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Low energy effective string cosmology
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We give the general analytic solutions derived from the low energy string effective action for four-
dimensional Friedmann-Robertson-Walker models with a dilaton and antisymmetric tensor field,
considering both long and short wavelength modes of the H field. The presence of a homogeneous H
field significantly modifies the evolution of the scale factor and dilaton. In particular it places a lower
bound on the allowed value of the dilaton. The scale factor also has a lower bound but our solutions
remain singular as they all contain regions where the spacetime curvature diverges signalling a
breakdown in the validity of the efFective action. We extend our results to the simplest Bianchi
type I metric in higher dimensions with only two scale factors. We again give the general analytic
solutions for long and short wavelength modes for the H field restricted to the three-dimensional
space, which produces an anisotropic expansion. In the case of H field radiation (wavelengths within
the Hubble length) we obtain the usual four-dimensional radiation dominated FRW model as the
unique late time attractor.

PACS number(s): 98.80.Cq, 11.25.—w, 04.50.+h

I. INTRODUCTION

String-inspired cosmology is currently attracting a
great deal of attention. The most favored starting point
in any analysis is the low energy string effective action
from which the lowest order string P-function equations
can be derived [1].These equations, for the closed string,
consist of three long range fields, the dilaton P, the Kalb-
Ramond field strength H„„i„and the graviton, all arising
out of the massless excitation of the string. In addition
there is a constant related to the central charge of the
string theory which vanishes in the critical number of
dimensions 10 or 26. The fact that only the massless
excited state is used suggests that the efI'ective action is
not a valid description for probing the highest energies
associated with string theory. However, we may hope
that through the P-function equations we are investigat-
ing physics associated with events &om say the string
scale down to the grand unified theory (GUT) scale. Such
an approach has already been adopted by a number of
authors [1-12].

Veneziano and his collaborators have emphasized the
possible importance of the duality symmetry which char-
acterizes the equations of string cosmology [5,11,13].
They point out the possibility that infIation can occur
without relying on a potential energy density. Rather,
the duality transforms, which relate the dilaton and the
metric, lead to a possible inQationary mechanism. In
[13] it is claimed that the inclusion of the H field does
not seem to change the underlying properties of these
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duality-related cosmologies, although they also point out
possible problems with exiting infIation in these models.
Cosmological solutions with a dilaton and a nontrivial H
field have been obtained by Tseytlin [9], for curved max-
imally symmetric spaces in string theory, with a nonzero
central charge deficit. (See [9] for details and complete
references. )

In [12], the authors study the outcome of string-
dominated cosmology in a four-dimensional Friedmann-
Robertson-Walker (FRW) spacetime including a homoge-
neous H field (H„„p) as well as a nonzero critical charge
deficit V (some of the particular solutions were previ
ously obtained by Tseytlin [8]). Their results are based
on a phase-plane analysis. In this paper, we present
the general analytic solutions, including both long and
short wavelength solutions for the H Geld, but setting
V = 0, and then show how this can be extended to sim-
ple anisotropic models in higher dimensions.

In Sec. II we introduce the low energy equations of
motion in the string &arne and demonstrate how they
can be related via simple conformal transforms to equa-
tions in other &ames. Section III concentrates on four-
dimensional FR& models and describes the complete so-
lution for a homogeneous H field, reproducing where ap-
plicable previous solutions found in the literature [9,12].
We go on to describe radiation solutions in which the H
field has a spatial dependence on small scales (i.e. , wave-
lengths much smaller than the Hubble length). Because
the metric (and the dilaton) is homogeneous and isotropic
we require the H Geld energy-momentum tensor to be
homogeneous and isotropic on average, and demonstrate
how at late times we recover the general relativistic re-
sults for radiation and curvature dominated models. In
Sec. IV we consider the infIuence of homogeneous and
radiation solutions of the II field in D = 4 + n cos-
mologies where the metric tensor is decomposed into
the direct product of a four-dimensional FRVf metric
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and an n-dimensional metric. We give general analytic
solutions for the simplest version of the D-dimensional
Bianchi type I models where there are just two scale fac-
tors. The results indicate how the K 6eld can produce
an anisotropic expansion leading to one scale expanding
while the other contracts. Finally in Sec. V we summa-
rize our main results.

ory either by choosing the appropriate number of spa-
tial dimensions or due to cancellation with contributions
&om other matter fields. Even for nonzero V this should
be an increasingly good approximation at early times if
the curvature and/or kinetic energy densities are large,
V « R, (VP), H, but we would need to consider its
efFect at late times in an expanding universe.

II. STRING ACTION A. Conformal frames

We shall take as our starting point the low energy D-
dimensional string efFective action [1]

S =
2 d xg ge ~ R+ (Vp) —V — H—1 D 2 1

2K') 12

+ d +v 9~matter i
D (2.1)

where KD
—— 8+GD and we adopt the sign conven-

tions denoted (+++) by Misner, Thorne, and Wheeler
[14]. P is the dilaton field determining the strength of
the gravitational coupling and H2 = K„„~H"""where
Hpvp = tpBvAj ~

The variation of this action with respect to the g„„,
B„„,and P, respectively, yields the field equations

These field equations are similar to those found in
Brans-Dicke gravity [15] with the Brans-Dicke parame-
ter ur = —1. This is only strictly true in the absence of
the H field as in Brans-Dicke gravity it is ass»med that
the energy-momentum tensor of all fields (other than the
Brans-Dicke field, 4—:e ~) are minimally coupled to the
metric g„„.While the energy-momentum tensor of other
matter fields is assumed to be conserved with respect
to this metric (the string metric), so that V„T""= 0,
we cannot define an energy-momentum tensor solely in
terms of the H 6eld and the string metric which is con-
served independently of the dilaton. This is just a conse-
quence of the equation of motion for H [Eq. (2.3)] which
has an explicit dependence upon e&.

H„„p is only minimally coupled in the conformally re-
lated metric [16)

R ——g R = ~&e T + —
~

3H q„H ——g Hv v 2 Q v 1 vis v 22"
1 „1——g"V ——g" (VQ)2" 2"

( 2P

g6 —D)

which we might call the B metric, in which we find

(2 5)

+ (Qpg gpgg ) VXV~4' ~ (2.2) V'„H"""= 0. (2.6)

(
—PH~vA) 0 (2 3)

Another particularly useful metric to introduce is the
Einstein metric

2 U P+ R —(VP) —V — H' = 0, —
12

(2.4)

2P
ggv = P l D 2 I g~v .

D —2)
(2.7)

where T„„is the energy-momentum tensor derived &om
the matter Lagrangian.

The efFect of certain types of "stringy matter" has
been considered elsewhere in the literature [ll]. Specific
schemes of compactification, not to mention the chosen
gauge symmetries of the theory, will determine the be-
havior (and number) of both bosonic and fermionic mat-
ter fields. It is not inconceivable that in some "matter-
dominated era" of the stringy epoch of the universe these
matter 6elds will play a part in determining the cosmo-
logical evolution. In particular, the antisymmetric tensor
may be considered a matter 6eld, and as we shall see it
plays a signi6cant role in string cosmology. In favor of
considering the possible efFects of this 6eld on the cos-
mology we shall ignore all other contributions &om the
matter Lagrangian.

The charge deficit V is a constant proportional to
D —26 for the bosonic string and D —10 in the het-
erotic or superstring. We will set V = 0 in our anal-
ysis. This may well be necessary for a consistent the-

S=
2 d xQ g R — (Vp)'

2r"D D —2

( 4y l-,—Vexp~
/

——exp /— iH
gD —2y 12 ~ D —2)

( DP+ d xQ—g exp~ (2.8)

The corresponding field equations are then those for in-
teracting GeMs in general relativity:

Note that the three-form H„„& has a conformally invariant
definition in terms of the potential B„„,whereas its covariant
form has indices raised by a particular metric.

In this kame the action appears simply as the Einstein-
Hilbert action of general relativity in D dimensions, while
the dilaton appears simply as a matter 6eld, albeit one
interacting with the other matter fields:
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+pu ggau+ IGD
~

Tgv + Tvv + Tpv(0) — (4)—
2

(3.3)

+ (v)T (2 9) where prime denotes difkrentiation with respect to q.
In four-dimensions the H Geld equation of motion,

Eq. (2.10), is solved by the ansatz

=0, (2.10) ~peak 2$~vA~h
)K ) (3.4)

2Q l 1 ( 4P
CI P —Vexpi f+ —exp

/

—
/
H + 'T =-0,

(D —2) 6 g D —2)

where e"""" is the antisymmetric four-form (obeying
7'~e""""= 0) and the integrability condition, B~„H„q„I=
0, becomes the new equation of motion for h

(2.11) h+2V"PV'„h = 0. (3.5)

where the terms on the right-hand side of the Einstein
equations correspond to

T„" =exp/ /T„",
(D+'r
qD —2)

I
g„"g "—g„g""

i 4,~-4,-, (213)

)T„"= —exp ~—(
12 q D —2)

Thus h evolves as a massless scalar Geld coupled to the

dilaton (except in the 8 frame where CI h = 0). The
same interaction appears in the dilaton equation of mo-
tion (Eq. (2.11), with V = 0) as

( ~ 2
H P=e2~(V'h (3.6)

Thus we have two interacting scalar fields whose
energy-momentum tensors are given by

x
~

3H„g„H"""— gH—
1 C 2P

~2~ (~)T" = —-Vexp
~ ~

g2 (D —2y

(2.14)

(2.15)

' '"T"= —
II

g„"g "—gg""
1I 4-.0

2 (H)ryrv f A~» -~ A»
~ 2Pg-

(3.7)

(3.8)

III. ISOTOPIC D = 4 SOLUTIONS

Firstly we will consider the behavior of four-
dimensional homogeneous and isotropic cosmologies for
which the most general metric is the Friedmann-
Robertson-Walker metric

t' dr'ds' = dt'+ a'(t) ~— , + r'd&' ~,
q1 —kr2 )

dr'= a2(q)
~

—dr) + +r dA
1 —kr2

(3.1)

(3.2)

the energy-momentum tensors for the matter, dilaton
and H fields, and potential V, respectively. The total
energy-momentum must be conserved of course by the
Ricci identity, but there are interactions between these
four components. Henceforth, as remarked earlier, we
shall set T„„and V to be zero.

These equations simplify considerably in two cases.

A. Homogeneous solution h(q)

I

g" +
~

2—+ 2P'
~

h' = 0,
a

(3.9)

Thus far we have allowed for the possibility of a spatial
dependence of the H field. However as we have already
restricted ourselves to considering a homogeneous metric
and dilaton Geld, this will only be consistent with choos-
ing a source that is at least homogeneous on average.
Indeed as far as we are aware, the only case that has
been considered to date [12] is that of a strictly isotropic
H field, where h = h(g), and thus He„„——0.

In this case the equation of motion for the 8 field

[Eq. (3.5)] becomes

in terms of the conformally invariant time coordinate,
q, with k = +1,0, —1 for spatially closed, Bat, or open
models, respectively. Just as we take the metric to be
homogeneous we shall also assume that the dilaton has
no spatial dependence, P = P(r)).

With D = 4 the conformal transform to the Einstein
kame gives a rescaled scale factor a = e 4'~ a. The met-
ric Geld equations are simplest in terms of the Einstein
metric where we have the familiar constraint equation
(the 00-component of Eq. (2.9) with V = 0 and T„" = 0) dg = dP +e ~dh (3.10)

which is easily integrated to give e2&a h' = +L where L is
a non-negative constant. It is this kinetic energy density
of the H Geld that drives the dilaton. Note that back
in the string kame this solution corresponds to H
6L /a . Thus it will dominate any charge deficit V in
the dilaton equation of motion, Eq. (2.4), as a ~ 0.

Because both h and P are functions only of time, we
can define a new scalar field g(t) where
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The energy-momentum tensor in the Einstein frame is
then simply that for this single minimally coupled field:

2 (P)yv + (H) Tv &i -A~~ ~-Afc

(3.ii)

a
for L=O,

1+k~'

for L $0.

~/
Q" + 2=/' = 0,a

(3.12)

which can be integrated to give a2$' = +K, where K is
a positive constant. (We will not consider the trivial case
where K = 0.) Thus in the Einstein frame we have an
isotropic perfect stiff fiuid whose energy density +2p =
—g, ( (4'&T'o + &+)T'o) = K /4~~.

The constraint Eq. (3.3) for the Einstein scale factor,
a, can then be integrated to give [17j

K
~g 1+ k~2 ' (3.13)

The equation of motion for a homogeneous minimally
coupled field is

(3.i7)

The evolution of the scale factor and dilaton in diferent
cases is shown in Figs. 1—4. The singular behavior of the
conformal factor, e&, at the initial singularity in the Ein-
stein kame produces cosmologies which have a minimum
nonzero value for the scale factor in the string kame. In
the presence of the H field, a diverges both as g m koo
(or as ri -+ qo 6 x/2 for k ) 0) and as ri -+ rjo, so all
models "bounce, " although they are still singular in the
sense that the Ricci curvature diverges.

Note that the vacuum solutions again exhibit two dis-
tinct branches corresponding to P and a either monoton-
ically increasing or decreasing. The k = 0 models corre-
spond simply to power-law solutions shown in Figs. 1(a)
and 1(b). We can write the solutions in terms of the

where we define

'
~tan(g —vis)~ for k =+1,

~(n) =
/
tanh(rp —rio) /

for k = —1 .
(3.i4)

We emphasize that in the Einstein kame the scale fac-
tor evolves in a wholly unremarkable fashion. We have
a singularity at g = go with a = 0 and the models ex-
pand away &om it for g ) go or collapse towards it for

g ( go. Only closed models can turn around, and these
recollapse at g = bio 6 n/2. There are no bounce solu-
tions. Notice also that the behavior of the Einstein scale
factor is independent of L, and thus is the same in vac-
uum, i.e., without the presence of the H field, as it is
with the H field.

Combining the first integrals for Q and the H field with
the definition of d@ we also have

I2 ~2 —2$L2
~4a

(3.i5)

This too can be integrated to give

for LQO,
(3.16)

(b)

where ~, is an integration constant. Note that the evo-
lution in the presence of the antisymmetric tensor field
is quite distinct &om the vacu»m behavior. In particu-
lar there is a lower bound on the dilaton, e2~ ) K2/L
By contrast, there are two distinct branches in vacuum
where the dilaton is either monotonically increasing or
decreasing.

We can use this to recover the scale factor in the string
kame:

~ ~ ~ ~
~ ~ ~ 0 0 I ~ ~ \ ~ ~ ~ ~ t 1 ~ ~ I ~ 0 0 ~ ~

0
~ oo~ ~ ~ 0 t 0 ~ ~ 0 ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ I ~ 0

FIG. i. (a) The decelerated branches of the scale factor a
(solid line) and dilaton e~ (dotted) in a spatially Sat FRW
universe with vanishing (or constant) h. (b) The acceler-
ated branches of the scale factor a (solid line) and dilaton eS

(dotted) in a spatially Sat FRW universe with vanishing (or
constant) h.
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~ ~ ~ ~ ~ ~ ~ ~ ~ g ~ ~ ~

~ ~

~ ~
~ ~~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~

FIG. 2. Scale factor o (solid line) and dilaton e~ (dotted)
in a spatially Bat FRW universe with homogeneous h.

FIG. 4. Scale factor a (solid line) and dilaton e~ (dotted)
in a closed (k = +1) FRW universe with homogeneous h.

proper time in the string &arne by integrating dt = adg.
The two solutions are then

e~ oc ~t
—to~+~ and a oc ~t —tp~+

e+ oc (t —tp[
~s ' and a oc (t —tp[

These two branches, corresponding to a decelerated or
accelerated scale factor, are related by the duality trans-
formation [18] a ~ I/a and e~ —i e~/a .

For L g 0 the k = 0 solution corresponds to the power-
law vacuum solutions at early and late times and we find
that it smoothly interpolates between the accelerated and
decelerated branches. (See Fig. 2.) In some sense then it
could be described as a "self-dual" solution.

As g m imp, we have e~ oc ~t —tp~
~ and a oc ~t-

tp~ ~~ as t +tp. -
As g —i +oo, we have e~ oc )t(~ and a oc (t) ~~ as

t M +oo.
This is precisely the behavior found by Goldwirth and
Perry [12] in their phase-plane analysis. The vacuuin
solutions correspond to particular solutions (here corre-

sponding to the limiting behavior where w, is either infi-
nite or zero) found previously [8].

The solutions in spatially curved models approach the
Hat space results only near go. At late times 7. ~ 1
in open (k = —1) models (Fig. 3) and thus the dila-
ton becomes &ozen-in at a fixed value as the curvature
dominates the evolution and and we approach the Ein-
stein result. In closed models (Fig. 4) where w +oo-
as YI

—rjp M +x/2, the scale factor diverges in a finite
proper time. Thus although these models bounce, and
therefore must undergo a period of infiation (a & 0) in
the string &arne, they still become curvature dominated
at late times,

B. Radiation solution, (Vh) = 0

It is also possible to consider cases where the H field
does have a spatial dependence. Because our metric (and
dilaton) is homogeneous and isotropic we will require
that the H field energy-momentum tensor is also homo-
geneous and isotropic on average. It is natural (in fiat
space) to decompose any field into Fourier modes, h =

h~(q) exp(iq;z') where q, is a spatial comoving three-
vector. We see then that the preceding case corresponds
to the long wavelength mode where q2 = P,. q2 -+ 0. The
other case in which we can solve the equation of motion
is where q ~ oo where eH'ects of spacetime curvature can
be neglected and the usual Minkowski spacetime result
holds.

Specifically we find that, in the B kame, for q
a"/a, k/a2, the equation of motion for h~(g) reduces to

(ah~)" + q (aha) 0 . (3.18)

~ ~ ~ y ~ ~ 0 0 ~ J ~ 0 ~ ~ ~ ~ + ~
~ ~ ~ ~ y ~ ~ ~ ~

~ ~
~ g ~ ~ ~ ~ *

~ ~ ~ ~
o~~ ~ ~

Thus, for a single short wavelength mode, in the limit

q +oo, we have h~ -= mme'v" /a where mv is a constant.
This corresponds to an energy-moment»m tensor for the
8 field in the Einstein &arne:

FIG. 3. Scale factor a (solid line) and dilaton e~ (dotted)
in an open (k = —1) FRW universe with homogeneous h.

m2
2 (H)Tv v

V@V a
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where q~ is a null four-vector with qo ——q. Clearly this
is not isotropic for a single wave vector q„, but if we
consider an isotropic distribution of wave vectors we find

—tc (( )Tz ) = 3tc ( T;* ) (no sum), (3.20)

~4a (3.21)

2a (3.22)

Just like the tP Beld for homogeneous h(g), the energy-
momentum of the P Beld behaves like a stifi' Buid, with

—~2 (y)rO „2 (y)

K'
4a6

no sum (3.23)

(3.24)

Once again the constraint Eq. (3.3), now for two nonin-
teracting Huids, one radiation, one stiff, can be integrated
[17] to give

the usual result for radiation in a FR& universe, where
M—:f m2q2dq.

Note that the Quid is trace-&ee, and thus conformally
invariant. This means that the energy-momentum of the
radiation is conserved in all conforxnal frames and so the
H Geld is decoupled &om the dilaton which appears as
a minimally coupled scalar Beld in the Einstein &arne.
Thus the Brst integral of its equation of motion, for a
homogeneous P(g), gives

(b)

~ ~
~ ~ ~ ~ ~ ~ +

0 ~ 0 4 ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ 4 ~ ~ ~

~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~

~ ~

~ ~

~
~

~ ~

~ ~

~
~

~ ~

~ ~

~ ~

~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ 0 ~ ~ i ~ ~ ~ yy

K+ M7.

1+kr' ' (3.25)

(3.26)

& s l+ K+Mr
(sg j ~3 1+Icr

where we have introduced

Mr(g)
K+ Mr(ri)

(3.27)

(3.28)

Notice how the evolution of the dilaton Geld is now
sixnilar to that in the vacuum case except it is determined
by the function s(rI) rather than r(ri). At early times
(g ~ g0) s is proportional to r but, n~hke the vacuum
case, s —+ 1 as ~ m oo and so the Beld becomes &ozen-
in at late times in the Bat model as well as the open
model [where r -+ 1 and thus s ~ M/(K + M)). Thus
we recover the late time general relativistic results for
radiation and curvature dominated models, respectively.

using the time coordinate defined in Eq. (3.14). (As in
the homogeneous case, this is just the familiar behav-
ior for a FR% universe in general relativity with matter
obeying the strong energy condition and thus singular for
all models at r = 0.) This in turn allows the equation
for P', Eq. (3.22), to be integrated, yielding e4' and thus,
via the conformal transformation, the scale factor in the
string &arne:

FIG. 5. (a) The decelerated branches of the scale factor a
(solid line) and dilaton e~ (dotted) in a spatially Sat FRW uni-
verse with short wavelength h. (b) The accelerated branches
of the scale factor a (solid line) aud dilaton e~ (dotted) in a
spatially Sat FRW universe with short wavelength h.

IV. ANISOTROPIC D = 4+ N SOLUTIONS

Having investigated the homogeneous and radiation so-
lutions for the H Beld in four dimensions, we return to
Eqs. (2.8)—(2.14) in the Einstein kame where we will con-
sider a metric tensor in D = 4+ n dimensions that can
be decomposed into the direct product form

ds = dP + a (t)dz;de*+—b (t)dxgdx~, (4.1)

where we let i run from 1 to 3 and J run from 4 to
n+ 3. The scale factors a and b thus refer to the three-

In comxnon with the vacuum solutions, there are two
distinct branches [Figs. 5(a) and 5(b)] with the dila-
ton monotonically increasing from zero (the deceler-
ated branch) or decreasing kom infinity (the accelerated
branch) at rI = gs. For Mr (( ~K~ the evolution is es-
sentially identical to that in the vacuum case with two
branches where a ~ oo as r ~ 0 when P ~ oo, but
a m 0 when P m 0. Thus we have no solution interpo-
lating between the vacuum branches.
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2

a + (3a + nP) cr = ~
[p + (n —1)p —nq],n+2 (4 2)

space and n-space, respectively. We have chosen these
spaces to be spatially fiat, thus this is a Bianchi type I
metric. The procedure we outline here could also be ap-
plied to the general D-dimensional Bianchi type I metric,
but we restrict our discussion here to a two-scale factor
model to avoid introducing too xnany degrees of &eedom.
Equation (4.1) is, of course, related to the original string
metric through the conformal transformation Eq. (2.7).

The Einstein evolution equations, Eq. (2.9), for the
two scale factors written in terms of a = (da/dt)/a and

P = (db/dt)/b are then

2

hq+
~

3a —nP+ P ~
hq+ =h~ = 0.n+2 p

c~ (4.8)

The final equation of motion is that for the dila-
ton in the Einstein frame, Eq. (2.11), driven by H2 =
—6 exp(8$/(n + 2) )b 2"(Vh) 2 giving

4P/(n+2)
4+ (Sn+ nil)4 = — — (Vh) (4.9)

We can decompose the field h into its Fourier compo-
nents, h(t, x') = h~(t) exp(iq;x') so that the equation of
xnotion for the homogeneous function h~ is

KP+ (3a+ nP)P = (p+ 2q 3P)—

plus the constraint equation

(4.3)

Note that having chosen all the fields to be independent
of the coordinates on the n-space we could replace the D-
dimensional action by an effective theory written in terms
of the four-dimensional part of the metric in the string
kame:

n(n-1 .,3n +3nnP+ ' P = ir,Dp,2
(4.4)

where p = To, p =—T, and q = T& (no sum over i
or J). Note that any isotropic stiff fiuid for which p =
p = q makes no contribution to the right-hand-side of
the evolution equations, entering only into the constraint
equation.

We will adopt the simplest extension of our D = 4
ansatz for the H field,

(4.10)

where the effective D = 4 dilaton is given by

e&
e~ =—

b" ' (4.11)

1
S4 —— d zg —gq e ~ R4+ (Vp) —n[V(lnb)]

1 2——H
12

where

~p, vA 4P/(n+2) pav A~ h qK )

4l~vA~ '
bP b'vbAb~

[O 1 2 3) '

g —g

(4 5)

(4.6)

and the scale factors of the extra dimensions just act
as massless (moduli) fields. However to emphasize the
dynamical evolution of the n-space we shall treat this
scale factor on an equal footing with that of the three-
space. Note that the effective D = 4 Einstein frame
would not be the same as the (D = 4 + n)-dimensional
Einstein kame due to the modified dilaton.

Note that whereas this ansatz included all the solutions in
four dimensions, this represents only one of many degrees
of &eedom for the H field in the D = 4+ n case. An an-
tisymmetric Geld in the higher-dimensional space corre-
sponds to a whole range of fields in the four-dimensional
reduced theory [19]. At a classical level we can obtain
self-consistent results if these other fields are set to zero
initially, though in a full quantum treatment we would
have to consider precisely how the massive modes of these
fields are excited in the extra dimensions. Our choice of
ansatz makes any dependence of the function h on the
n-space coordinates, x, irrelevant as this cannot affect
H""" and so we need consider only h = h(t, x'). A simi-
lar approach of dexnanding the H field live only in three
space dimensions was considered in [4] who found numer-
ically that in the Einstein kame the effect was to drive
that space to a large size while the other spaces remained
of order the Planck scale.

Using (4.5) the integrability condition becomes the
equation of motion for h(t, x'):

A. Homogeneous solution h(t)

h+
i
3a —np+ p i

h=0,n+2 )
(4.12)

or

~ +Lb" 4@/(„+2)e
a

(4.13)

where I is a positive constant. From Eq. (2.14) and
making use of Eqs. (4.5) and (4.13) we have

H„p„H"""= 0 if p or v = (0,4, 5, . . . , n+ 3),
2I 2

H;q„H~ "= b~ for i and j = {1,2, 3) .
a6

Hence in Eq. (2.14) we obtain

The equation of motion for h for long-wavelength
modes (where q~ m 0) becomes

p, v=O

(4.7) L2
2 (H) yO 2 — —4P/(n+2)KD O

——K~pH ——
6 e

4a
(4.14)
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~ ~ L2
(&)Z-' = ~2 P e

—44/(~+2) (no sum), (4.1.5)
4 6

tc T—:tc q~ = — e ~/( + l (no sum),
L2

4a6
(4.16)

and

L2~4//(n+2)
P' = —

( 2)
—, (& + &n)

& = +I((+(a),

(4.25)

(4.26)

which means that the H Beld acts like an anisotropic Buid
satisfying

PH —PH = QH ~ (4.17)

Note that, just as in the D = 4 case, H2 in the string
kame is inversely proportional to the square of the vol-
ume of the three-space (H2 oc a s).

There is also a contribution to the energy-momentum
from the dilaton field given by Eq. (2.13):

'2
)To ——+~pq =—y -0

2(ny2) ' (4.18)

'2
~~lT," = m~ l~lT~ —— (no sum), (4.19)

2(n+ 2)

which means that the P field acts like an isotropic stifF
Buid,

pp = pp = Qp ) (4.20)

and thus, as remarked in the preceding section, drops out
of the evolution equations for a and P.

We can substitute the energy-momentum tensors into
Eqs. (2.11), (4.2), and (4.3) to obtain the equations of
motion

gt

( n+ 2)P + 4( 4( + C' (4.27)

where C is another integration constant related to the
others via the constraint Eq. (4.21).

(n+ 2)C = 2(n+ 2)g, —3n ( (4.28)

There is another important constraint which emerges.
From Eqs. (4.25) and (4.27), by demanding that the com-

bination b ~e ~/( + ) remains non-negative we obtain

(n+ 2)('+ 4/&(+ C ( 0, (4.29)

which means that the allowed range of ( is bounded by
m ( ( ( m+, where my are the roots of the above
expression,

where P':—dPid(, etc. , and (y, (, (p, and (» are con-
stants of integration. In fact at least one of these is redun-
dant as the origin of the variable ( is clearly arbitrary as

$ is only defined by the difFerential relation in Eq. (4.22).
Henceforth we shall take (p = 0 so that p' = 0 at j~ = 0.
We can solve for p' by difFerentiating Eq. (4.25) and sub-
stituting in for gV from Eq. (4.23) to obtain

j+ (3a+nP)j = —e ~/l"+ l,L 24
m+ =

(n y 2) n+ 2
' (4.30)

2

a+ (3m+ nP')n = " —e-'~/~"+'i,
2(n+ 2) as

L2
P + (3~ + nP)P 4P/(»+2)—

(n+ 2) as

and we have introduced b, —= [3n2( —2n(&~]i/s. Clearly
solutions only exist for 3ng ) 2(42.

We solve Eq. (4.27) to obtain

while the constraint equation becomes b(() = bp(( —m )~-(mg —() i+, (4.31)

L2
2 + 3 ~

P + ( ) P2 v' + —4y/(ra+2)
2 2(n + 2) 4as

(4.21)

where bo is a constant and

1 2(4,

2(n+ 2)
(4.32)

d(
——sbra —4$/(ra+2) dt (4.22)

we obtaia erst integrals for the equations of motion:

Notice how the presence of the H field on the right-hand-
side of these evolution equations tends to drive P and o.
in a positive direction, but drives P negative. Thus it
produces shear and an anisotropic expansion.

Introducing a new time coordinate ( through

We obtain similar solutions for a and P using Eqs. (4.24),
(4.23), and (4.31):

(4.33)

(4.34)

where ao and $0 are constants (with boe 2~/&"+2l = L),
p~ and s~ being given by

L2e44/(~+2)
(6+ (y)

L2 4P/(n+2)
~' =

2( 2)
—, (( + ( )

(4.23)

(4.24)

n 2(y —(n+ 2)(
4(n+ 2) b,

1 n(y
s~ ———— 1+

2

(4.35)

(4.36)
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It is clear from Eqs. (4.31), (4.33), and (4.34) that
the behavior of a, 6, and e& is similar in each case, the
differences emerging in the exponents of the (( —m~).
We need to know how these solutions appear in the string
kame as this is where the original theory has emerged
&om. This is straightforward to do. Using Eqs. (2.7) we
see that the scale factors in the string frame are given by

a =ap —m "- m+ — "+,
b(() = bp(( —m )"-(m+ —()"+,

(4.37)

(4.3s)

where the constants ug and vy are

1 n(1+
4

V~
2A

dt = a b "e~d(

oc (( —m )
'+ (m+ —() '+ +d(,

(4.3S)

(4.40)

where

Thus the qualitative behavior of the solutions is quite
simple, approaching power laws as ( ~ m~ with the
exponents uy and vy.

Using Eqs. (2.7) and (4.22) we see that the time (dt)
in the string frame is related to (d() by

1 u+ 1(
'cp+ V 3

(4.47)

gp

Qp

(( ) rat /2d

+ —() (4.4s)

where q, —gp ——ap2/n( I. Note that for ( ( 0 the
coordinate r/ runs —oo to gp and for ( ) 0 we must
have qp & g & oo, i.e., the range for g is always semi-
in6nite, coinciding with the semi-infinite range for the
proper time. To avoid any ambiguity we introduce the
non-negative variable 7 defined in Eq. (3.14) but here
restricted to the spatially fiat (Ic = 0) case

The upper bound corresponds to the case (4, ——0 where
b =const and we recover the late-time behavior of the
isotropic D = 4 solutions. This implies that in the string
&arne we do not obtain inflationary solutions (by which
we mean d a/dt & 0) at late times. This of course does
not imply that we do not obtain in6ationary solutions at
earlier times. On the contrary, all the solutions which
initially contract (da/dt ( 0) but then expand at late
times (da/dt & 0) must undergo a period of accelerated
expansion.

Comparison with the isotropic D = 4 solutions dis-
cussed in Sec. IIIA is easiest if we use the conformally
invariant time coordinate defined by dq = dt/a, which is
related to ( via

~~ = 1+ aug —nvy + s~, ~ = In
—apl, (4.49)

1 3n(
4 "4d (4.41) which runs from oo to 0 for ( ( 0 and &om 0 to oo for) 0. We then have

Although we cannot in general integrate this relation to
obtain t(() in closed form, we can solve for the time in
the string &arne in the limits ( ~ my to give

t oc I( —mal (4.42)

a(t) oc lt —tpl"+

b(t) ~ It —t, l"'/ ',
e4'&'& oc lt —tp I'+/

(4.43)

(4.44)

(4.45)

Thus we need to lcnow the behavior of the ratio u~/ip~
in order to understand the late time behavior of the solu-
tions for a(t). Assuming that we are dealing with events
at late proper time as ( ~ m+ and t ~ oo (i.e., ( & 0)
then we have

u+ n( +b
ip+ 3n( +b, ' (4.46)

which is bounded by

We see that ( -+ m~ in finite proper time if iU~ ) 0,
which means that ( —i m+ in finite proper time if ( ( 0,
and ( ~ m in a proper time if ( & 0. Thus the proper
time interval is always semi-infinite. (The case ( = 0 is
excluded by the requirement that b, P 0.)

From Eqs. (4.42), (4.37), (4.38), and (4.34) we have
the limiting behavior of the solutions as power laws

/ ) 1—A/nt

v~

/ ) tw/~6
b=b, I—

) (nag E)/rag—

E~)

&
i+ay g

+I —
IEr )

(4.50)

(4.51)

( $ (n(@+A)/n(

+I —
Ikr*r

(4.52)

Note that b is a monotonic function of ~. However the
qualitative behavior of a depends on the value of n( /(~
and can be separated into two cases.

(1) + In( I
(requiring ln( I

( 141) a(r) is m»o-
tonically increasing function.

(2)» ln(-I (reqm»ng IX-I & 141)- a(&) contracts
initially, bounces and then expands.

The latter case includes the D = 4 isotropic case
(shown in Fig. 2) where (4, = 0 and b remains constant.
We then have 4/n( = ~3 and we recover the solu-
tions given in Eqs. (3.16) and (3.17) independent of n,
the number of extra dimensions while they remain static.
Another example is when we start with an isotropic con-
traction (a/a = b/b ( 0) at 7 = 0 as shown in Fig. 6. The
size of the n-space continues to decrease whereas the 0
field. prevents the three-dimensional space &om coOaps-

ing, and it then expands at late times.
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FIG. 6. Scale factors a (solid), b (dashed), and dilaton e~

(dotted) in a D = 4+ 6 Bianchi I universe with homogeneous
h, starting from an approximately isotropic state at t = 0.

where mq is a constant and q& is a null four-vector re-
stricted to the four-dimensional metric ds4 ——a2( dr—l +
dz2).

The corresponding energy-momentum tensor in the
Einstein frame is

v
2 (H)Z v""-b ' (4.s6)

„2 (a)~0—KD

2
( (H)T*)

2 {H)yZ

M
KD~

a4b"
1 M

(no sum),
3 a4bn

+Dq~ = 0 (no sum) .

(4.57)

(4.58)

(4.59)

which when averaged over an isotropic distribution (with
respect to the three-space) gives the anisotropic [with
respect to the whole (n+ 3)-space] radiation Quid

The dilaton field again acts as an isotropic stiff fIuid with

'2

(4.60)+2)

which does not appear in the Einstein evolution equa-
tions.

Substituting this H field solution into the evolution
Eqs. (4.9), (4.2), and (4.3) we have

P+
~

33+ n/3) 3 = 0,

0.'+ 30,'+A 0! =

/3 + (3/3 + n/3) /3 = 0,

(4.61)

M
3a4b"

(4.62)

(4.63)

/ ~ ) — /"0
/ ) / /

)+I —
I

2b~~ (r3, j E~) (4.53) while the constraint Eq. (4.4) becomes

The critical case where 6 = )n( )
= )(y) corresponds

to the case where the scale factor a remains finite but
nonzero at 7. = 0. Thus the curvature of the four-
dimensional spacetime is nonsingular, although it must
be emphasized that both the dilaton and n-space scale
factor remain singular. This "wormhole" solution in the
D = 5 case has been discussed recently by Behrndt and
Forste [20].

Although the (4 + n)-dimensional dilaton P displays
the same range of qualitative behavior as the scale factor
a, the behavior of the effective four-dimensional dilation
y defined in Eq. (4.11) is much more restrictive, evolving
as

Thus it always has a minimum value at r = v, . As in the
isotropic D = 4 case, the presence of the homogeneous
antisymmetric tensor field introduces a minimum allowed
value for the effective gravitational coupling constant.

'2
3n'+3n~j + j' = + . (4.64)

2 2(n + 2) o4bn

We can again obtain first integrals of all three evolution
equations this time using the conformally invariant time,
g, so that

1 M
77$

M
,—, (n+~.),

a2b~
M

gp

B. Radiation solutions, (Vh)s = 0 (4.6s)

As in the D = 4 isotropic case we can seek solutions
corresponding to the short wavelength limit of the Fourier
decomposition of h(il, z') = hv(rl) exp(iq~z'), where it is
again convenient to write the equation of motion for a
Fourier mode hq using the conformaHy invariant time
coordinate, rl, defined such that dry = dt/a = dt/a. We
then have, in the extreme short wavelength limit, q + oo,

(4.66)

(4.67)

where g4„g, and gp are constants of integration.
Using the same technique as in the homogeneous case,

differentiating Eq. (4.66) and substituting in for P using
Eq. (4.67) we obtain a second-order equation for o.(3I)
whose first integral gives

(~3"/»4/( +~)3 ) ~ & (~b /&~&'//( +&l3
)

—3""
and thus

(4.s4) g+ g~
rI2 + (2'~ + 3nrlp)rl+ C (4.68)

b"~2 exp[—2P/(n + 2)],

heal,

z) =mv
a

(4.ss)
The constant C is given in terms of the other constants
from the constraint Eq. (4.64) as
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an(n —1) 3C = g +any gp+ qp —
r14, . (4.69)22n+2

Comparing Eq. (4.68) with Eq. (4.66) we see that

a'b M
lg'+(2r1 +anrlp)q+| ],3

(4.70)

3
my ———g ——nqp 6 6,

2
(4.71)

For each choice of integration constants we have two dis-
tinct solutions. We have two semi-inGnite intervals: one
where g approaches m &om —oo, and the other for

g ) m+ approaching +oo. m~ are the roots of the above
expression: m —g forq&m

q —m+ forg & m+. (4.85)

Thus the unique late time attractor for g & m+ is the
familiar solution for an expanding D = 4 radiation dom-
inated universe. For g & m the asymptotic solution at
early times represents the usual solution for a collapsing
radiation dominated universe. Both these solutions are
singular a,s g —+ m~ with a ~ 0 for u~ ) 0 or a ~ oo
for ug ( 0.

To compare these solutions with the isotropic case dis-
cussed in Sec. IIIB we can write them in terms of the
non-negative time variable introduced for the spatially
fiat D = 4 metric in Eq. (3.14):

and

3n(n+ 2)rip +1 6
2 n+2 (4.72)

When g ( m, ~ decreases as the solutions approach
the singularity at v. = 0, while when g & m+, ~ in-
creases away from the singularity. Then s(r1), defined in
Eq. (3.28), is given by

Integrating the first-order equation for o.(g), Eq. (4.68),
and similar expressions for P and P finally yields

~(n)
r(rl) + b, ' (4.86)

a(n) =apl'™-I'l~™+I"'
b(rI) = bplg —m-I Ig —m+I '.~«& =e~ I&

—m
I

—
I&

—m+I"

with the exponents

(4.73)

(4.74)

(4.75)

and we can write

1/2 g& + ~q1/2S(2A —nB)/2G=GOT (7 + j 8

A+B

e~ = eicos(n+2)A
)

(4.87)

(4.88)

(4.89)

anqp l

3'gp
qg

——+
2A
3'Sg
2A

(4 76) where

(4.77)

(4.78)

3gp
2(n+2)b, '

3'
2A '

(4.90)

(4.91)

These are related to the solutions for the two scale fac-
tors in the original string &arne by the conformal trans-
formation, Eq. (2.7), which gives

so that (n+2)(2A +nB ) = 3. We can now identify the
isotropic case with 6 remaining constant and A = —8 =
+~ai(n + 2), which yields the results of Sec. III 8.

a(rp) = apl' —m I"- Iq —m~l"+,
b(rI) = bplvy —m I"-lrI —m+I"+,

(4.79)

(4.80) V. CONCLUSIONS

with the exponents

angp —„',g4, 1u+=-
i
1y2( 2b,

33'V~=+
2A

(4.81)

(4.82)

b, e~ —+ const .
(4.83)
(4.84)

As in the homogeneous case the conformal time g can-
not in general be given in closed form as a function of
the proper time in the string &arne, and can be given in-
stead only by the difFerential relation dt = adg. However,
unlike the homogeneous case, we can identify a unique
lateiearly time behavior as r1 ~ +oo. We then find
dt oc rl"-+"+dg and thus Itl oc rl giving

We have written down the general solutions to the low-

energy equations of motion derived &om string theory
for a four-dimensional Friedmann-Robertson-Walker cos-
mology including a homogeneous dilaton field and anti-
symmetric tensor Geld.

In the absence of the antisymmetric tensor Geld

(II„„q ——0) we recover the known vacuum results for
the evolution of the dilaton. In spatially fIat models we
have two distinct branches; the decelerated branch where
both the scale factor a and the dilaton P grow mono-
tonically from zero at the curvature singularity, and the
accelerated branch where a and P decrease from infinity
at the singularity. These solutions are invoked in the so-
called "pre-big-bang" cosmologies based. on the acceler-
ated branch expanding from a and P zero with low curva-
ture, and approaching the high curvature regime, where
it must evolve into the expanding decelerated branch
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with a and P ~ oo as the curvature again vanishes. But
achieving such a smooth transition in the context of the
low energy effective theory has proved difficult even with
the inclusion of a dilaton potential [13].

We have shown that the presence of the homogeneous
H field introduces a minimum value for both the FRW
scale factor and the dilaton in D = 4 models. Spatially
Bat models have a ~ oo both at the spacetixne curva-
ture singularity at g = go and in the low curvature limit

(g ~ +oo). We no longer find two distinct branches
but rather a solution which smoothly interpolates be-
tween the accelerated vacuum branch at high curvatures
and the decelerated branch at low curvatures. Our ana-
lytic solutions confirm soxne of the results of the phase-
plane analysis by Goldwirth and Perry [12]. Thus the
extreme weak coupling limit, P m 0, is attained only
when H„„p = 0. This is in contrast to the results of [11]
because our H field does not obey the requirement for
O(d, d) symmetry in their solutions in that our B„„is
not homogeneous. Rather, we consider solutions where
it is the field H„„i, = B~„B„i,j which is homogeneous.
These solutions are instead related to the homogeneous
vacuum solutions by an SL(2,R) duality transform [21]
where the dilaton and H field are considered to be the
real and ixnaginary parts of a single complex field.

We find qualitatively similar solutions when we con-
sider 4+ n dimensions. We give analytic solutions for
a Bianchi type I model with two scale factors where the
antisymmetric tensor field acts as a scalar field on only
three of the spatial dixnensions. It tends to accelerate
their expansion with respect to the other n dimensions
producing an anisotropic expansion even &om isotropic
initial conditions. The effective four-dimensional dilaton
always has a minimum value. We recover the isotropic
D = 4 solutions in the limit that the second scale factor
b =const.

By treating the antisymmetric tensor field as a scalar
field on the four-dimensional subspace we can consider
the short wavelength xnodes which act like radiation as
well as the long wavelength homogeneous modes. We
have also given analytic solutions in the case where this
radiation is isotropic on three spatial dimensions. The
dynamical effect of the H field is then negligible near
the curvature singularity, and we see both the acceler-
ated and decelerated branches seen in vacuum. How-
ever we find a»w'que late time attractor solution in
spatially Bat models corresponding to the usual D = 4
radiation dominated solution in general relativity with
a oc t ~ and P ~const (and 6 -+const in the two scale
factor anisotropic model). The dividing line between the
short and long wavelength regimes corresponds to wave-
lengths within or outside the Hubble length. Although
this is a kame dependent quantity, for power-law evolu-

tion, a oc ~g
—

mls P, (which we find in all asymptotic limits)
any given wavelength must become "long" as g -+ go and
conversely any wavelength eventually becomes "short" as
fry/ m oo.

In models with nonzero spatial curvature (considered
only in the isotropic D = 4 case) we find that although
our solutions approach the Bat solutions near the space-
time curvature singularity they become dominated by the
spatial curvature as g ~ koo where the spacetime curva-
ture becomes small. This is hardly surprising if one con-
siders the evolution of the metric in the Einstein frame,
of which we have made extensive use throughout, where
these string models correspond simply to a universe with
a massless scalar field (plus radiation for the short wave-

length H field), and so there can be no infiation in this
kame.

It is important to emphasize the limited cosmological
era in which the results presented here may be valid.
While the appearance of a minim»m value for the scale
factor of three-dimensional space is intriguing, the string
metric is still in general singular at g = go. By solv-
ing the field equations only to lowest order in the string
coupling constant a' we are neglecting terms of order
a'R»p„R"""" with respect to terms such as R, H,
(7'P)2, etc. in the field equations. As all our solutions
approach power-law evolution (a, oc ~g

—go~"') as g m go,
then these terms inevitably becoxne divergent, so our so-
lutions will only be good approximations to the true evo-
lution when the spacetime curvature is sufficiently small.
On the other hand we have neglected any potential for
the dilaton, assuming V (( (Vg)2. If we hope to re-
cover the standard hot big bang cosmology at late times
then we will have to include matter fields which presum-
ably provide a potential to fix the present day value of
the dilaton (and thus satisfy observational limits on the
allowed variation of the gravitational coupling strength
within the solar system today). Indeed if this potential
for the dilaton or for any other fields produces an inBa-
tionary era any memory of a preceding stringy era would
be all but erased. Neglecting the dilaton potential is only
likely to be valid while kinetic terms dominate. As we
find H2 oc a s (for homogeneous modes) this will only
to be valid at sufficiently small a.

In summary, we have given general analytic solutions
for the evolution of an early, but sufficiently low-energy,
stringy era where the massless bosonic fields dominate
the dynamics. We have shown that the presence of the
antisymmetric tensor Beld has a dramatic eff'ect on the
evolution of the dilaton in four dimensions and can also
produce an anisotropic expansion in higher-dimensional
models preferentially expanding three spatial dimensions.
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