarkable agree-
ment with several sets of observational data, it is nowa-
days quite generally accepted that the standard cold dark
matter (CDM) model [1] must be modified in at least one
of its basic assumptions. The main reason is that this
model predicts less power in the perturbation spectrum
at large scales (l ) 10h i Mpc) than inferred &om obser-
vations [2]. We can find in the literature three important
attempts to correct the standard CDM model deficiencies
while preserving its qualities. In the first one, generally
called "tilted models" [3,4], a nonfiat primordial power
spectrum (with more power in large scales) is assumed.
A modification in the power spectrum index naturally
appears in some infiationary models [4]. A mixture of
hot and cold dark matter in a Bat space has also been
proposed [5], but it is still not clear if these models are
completely consistent with observations [6]. Finally, fiat,
low energy density models with a cosmological constant
are also an alternative to the standard CDM model [2,7].

The present interest in the Bat cosmological constant
model has also appeared motivated by two other reasons.
First, a A term helps to reconcile inBation with observa-
tions. This term could be responsible for the missing
mass necessary to "close" the Universe. Second, with A,
it is possible to obtain, for Bat universes, a theoretical
age in the observed range, even for a high value of the
Hubble parameter [8].

In this paper we shall examine a variant of the cosmo-
logical constant model. By introducing a new parameter
m, we will explore the possibility that the cosmological
term decreases with time as A oc a . Here a is the scale
factor of the Friedmann-Robertson-Walker (FRW) mod-
els. Cosmological models with diHerent expressions for
the A term have recently been proposed [9]. The depen-
dence on a we use here for the cosmological term was first
introduced by Gasperini [10] and generalizes the m = 2
case, suggested by Chen and Wu [11].

In this work, we study how the evolution of density
perturbations is afFected by m. We solve the equations
for the CDM density contrast in the presence of the de-
caying A for arbitrary values of m. With this solution,
we construct the power spectrum and show that it is
only slightly modified when m is changed &om m = 0 to
m=2.

The paper is organized as follows. In Sec. II, the
assumptions and basic equations of our models are pre-
sented and we discuss how A decay models can be viewed
as an alternative to implement "exotic" or "loitering"
cosmologies. In Sec. III, the evolution of density pertur-
bations is obtained and previous results concerning the
peculiar velocity Geld are generalized. In Sec. IV we con-
struct the power spectrum for difFerent values of m and
0 0, and analyze the results.

II. DECAYING VACUUM COSMOLOGICAL
MODELS

We investigate spatially Bat, homogeneous, and
isotropic cosmologies with a variable cosmological term.
The cosmic Buid is assumed to be a noninteracting mix-
ture of some kind of cold dark matter and radiation
(p„= sp ). As a first approximation baryons are not
taken into account.

The total energy-momentum tensor of the cosmic Quid
has the perfect Quid form

T"„=T„" + T "„=diag(p, —p, —p, —p),

where p = p„+ p is the total energy density (radiation
plus CDM) and p = p„ is the thermodynamic pressure.

The behavior of the fluid is governed by Einstein equa-
tions with the cosmological term
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We shall assume A to be a time-dependent quantity hav-

ing the following dependence on the scale factor a:
unm decay models can be thought as another form to
implement loitering universes.

A = 8m'Gp = 3o.a (3) III. PERTURBATION GROW'TH AND
PECULIAR VELOCITY

For the sake of sixnplicity we shall restrict the parameters
o, and m to the range 0 & m & 2 and o. & 0. The factor 3
was introduced in Eq. (3) for mathematical convenience.

We also assume that vacuum decays only into relativis-
tic particles (not necessarily photons), such that the mat-
ter energy-momentum tensor is conserved (p oc a s).
Hence, because of the A decay, radiation is no longer
conserved and it is straightforward to show that Bianchi
identities imply

apl 4 3m&

8~G(4 — )
(4)

where ap is the present value of the scale factor and
Hp = 100h kms Mpc is the present value of the
Hubble parameter. In the following, subscripts 0 will
always indicate present values.

The first term on the right-hand side of (4) is the
usual conserved radiation term with O„p ——4.3 x 10 h
standing for the present value of its density parameter
(we are considering photons and three neutrino species).
The second term is related to particle creation and arises
due to the vacuum decay.

The Einstein equations reduce to two equations:
namely,

/a) 2 (aors s
z aors

2

o+o I I
+~ o+o

ga) Eai a&

+Q H2 (5)

and

a 1 2 &apl 2 ap&—= —-~ o&o I
—

I

—f1.o~oa 2 Ea) a)
0 oH'ia (6)

where 0 p is the matter density parameter and 0 p
——

4aHo ao /(4 —m). The above equations were written
in a suitable forxn to be coxnpared with those derived in
other xnodels. For instance, if m = 0, we recover the usual
Sat FRW models with a cosmological constant. Further,
if we take m = 2, we may identify (5) and (6) with Ein-
stein equations of open FRW models. In fact what we
have is not a open model. Remember that although the
equations are formally the same, here the space is Bat.
The same kinds of equations also appear in some cosmic
string models [12].

As a matter of fact, we would obtain the above equa-
tions if we had considered conserved matter, radiation,
and a fiuid with the equation of state, p = (m/3—
l)p, (0 & m ( 2). Some aspects of these models were
analyzed in Refs. [13] and [14]. When the space curva-
ture is positive they are usually called loitering unieerses.
In this case, the models have a loitering phase in which
a = a = 0. For Bat models, however, only a = 0 is
possible (coasting modeLs) Anyway, we re.mark that vac-

Our next step is to describe the evolution of pertur-
bations in models with decaying A. These models show
three distinct phases according to the dominant compo-
nent of the energy density in that phase: conserved radi-
ation, matter, or vacuum with its light decay products,
hereafter called the z component.

For perturbations well inside the horizon, Newtonian
gravity can be applied and, the equation describing the
evolution of the CDM component density contrast, b =
bp /p, is [15]

8+2—b —4zGp b =0.
a (7)

The solution of (7) depends on the expansion rate a/a,
which, in turn, will depend on the relative contributions
of radiation, matter and vacuum to the energy density.
It is useful to consider two diferent regimes. In the
first one, conserved radiation or matter is dominant, the
z-component contribution remains always the smallest
among the three and may be neglected. In the second
one, we consider the dominant contributions of matter
and x component, the conserved radiation term is now
much smaller than the dominant contributions and may
be ignored.

During the first epoch, in which matter and conserved
radiation are dominant, we change the variable to y =
a/a, ~, where a,„=(O„o/0 o)ao is the scale factor value
of the conserved radiation and matter equality, and using
the field equations, we get

and

~
~

1+—~»~, /, I

—3(1+y)'~'.3yl ((1+y)'~'+ 1)
2) &1+y'" —1

These solutions were originally obtained by Meszaros [16]
and by Groth and Peebles [17]. Some of their properties
are discussed in Ref. [15] and [18].

So far our cosmological model behaves as the stan-
dard one. However, as the universe expands, the a
terxn in the field equations becomes more and more no-
ticeable. The model begins to deviate &om the stan-
dard CDM model when the scale factor reaches the value

&
z/(4 —~)

aM =ap , the value of a when conserved
aO P

radiation and the x component contribute equally to the

2+ 3y, 3b

2y(1 + y) 2y(l + y)

The derivatives are now taken with respect to y. Equa-
tion (8) has two linearly independent solutions, the grow-
ing (b~) and the decreasing (b ) modes,
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energy density. In fact, around this epoch CDM [the a
term in (5) and (6)] effectively dominates the dynamics.
However, neglecting now the x component is no longer a
good approximation. Instead, for a ) aM, a more accu-
rate procedure would be to neglect the a 4 term in (5)
and (6).

We are now in the second regime, dominated by matter
and vacuum and its decay products. Equation (7), for the
evolution of the density contrast, will now be written as 0 1

(3 —m) (1+ to)tII b" + (3 —m)

(7 i ( 3m', 3
x

(

——m /+tII
/

5 —
f

nIb' ——b'=0,
r

(9)

3—m
where we introduced the new variable m =

i/(3 —~)
with ag ——ao &™0 denoting the value of the

ao

scale factor for the CDM and z-component energy den-
sity equality. In (9) derivatives are taken with respect to

We stress that, as in the earlier radiation-matter era,
perturbations in the radiation component oscillate and
in average can be taken equal to zero. Further, as re-
marked before, the present interest in a A term arises
mainly as a way to reconcile the theoretical appeal of
the in8ationary models with observations, which suggest
0 6 0.2. The vacuum component is usually assumed
to be smooth, otherwise it would be detected by the dy-
namical methods contributing for the effective value of
the density parameter. Hence, in (9), possible perturba-
tions in the cosmological term were also neglected.

The solutions of (9) can be expressed in terms of the
hypergeometric function F(a, b, c, nI) as

1/(3 )~
~

m 1 m

(3 —m' 6 —2m' 6 —2m
' )

0.
()I1001 0.01 0.1

FIG. 1. Log-log plot of f as a function of O is shown for
m=0, 1, and 2.

2g
SHO

where g is the peculiar acceleration and

is the Peebles dimensionless function. Neglecting the con-
served radiation component we can write the variable nI

ing only the growing mode during the matter and @-

component regime, we have [15]

and

3I'(6 2 ) f 3 1 —m 1 —2m

6 —2m 6 —2m 6 —2m' )

0.8—

0.6
m=0

Note that when m = 0 we recover the subhorizon solu-
tions for CDM and a cosmological constant [15,18,19],
now expressed in terms of hypergeometric functions.
Again, if m = 2, the CDM open model [15,18] solutions
are reobtained. It is easy to show that for nI « l(a « a~)
we obtain the standard result

0.4—

a+ ~m'/(3- ~ ~a
I I I I I I I- [ I I I I I I I I

0 0.2 0.4 0.6 0.8

—3/(6 —2m, ) —3/2

With the solutions (10) and (11) we can construct the
peculiar velocity 6eld. In the linear regime, by tak-

FIG. 2. Parameter n = log f/logO is displayed as a func-

tion of 0 for m = 0, 1, and 2. Note that, for values of 0
larger than 0.05, n is roughly constant, indicating that, in this
limit, f = (O )" is a good approximation.
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on their growth is computed by (7). For these reasons,
the simplification made by the choice (17) does not inter-
fere substantially with the relative evolution for di8'erent
values of m.

Taking (17) with a = 3/2 as the initial spectrum, we
consider t,„t„asa function of A given by the condition

Aa(tenter )
II(tenter)

For a = aM, we denote the solution of (18) by AM. Thus,
AM is the wavelength that crosses the horizon when con-
served radiation and z component balance their contribu-
tions to the total energy density. For those wavelengths
that cross the horizon after a, that is A & AM, the per-
turbation grows with 4+ after the horizon entrance. For
those with A ( AM, perturbations grow with b+ after
the horizon crossing until aM, when this solution must
be matched to the solutions of (9) to give the final growth
factor.

By using the top hat window function, the normaliza-
tion is chosen (for all values of m) by setting the root-
mean-square mass Huctuation within spheres of radius
rp = 86 Mpc to be equal unity:

(bM)' '"
re =Sh r Mpc

The results are shown in Fig. 4 for both 0 p ——0.2 and
0 p ——0.4 together with the minimal cold dark matter
model, 0 o ——1.0 (no baryons). As compared with this
minimal cold dark matter model, we observe the expected
decreasing power on the small scales and the increasing
power on large scales for all values of m. Since h20 p is
the same for all m's, we have the same A~q in all cases
and the bend in the power spectrum occurs at the same
point. For scales larger than A,q, the three curves become
distinct, showing a faster decrease for larger values of m,
but, roughly, they all show a more favorable behavior
with more power on large scales than the minimal cold
dark model.
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