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We investigate the evolution of matter density perturbations in a universe with a cosmological
term that decreases with time as A x a™™. For fixed values of £2,,,0 the power spectrum is constructed
and we show that it is only slightly modified when the parameter m is changed from m = 0 tom = 2.
Some properties concerning the peculiar velocity field are also discussed.
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I. INTRODUCTION

Despite its theoretical appeal and remarkable agree-
ment with several sets of observational data, it is nowa-
days quite generally accepted that the standard cold dark
matter (CDM) model [1] must be modified in at least one
of its basic assumptions. The main reason is that this
model predicts less power in the perturbation spectrum
at large scales (I > 10h~! Mpc) than inferred from obser-
vations [2]. We can find in the literature three important
attempts to correct the standard CDM model deficiencies
while preserving its qualities. In the first one, generally
called “tilted models” [3,4], a nonflat primordial power
spectrum (with more power in large scales) is assumed.
A modification in the power spectrum index naturally
appears in some inflationary models [4]. A mixture of
hot and cold dark matter in a flat space has also been
proposed [5], but it is still not clear if these models are
completely consistent with observations [6]. Finally, flat,
low energy density models with a cosmological constant
are also an alternative to the standard CDM model [2,7].

The present interest in the flat cosmological constant
model has also appeared motivated by two other reasons.
First, a A term helps to reconcile inflation with observa-
tions. This term could be responsible for the missing
mass necessary to “close” the Universe. Second, with A,
it is possible to obtain, for flat universes, a theoretical
age in the observed range, even for a high value of the
Hubble parameter [8].

In this paper we shall examine a variant of the cosmo-
logical constant model. By introducing a new parameter
m, we will explore the possibility that the cosmological
term decreases with time as A o« a™™. Here a is the scale
factor of the Friedmann-Robertson-Walker (FRW) mod-
els. Cosmological models with different expressions for
the A term have recently been proposed [9]. The depen-
dence on a we use here for the cosmological term was first
introduced by Gasperini [10] and generalizes the m = 2
case, suggested by Chen and Wu [11].
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In this work, we study how the evolution of density
perturbations is affected by m. We solve the equations
for the CDM density contrast in the presence of the de-
caying A for arbitrary values of m. With this solution,
we construct the power spectrum and show that it is
only slightly modified when m is changed from m = 0 to
m=2.

The paper is organized as follows. In Sec. II, the
assumptions and basic equations of our models are pre-
sented and we discuss how A decay models can be viewed
as an alternative to implement “exotic” or “loitering”
cosmologies. In Sec. III, the evolution of density pertur-
bations is obtained and previous results concerning the
peculiar velocity field are generalized. In Sec. IV we con-
struct the power spectrum for different values of m and
Q,.0, and analyze the results.

II. DECAYING VACUUM COSMOLOGICAL
MODELS

We investigate spatially flat, homogeneous, and
isotropic cosmologies with a variable cosmological term.
The cosmic fluid is assumed to be a noninteracting mix-
ture of some kind of cold dark matter and radiation
(pr = %p,.). As a first approximation baryons are not
taken into account.

The total energy-momentum tensor of the cosmic fluid
has the perfect fluid form

T, = T*, + Tn*, = diag(p, —p, —p, —p) , (1)

where p = p, + pn, is the total energy density (radiation
plus CDM) and p = p, is the thermodynamic pressure.

The behavior of the fluid is governed by Einstein equa-
tions with the cosmological term

G = 8nGT* + Ag"” . (2)
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We shall assume A to be a time-dependent quantity hav-
ing the following dependence on the scale factor a:

A =8rGp, =3aa™™ . 3)

For the sake of simplicity we shall restrict the parameters
a and m to the range 0 < m < 2 and a > 0. The factor 3
was introduced in Eq. (3) for mathematical convenience.

We also assume that vacuum decays only into relativis-
tic particles (not necessarily photons), such that the mat-
ter energy-momentum tensor is conserved (p,, o a=3).
Hence, because of the A decay, radiation is no longer
conserved and it is straightforward to show that Bianchi
identities imply

agp\* 3ma
pr = QroHg (_;0) + 8rG(4 —m) a" )
where agp is the present value of the scale factor and
Hy = 100h~! kms~!Mpc™! is the present value of the
Hubble parameter. In the following, subscripts 0 will
always indicate present values.

The first term on the right-hand side of (4) is the
usual conserved radiation term with Q2,9 = 4.3x10~54~2
standing for the present value of its density parameter
(we are considering photons and three neutrino species).
The second term is related to particle creation and arises
due to the vacuum decay.

The Einstein equations reduce to two equations:

namely,
a\? 2 (Q0\3 2 (a0\*
(;) = oy (7) + 2noHE ()
s (2)7 0
and
b o () o ()
+2man0m ()", ®)

where 2,,,0 is the matter density parameter and Q.9 =
4aHy%a3™ /(4 — m). The above equations were written
in a suitable form to be compared with those derived in
other models. For instance, if m = 0, we recover the usual
flat FRW models with a cosmological constant. Further,
if we take m = 2, we may identify (5) and (6) with Ein-
stein equations of open FRW models. In fact what we
have is not a open model. Remember that although the
equations are formally the same, here the space is flat.
The same kinds of equations also appear in some cosmic
string models [12].

As a matter of fact, we would obtain the above equa-
tions if we had considered conserved matter, radiation,
and a fluid with the equation of state, p, = (m/3 —
1)pz, (0 < m < 2). Some aspects of these models were
analyzed in Refs. [13] and [14]. When the space curva-
ture is positive they are usually called loitering universes.
In this case, the models have a loitering phase in which
a = @ = 0. For flat models, however, only @ = 0 is
possible (coasting models). Anyway, we remark that vac-

uum decay models can be thought as another form to
implement loitering universes.

III. PERTURBATION GROWTH AND
PECULIAR VELOCITY

Our next step is to describe the evolution of pertur-
bations in models with decaying A. These models show
three distinct phases according to the dominant compo-
nent of the energy density in that phase: conserved radi-
ation, matter, or vacuum with its light decay products,
hereafter called the z component.

For perturbations well inside the horizon, Newtonian
gravity can be applied and, the equation describing the
evolution of the CDM component density contrast, § =
8pm/Pm, is [15]

3+2%8—47erm5 =0. )

The solution of (7) depends on the expansion rate a/a,
which, in turn, will depend on the relative contributions
of radiation, matter and vacuum to the energy density.
It is useful to consider two different regimes. In the
first one, conserved radiation or matter is dominant, the
z-component contribution remains always the smallest
among the three and may be neglected. In the second
one, we consider the dominant contributions of matter
and = component, the conserved radiation term is now
much smaller than the dominant contributions and may
be ignored.

During the first epoch, in which matter and conserved
radiation are dominant, we change the variable to y =
@/deq, Where aeq = (Q2r0/Rmo)ao is the scale factor value
of the conserved radiation and matter equality, and using
the field equations, we get

243y o 36 —0
2y(1+y) 2y(1+y)
The derivatives are now taken with respect to y. Equa-

tion (8) has two linearly independent solutions, the grow-
ing (6+) and the decreasing (6_) modes,

6/! + (8)

3
and
3y (1+y)2+1 1/2
_ il [ ——H ) — 2
) oc(1+2)n((1+y)1/2_1 31+y)

These solutions were originally obtained by Mészaros [16]
and by Groth and Peebles [17]. Some of their properties
are discussed in Ref. [15] and [18].

So far our cosmological model behaves as the stan-
dard one. However, as the universe expands, the a™™
term in the field equations becomes more and more no-
ticeable. The model begins to deviate from the stan-
dard CDM model when the scale factor reaches the value

—m

apym = ag %:—% , the value of a when conserved
radiation and the £ component contribute equally to the
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energy density. In fact, around this epoch CDM [the a3
term in (5) and (6)] effectively dominates the dynamics.
However, neglecting now the £ component is no longer a
good approximation. Instead, for a > aps, a more accu-
rate procedure would be to neglect the a=* term in (5)
and (6).

We are now in the second regime, dominated by matter
and vacuum and its decay products. Equation (7), for the
evolution of the density contrast, will now be written as

(3 -m)? (1 + w)w?s" + (3—m)

x[(g—m)+w<5—-32—m)Jw6'—g(5=0, 9)

3—m

where we introduced the new variable w = (ﬁ) ,
X Q 1/(3—m) i

with ag = ag ﬁ'ﬁl denoting the value of the

scale factor for the CDM and z-component energy den-
sity equality. In (9) derivatives are taken with respect to
w.

We stress that, as in the earlier radiation-matter era,
perturbations in the radiation component oscillate and
in average can be taken equal to zero. Further, as re-
marked before, the present interest in a A term arises
mainly as a way to reconcile the theoretical appeal of
the inflationary models with observations, which suggest
Q0 ~ 0.2. The vacuum component is usually assumed
to be smooth, otherwise it would be detected by the dy-
namical methods contributing for the effective value of
the density parameter. Hence, in (9), possible perturba-
tions in the cosmological term were also neglected.

The solutions of (9) can be expressed in terms of the
hypergeometric function F(a,b,c,w) as

1 6—m 11 —2m
3-m6_2m 6_2m > v) (10

Ay ocw!/G-mF (

and

A_ w3 6E2mp (— 3 1-m 1-2m —w) .

6—2m’6—2m’6—2m’

(11)
Note that when m = 0 we recover the subhorizon solu-
tions for CDM and a cosmological constant [15,18,19],
now expressed in terms of hypergeometric functions.
Again, if m = 2, the CDM open model [15,18] solutions

are reobtained. It is easy to show that for w <« 1(a < agq)
we obtain the standard result

A xw/B~™ g (12)
and

A_ o w3/ (672m) o q73/2 (13)

With the solutions (10) and (11) we can construct the
peculiar velocity field. In the linear regime, by tak-
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FIG. 1. Log-log plot of f as a function of Q., is shown for
m =0,1, and 2.

ing only the growing mode during the matter and z-
component regime, we have [15]

2
v & ¢,

~ 3HQ,,
where g is the peculiar acceleration and

a 6A+

5 h (14)

f

is the Peebles dimensionless function. Neglecting the con-
served radiation component we can write the variable w

0-6 Sg\ |

0.4 _

0.2+

FIG. 2. Parameter n = logf/logQdm is displayed as a func-
tion of Q,, for m = 0,1, and 2. Note that, for values of Q.
larger than 0.05, n is roughly constant, indicating that, in this
limit, f = (2m)" is a good approximation.
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0.2+ _

FIG. 3. Variation of f as a function of the red shift z is
displayed for two values of the present density parameter
(2mo = 0.2 and Qmo = 0.4) and the assigned values of m.
For z < 1 the difference among models with the same Q.m0
is very small: these models cannot be distinguished by the
present measurement accuracy.

as w = (1 — Q,,)/Q and rewrite (14) as

Qum OA

f= —(3-7"')(1 m)A BQ

(15)

From the behavior of the logarithmic plot of f as a
function of Q,, (Fig. 1) we can see that it is a good
approximation to take f ~ (9,,)". To better illus-
trate this fact we also show in Fig. 2 the parameter
n = logf/logQ,, as a function of Q,, for m = 0,1, and
2. In the limit Q,, ~ 1 two previous results present in
the literature can be recovered. If m = 2 [13], we obtain

£~ Q%" and if m = 0 [20], we have f ~ Q3/*!. If m =
we get f ~ 9,5,{ ®. These are special cases of the general

expression
,f ~ (Qm)G—m/(11—2m) , (16)
obtained by expanding Eq. (15) around 2,
By using Q,, = T————, the va.natxon of f

14 ——-m2 (142)™m—3

as function of the red shlft z can also be constructed
[19,20]. As shown in Fig. 3, if 2 < 1, there is no appre-
ciable difference between models with the same Q. So,
although the dynamical methods allow the determination
of Q,,0 by measuring the peculiar velocity of objects at
low red shift, it will not be possible to distinguish mod-
els with different values of m. In the future, however,
the situation may change if a more precise value of 2,9
is achieved and if it becomes possible to perform similar
tests at higher red shifts [20].

IV. POWER SPECTRUM

Finally, we want to obtain the power spectrum and
to compare the result for different vacuum decay rates
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FIG. 4. Power spectra for minimal CDM (Qme¢ = 1.0)
and CDM with decaying cosmological term in two cases:
Qmo = 0.2 and Q.m0 = 0.4. The decay rate changes for differ-
ent values of m(0,1, and 2). For all models the spectra are
normalized using the top hat function with 7o = 82! Mpc.

(different values of m). To do this, we need to know
how the perturbations with different wavelengths evolve
from some given initial spectrum to the final spectrum
(at some later time t;). Basically, this evolution will
include a stage in which the perturbation is still outside
the horizon and the Newtonian equation we have solved
must be replaced by its relativistic counterpart. Since we
want to focus on the relative behavior of different values
of m, we consider a simplified assumption. The spectrum
is considered to be a power law at the horizon entrance
(tenter); that iS,

Ox(tenter) = AX™ . 17
For a = 3/2, this corresponds to the scale invariant spec-
trum, which is predicted by some inflationary models. In
fact, the evolution of the perturbation is affected by the
cosmological term mainly after its domination over mat-
ter. Since this happens very late in the evolution of the
Universe, for almost all scales of interest, the perturba-
tion is inside the horizon when the z component domi-
nates and the Newtonian equation is enough to study its
growth. In addition, when the = component is dominat-
ing, we generically expect that the largest wavelengths
will gradually leave the horizon, as it happens during the
inflationary period.! Wavelengths that remain inside the
horizon up to t; were already inside when the matter
domination finished, and the effect of the £ component

1This is strictly true for m = 0,m = 1.0 but for m =
2.0 a few wavelengths do enter the horizon after vacuum
domination.
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on their growth is computed by (7). For these reasons,
the simplification made by the choice (17) does not inter-
fere substantially with the relative evolution for different
values of m.

Taking (17) with o = 3/2 as the initial spectrum, we
consider tenter as a function of A given by the condition

o
H(tenter) '

For a = ap, we denote the solution of (18) by Aps. Thus,
Aps is the wavelength that crosses the horizon when con-
served radiation and £ component balance their contribu-
tions to the total energy density. For those wavelengths
that cross the horizon after a,,, that is A > Ay, the per-
turbation grows with A, after the horizon entrance. For
those with A < Ap, perturbations grow with 4, after
the horizon crossing until aps, when this solution must
be matched to the solutions of (9) to give the final growth
factor.

By using the top hat window function, the normaliza-
tion is chosen (for all values of m) by setting the root-
mean-square mass fluctuation within spheres of radius
ro = 8h~! Mpc to be equal unity:

SM\ 2\ /2
—_ =1.
<< M ) >r0=8h“1 Mpc

’\a(tenter) = (18)
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The results are shown in Fig. 4 for both €Q,,0 = 0.2 and
Qmo = 0.4 together with the minimal cold dark matter
model, 2,0 = 1.0 (no baryons). As compared with this
minimal cold dark matter model, we observe the expected
decreasing power on the small scales and the increasing
power on large scales for all values of m. Since h%Q,, is
the same for all m’s, we have the same )4 in all cases
and the bend in the power spectrum occurs at the same
point. For scales larger than A.q, the three curves become
distinct, showing a faster decrease for larger values of m,
but, roughly, they all show a more favorable behavior
with more power on large scales than the minimal cold
dark model.
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