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A study of finite-size effects is carried out for hadron masses in the quenched simulation of lattice
QCD using the Kogut-Susskind quark action. It is found that finite-size effects for quenched QCD are
much smaller than those for full QCD, when hadron masses for the two cases are compared at the same
physical lattice size and lattice spacing. Based on an extensive study of the boundary condition depen-
dence of hadron masses we ascribe the origin of the difference to a partial cancellation of the finite-size
effects among the Z (3)-related gauge configurations in quenched QCD; such a cancellation does not take
place in full QCD due to Z(3) breaking effects of dynamical quarks. However, this does not mean
finite-size errors are negligible in quenched QCD for lattice sizes of 2 to 3 fm used in current simulations;
a still significant finite-size shift of hadron masses, especially of the nucleon mass, would pose a serious
hindrance to obtaining the hadron mass spectrum at the few percent level aimed at in current quenched

QCD simulations.

PACS number(s): 12.38.Gc, 11.15.Ha

I. INTRODUCTION

Understanding finite-lattice-size effects is a basic step
towards a quantitative determination of the hadron mass
spectrum through numerical simulations of lattice QCD.
In a recent simulation in full QCD with dynamical
quarks, a substantial lattice size dependence of hadron
masses is found for spatial lattice sizes up to about La =2
fm [1] (see also [2—4]). It was also observed that the size
dependence for small sizes is well described by a power
law [5] rather than the exponential expected from analyt-
ical considerations for point particles in a finite box [6].
These findings in full QCD raise the question whether a
large finite-size effect is also present in hadron masses in
quenched QCD, whereas our impression obtained from
previous quenched simulations is that it is perhaps not so
large [7]. A comparative study of the problem between
quenched and full QCD should help us gain insights into
possible roles that dynamical sea quarks play in the large
finite-size effects in full QCD.

The question of finite-size effects in quenched hadron
masses, in fact, has been addressed in a number of previ-
ous works. Already in the very early studies on small lat-
tices with limited statistics [8-10] (see also Ref. [11]), the
propagation of quarks wrapping around the lattice in the
spatial directions was identified as a major source of
finite-size effects and methods for eliminating such contri-
butions from hadron propagators were proposed. More
recent simulation for Wilson [12-14] and Kogut-
Susskind [15,16] quarks actions attempted to quantify the
magnitude of finite-size effects without, however, finding
conclusive results; for the Wilson quark action, the recent
GF11 result [14] reports a sizable decrease of nucleon
and p meson masses between the lattice size of La ~2 to
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3 fm at 8=6/g>=5.7 from an analysis combining hadron
propagators with a Gaussian sink of size 0, 1, and 2. (For
the sink size 4, however, no significant size effect is seen.)
Previous studies [12,13] including those by the APE Col-
laboration [12] at the same value of [ and
similar lattice sizes did not observe appreciable size ef-
fects. For the Kogut-Susskind quark action, lattice-size-
dependent masses have occasionally been reported
[15,16]. Large statistical fluctuations in hadron propaga-
tors for this action, however, do not allow us to conclude
whether they represent a real effect. We should note that
these studies mostly explored relatively large lattice sizes
in the range of 2-3 fm at a rather strong coupling of
B=5.7 with a =0.2 fm, while quenched data for small
lattice sizes below 2 fm at a smaller lattice spacing
a~0.1 fm are needed for a direct comparison with our
full QCD data that exhibit a large finite-size effect [1].

In this article we report on a comparative study of
finite-size effects for hadron masses in quenched and
full QCD with the Kogut-Susskind quark action. For
this purpose we have carried out a quenched hadron
mass measurement with Kogut-Susskind quarks at
B=6/g*=6.0 and the quark mass m,a=0.01, 0.02 on a
lattice of a size L*X40 with the spatial lattice size L
ranging over L =6-16, supplementing our previous cal-
culation on an L =24 lattice [17]. The physical scale of
the lattice spacing estimated from the p meson mass is
a=0.105(3) fm, so that the lattice sizes cover La
=0.6-2.5 fm. These parameters roughly correspond to
those of our full QCD study [1] carried out with two
flavors of dynamical Kogut-Susskind quarks at 8=5.7 on
lattices with L =8-20: ¢=0.089(3) fm and La
=0.7-1.8 fm.

An important parameter for finite-size studies of had-
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ron masses is the boundary condition taken for quark
fields. One can probe possible effects of hadron sizes rela-
tive to that of the lattice through a change of the quark
boundary condition in the spatial directions. We have
computed hadron propagators employing both periodic
and antiperiodic boundary conditions for valence quark
fields for some lattice sizes in both quenched and full
QCD. In full QCD the boundary condition for dynami-
cal sea quarks is also a parameter. Hence an additional
full QCD run on a small lattice of 83X 16 with the quark
boundary condition different from that taken in Ref. [1]
was also made. The boundary condition for the gluon
field is taken to be periodic for all of the simulations. We
quote Refs. [9-11] for early studies on the effect of
boundary conditions for hadron masses in quenched
simulations and Ref. [18] for full QCD.

The ultimate purpose of a finite-size study of hadron
masses is to answer the question beyond what lattice size
can the size-dependent shift be ignored. This issue will
also be discussed briefly.

Finally, another interesting aspect of the finite-size
effect is how the chiral U(1) symmetry, which is spon-
taneously broken for large lattices sizes, becomes restored
as the lattice size decreases. The full QCD result at
B=5.7 [1] exhibits a rather abrupt restoration of symme-
try at La~=1 fm. The quenched data we have generated
for small lattice sizes allow us to make a parallel study
for quenched QCD in comparison with full QCD.

This paper is organized as follows. In Sec. II we sum-
marize the parameters and some details of our runs. In
Sec. III the results for quenched hadron masses are
presented and are compared with those from full QCD.
We then present a qualitative argument that allows us to
understand the results of the comparison. The argument
leads to a variety of testable predictions, and the results
are shown. The question of finite-size effects for large
lattice size is also discussed. Finite-size effects on the
realization of chiral symmetry are examined in Sec. IV.
Our conclusions are summarized in Sec. V.

II. DATA SETS

The parameters of lattices employed for our analysis
are listed in Table 1. For quenched QCD we use L*X40
lattices with L =6, 8, 12, 16, and 24 at B=6.0. Gauge
configurations are generated with the pseudo heat bath
algorithm with five hits per link, and hadron propagators
are calculated for the quark masses m,a =0.01 and 0.02
in lattice units for every 1000 sweeps with the initial 1000
(10000) sweeps discarded for L =6,8 (12,16,24). The
number of configurations used for hadron mass measure-
ments is increased roughly inversely proportionally to the
spatial volume L3 in order to keep statistical accuracy of
hadron masses to a similar level for all L. The data for
L =24 have already been published [17].

The physical value of lattice spacing is estimated from
the local p meson mass in the p,(y,®€&;) channel (VT
denotes vector-tensor) obtained on a 243 X40 lattice ex-
trapolated linearly to m,=0 [17]. The result
a=0.105(3) fm and the corresponding physical lattice
sizes are also listed in Table 1.

TABLE 1. Run parameters for hadron mass measurements.
Lattice spacing is determined from the p meson mass linearly
extrapolated to m,=0. b.c. stands for the spatial boundary
conditon for the valence quark with P for periodic and AP for
antiperiodic. For full QCD data subscripts on the lattice sizes L
denote the spatial boundary condition for dynamical sea quarks.
Results of full QCD runs are those of Ref. [1] except for the run
for L=8,p. Quenched configurations are separated by 1000
pseudo-heat bath sweeps, and full QCD runs by five trajectories
of unit length with the hybrid R algorithm.

Quenched runs Full QCD runs

(Nf=2)a
B 6.0 5.7
1/a (GeV) 1.88(6) 2.23(9)
a (fm) 0.105(3) 0.089(3)
m,a 0.01, 0.02 0.01, 0.02
L (No. of conf.; b.c.) 6 (300;P,AP) 8p (160; P,AP)
84p (160;P,AP)
8 (600;P) 12, (140;P)
12 (100;P)
16 (60;P) 20p (150-160;P)
24 (50;P)°
La (fm) 0.63-2.52 0.71-1.78

*Reference [1].
®Reference [17].

For full QCD we use the data of Ref. [1] for two
flavors of dynamical quarks at $=5.7 and the dynamical
quark masses mq=0.01 and 0.02, which were obtained
on 83X 16, 124 and 20* lattices doubled or tripled in the
temporal direction for hadron mass measurements, sup-
plementing them with the results on a 16°X32 lattice
from Ref. [3]. The physical lattice spacing estimated
from the data on a 20°X(20X2) lattice in the same
manner as for the quenched case above is a =0.089(3)
fm. The number of gauge configurations used for hadron
mass measurements is 150—160 separated by five trajec-
tories of the hybrid R algorithm for our runs on 83X 16,
12, and 20* lattices. Increases of statistical fluctuations
in hadron propagators toward smaller lattice sizes were
relatively mild so that the above number of
configurations yielded hadron masses with an accuracy
sufficient for our finite-size analysis. This contrasts with
the case of quenched QCD, where increasingly larger
fluctuations for smaller spatial lattice sizes necessitate
larger statistics for hadron mass measurements.

We denote by P the periodic boundary condition in all
four directions and by AP the one which is antiperiodic
in space and periodic in time. For the gluon field the P
boundary condition is employed for all runs. Hadron
propagators with the P boundary condition for valence
quarks are calculated for all configurations listed in Table
I. In addition, the AP boundary condition on valence
quarks is used for a 6°X40 lattice for the quenched case
and on an 83X (16X 2) lattice for full QCD.

In the previous work for full QCD [1,3] the P bound-
ary condition was imposed on dynamical sea quarks. For
the present analysis we have made an additional run of
1000 trajectories on an 8°X 16 lattice with the AP bound-
ary condition at m,a=0.01. Hadron mass measure-
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ments are made for both P and AP boundary conditions
for valence quarks on the new configurations periodically
duplicated in the time direction.

For the Kogut-Susskind quark action one can con-
struct a large number of hadron operators with a
variety of spin-flavor quantum numbers. In the present
study we concentrate on the masses of m=m(ys®&s),
P=pyr(y®&;), and the local nucleon (N) states.

Valence quark propagators are calculated by the conju-
gate gradient method with a wall source at t=0. For
quenched QCD ceight wall sources, each- with a unit
source at one of the corners of every spatial cube, are
used to maximize the signal for each channel of hadrons
[17]. Simpler wall sources with a unit source at every
spatial site or at sites with even coordinate are used for
full QCD. To extract hadron masses we fit hadron prop-
agators in a standard manner; with a single exponential
for the pion in the Nambu-Goldstone channel or with a
sum of two exponentials with an appropriate sign factor
(—1)" for other hadrons, and also adding terms arising
from the periodicity in the time direction. The fitting
range is chosen to be t 26-7 for 7, p, and N for the
quenched case (¢ 28 for 7 and t = 6 for p and N for full
QCD). Errors of masses are estimated by the jackknife
procedure. We take each configuration (two successive
configurations for L=6 and 8) as independent for
quenched QCD and ten configurations (i.e., 50 trajec-
tories) as a block for full QCD.

III. FINITE-SIZE EFFECTS OF HADRON MASSES

A. Comparison of quenched and full QCD results

Our chief finding is shown in Fig. 1, where we compare
the m, p, and N masses obtained for the P boundary con-
dition as a function of the spatial lattice size L for
quenched (filled symbols) and full (open symbols) QCD.
The conversion to physical units is made with the lattice
spacing determined from the p meson mass (see Table I).
The numerical values of masses in lattice units are sum-
marized in Table I1(a) for quenched QCD. The full QCD
results from Refs. [1,3] are also recapitulated in Table
II(b). The statistical quality of our propagator data is il-
lustrated in Fig. 2, where the nucleon effective mass is
plotted for full [Fig. 2(a)] and quenched [Fig. 2(b)] QCD
for various lattice sizes.

It is evident in Fig. 1 that the magnitude of finite-size
effects toward smaller lattice sizes is much smaller for
quenched QCD than for full QCD. The increment of
hadron masses due to a finite size for the quenched case is
generally a third to a quarter of that for full QCD. Fur-
thermore, the size dependence is more modest; the
quenched mass data below La =2 fm assuming the form
Apm~L ™% yield a=~1-2, which is compared with the
value a=2-3 observed for full QCD [5].

B. Interpretation of results

Let us try to understand the origin of the difference be-
tween quenched and full QCD observed in Fig. 1. We
consider a meson propagator Gy (n)={(M,M,) on an

L3X oo lattice in an expansion in inverse powers of the
valence quark mass 1/m,. The expansion yields a rep-
resentation of Gy (n) in terms of closed loops C of
valence quarks going through the meson source and sink.
The loop C may wind around the lattice in the spatial
directions, in which case the corresponding amplitude in-
cludes a sign factor o, where 0,,;= +1 or (—1)" for the
P or AP boundary condition with »# the number of wind-
ings around the lattice.

Let us call a loop either Polyakov type or Wilson type
depending on whether it winds around the lattice in the
spatial directions or not, and denote the corresponding
link factor tr(Il,c-U;) as P(C) or W(C). The meson
propagator can be written as

—Gy(n)=3Im AW+ Im Qo (P(C),
C C

(0

where [(C) is the length of the loop and { ) the gluon
field average (including the quark determinant in full
QCD).
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FIG. 1. Comparison of finite-size effects for hadron masses in
full (open symbols) and quenched (filled symbols) QCD. Full
QCD data at La ~1.4 fm (L =16) are from Ref. [3]. Solid lines
are fits of the form m=m_ +c/L> to full QCD data. (a)
m,a=0.01, (b) m,a=0.02.
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TABLE II. Masses of 7, p, and N for various lattice sizes L.
(a) quenched QCD at f=6.0. Fitting range is ¢t = 6 for all chan-
nels for the size L <16 and ¢t 27 for L =24. (b) full QCD with
two flavors of dynamical quarks at §=5.7. Fitting range is ¢ > 8
for 7 and ¢ =2 6 for p and N. Periodic boundary conditions are
taken for sea and valence quarks.

(a) Quenched QCD

mga L No. of conf. m.a m,a mya
001 6 800 0.375(11)  0.542(18)  1.053(98)
8 600 0.3248(55) 0.486(13)  0.907(31)
12 100 0.2528(29) 0.496(14) 0.812(32)
16 60 0.2420(16) 0.457(10)  0.699(15)
24 50 0.2388(10) 0.4654(59) 0.6537(59)
002 6 800 0.4430(79) 0.588(10)  1.044(66)
8 600 0.4004(55) 0.540(11)  0.964(32)
12 100 0.3474(22) 0.5464(83) 0.859(19)
16 60 0.3380(13) 0.5116(55) 0.789(10)
24 50 0.3348(8)  0.5204(32) 0.7615(45)
(b) Full QCD (N,=2)
mea L m,a m,a mya
001 8 0.581(22) 0.711(42)  1.358(4)
12 0.2963(95) 0.500(29)  0.804(52)
16* 0.252(3) 0.454(4) 0.692(6)
20 0.2451(23) 0.4184(70) 0.614(11)
002 8 0.609(17)  0.772(25)  1.400(13)
12 0.412(10)  0.552(16)  0.929(21)
16* 0.349(2) 0.501(7) 0.781(10)
20 0.3403(17) 0.4916(30) 0.7359(53)

#Reference [3].

The representation above allows us to distinguish two
sources of finite-size effects, one arising from the contri-
bution of Polyakov-type valence quark loops, and the
other due to size-dependent changes of gluon field fluc-
tuations that affect the gluon field average. The
difference in finite-size effects between full and quenched
QCD predominantly originates from the former effect, as
we shall discuss below.

The effect of Polyakov-type loops depends on the sign
and magnitude of the loop average ( P(C)) as well as on
the value of the sign factor o,. It is important to realize
that the sign of (P(C)) depends on the boundary condi-
tion for dynamical sea quarks in full QCD. This is easily
seen by constructing an effective potential for the
Polyakov loop P(C) for a straight path which winds
around the lattice once in some fixed spatial direction,
e.g., the x direction. To the leading order in an expan-
sion in inverse powers of the sea quark mass 1/m.,,, the
effective potential takes the form

[P(e)+P(O)], @
C

Seﬂ'(P)=S0(P)+Usea ms:aL

where S, arises from the gluon action and Wilson-type
sea quark loops, while the second term is due to sea
quark loops winding once around the lattice. The sign
factor o,,=+1 or —1 for the P and AP boundary con-
dition for the sea quark.

The action S((P) is invariant under the center Z(3)
symmetry. Hence this term does not distinguish among

the three Z (3) directions 1, e*™/3, and ¢*"/? in the com-
plex plane for the Polyakov loop. The second term, on
the other hand, breaks the Z(3) symmetry. For the AP
boundary condition with o,=—1, this term is more
negative toward the positive real axis, while for the P
boundary condition (og,= +1) the opposite direction of
negative real axis is favored. We then expect that the dis-
tribution of Polyakov loops will be shifted toward the
positive real axis for the AP boundary condition, result-
ing in a positive value for the average ( P(C)). For the
P boundary condition, the distribution will be weighted
toward the Z (3) directions e?>™/3 and e*™/*, and (P(C))
will take a negative value on the average [18]. That these
expectations are actually realized is shown in Fig. 3,
where we plot the distribution of spatial Polyakov loops
for full QCD obtained on an 83X 16 lattice for the AP
[Fig. 3(a)] and P [Fig. 3(b)] boundary conditions taken for
the sea quark.

The discussion above shows that the contribution of
Polyakov-type loops to the meson propagator (1) in full
QCD is negative for the boundary conditions (Pg,,P,,)
and (AP,,AP,,), and positive for (P, AP,,) and
(APg,,P,,). Since average values of Wilson-type loops
are positive, the two contributions cancel against each
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F1G. 2. Nucleon effective masses in lattice units at

m,a=0.01 for various lattice sizes for (a) full QCD and (b)
quenched QCD.
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other for the former two cases. This leads to a faster de-
crease of the meson propagator, and hence to an increase
of meson masses for the cases of (Pg,P,;) and
(AP, AP ;) boundary conditions. On the other hand,
we expect a decrease of meson masses for the (P, AP, )
and (AP,,P,, ) cases, since the Polyakov-type contribu-
tions add up to those of the Wilson-type loops.

For the (Pg,,P,,) boundary condition an increase of
meson masses was already observed in Fig. 1. To test the
other cases we have repeated hadron mass measurements
for the rest of the boundary conditions on an 8*X(16X2)
lattice at m,a=m ,a=0.01. The effective masses for
7 and p for the four boundary conditions, plotted in Fig.
4 together with those on a 20°X(20X2) lattice, indeed
confirm the expectations. The numerical values of
meson masses are tabulated in Table III. Similar effects
are also observed for the nucleon mass, especially for the
(Pgea» Pyar) and (AP, P ;) boundary conditions (see Table
III), while the effect is more complicated for the AP
boundary condition for valence quarks due to nonvanish-
ing minimum spatial momentum that contributes to the
nucleon mass for this case.

Let us now consider quenched QCD. Since the center

R e e —
full QCD AP, L=8

a
g 00
0.1 n 2 " i 1 n " . n
-0.1 0.0 0.1
Re P
0.1 . — —
(b) full QCD P_, L=8
1
o
g 00 ———
4
I
_01 " " 1 " n L "
-0.1 0.0 0.1

Re P

FIG. 3. Distribution of spatial Polyakov loops for full QCD
on an 8°X16 lattice at m,a=0.01 with (a) the AP boundary
condtion and (b) the P boundary condition for sea quarks.
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FIG. 4. Effective masses for mesons in full QCD for the four
choices of quark boundary conditions on an 8*X(16X2) lattice
at mg,a=m,ua=0.01. (a) 7, (b) p.

Z(3) is an exact symmetry for a pure gauge action, the
distribution of Polyakov loops is symmetric under Z (3)
rotations (see Fig. 5 for an example taken on a 6° X 40 lat-
tice). In this case, average values of Polyakov-type loops
vanish unless the winding number of the loop is an in-
teger multiple of 3, whose magnitude would be smaller
than those winding only once. This provides a qualitative
explanation for smaller finite-size effects observed for
quenched hadron masses than those for full QCD.

A small magnitude of Polyakov-type contributions im-
plies that the choice of the boundary condition for the
valence quark should have little effect on quenched had-
ron masses even for small lattice sizes. In Table IV we
compare the m, p, and N masses for the P and AP bound-

TABLE III. Comparison of full QCD hadron masses on an
83X (16X2) lattice with various boundary conditions for sea
and valence quarks. Fitting range is ¢t > 8 for 7 and ¢ 2 6 for p
and N.

b.c.
sea val. No. of conf. m_a m,a mya
P P 160 0.581(22) 0.711(42) 1.358(4)
P AP 160 0.255(16)  0.30029) 1.367(47)
AP P 160 0.215(7) 0.357(14)  0.630(22)
AP AP 160 0.672(17) 0.960(33)  1.584(4)
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FIG. 5. Distribution of spatial Polyakov loops for quenched
QCD on a 6° X 40 lattice.

ary conditions obtained on a 63X 40 lattice. We observe
only 10-20% differences for the 7 and p masses between
the two boundary conditions (a larger variation for the
nucleon mass is due to nonvanishing minimum spatial
momentum for the AP boundary condition), whereas in
full QCD the masses change by a factor 2—-3 on an
83X (16X2) lattice (see Table III) which has a similar
physical lattice size La =0.7 fm.

We should emphasize that the insensitivity of
quenched hadron masses to the boundary condition holds
only after averaging over a sufficiently large ensemble of
gauge configurations having a Z (3)-symmetric distribu-
tion of Polyakov loops. Configuration by configuration,
hadron masses exhibit a finite-size shift whose magnitude
and sign vary depending on the spatial Polyakov loops of
the configuration in the same way as was discussed above
for full QCD; an increase (decrease) for the P boundary
condition if the Polyakov loop points in the 1 (e?™/3 or
e*7/3) direction and vice versa for the AP boundary con-
dition. This feature has already been noted in early stud-
ies [9,10].

An interesting test related to this point is suggested by
a comparison of the distribution of Polyakov loops for
quenched and full QCD shown in Figs. 3 and 5. These
figures indicate that the configurations for full QCD with
the P boundary condition for sea quarks may be mim-
icked by selecting those pure gauge configurations satisfy-
ing Re¥,;—, ,,P; <0, where P; is the Polyakov loop in
the ith direction. Quenched hadron masses measured on
the selected configurations should increase for the P
boundary condition and decrease for the AP boundary

TABLE 1V. Comparison of quenched hadron masses on a
6°X 40 lattice with P and AP boundary conditions for valence
quarks. Propagators are fitted over ¢ > 6.

35

T T T T

3.0 quenched QCD m_a=0.01 .

e Ao m withcutRexr,_ P<0 |

25 )
o a o without cut

2.0

m(GeV)

15

0.5 1.0 15 2.0 25 3.0
La(fm)

FIG. 6. Comparison of quenched hadron masses at the
valence quark mass m,a=0.01 with and without the cut
Re3, ., .Pi <O for the spatial Polyakov loop. Filled symbols
are with the cut, and open ones without the cut. Solid lines are
fits of the form m=m, +c/L> to full QCD data reproduced
from Fig. 1(a).

condition for the valence quark. The predicted increase
for the P boundary condition is verified in Fig. 6, com-
paring the size dependence of quenched hadron masses
with and without the cut Re3¥,;_, ,,P; <O (numerical
values of hadron masses are listed in Table V). With the
cut, the ratio of masses of L =16 and 6 lattices increases
from m (L =6)/m (L =16)=1.55 (), 1.19 (p), and 1.51
(N) to 1.98, 1.66, and 1.94, which are almost as large as
the values 2.37, 1.70, and 2.21 for full QCD between a
similar range of lattice sizes L =20 and 8.

These considerations show that the small finite-size
effect for quenched QCD is understood as due to a can-
cellation among gauge configurations with Polyakov
loops falling around the three Z(3) symmetry axes. This
also explains the large statistical fluctuations of quenched
hadron masses calculated with small-size lattices. In
contrast, such a cancellation does not take place in full
QCD.

C. Finite-size effect for large volume

Our results and analyses demonstrate that finite-size
effects are smaller for quenched QCD. This, however,
does not mean that the lattice size of order 2-3 fm
currently used in quenched hadron mass measurements is
large enough to ignore finite-size errors. Our quenched
results are represented in Fig. 7, where m, p, and N

TABLE V. Quenched hadron masses with the cut
ReY,;_,,.P; <0 on an L*>X40 lattice at m,a=0.01, the P
boundary condition being used for valence quarks. Propagators
are fitted over ¢ 2> 6.

maa b.c. m.a m,a mya L No. of conf. m_ a m,a mya

0.01 P 0.375(11) 0.542(18) 1.053(98) 6 415 0.480(37) 0.744(20) 1.350(60)
AP 0.408(11) 0.641(37) 1.23(41) 8 300 0.390(10) 0.590(19) 1.025(43)

0.02 P 0.443(8) 0.588(10) 1.044(66) 12 47 0.2547(40) 0.505(20) 0.795(59)
AP 0.463(9) 0.627(20) 1.42(25) 16 31 0.2424(21) 0.448(11) 0.697(23)
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FIG. 7. Quenched hadron masses at =6.0 and m,a=0.01
as a function of 1/La. Open symbols are the GF11 Wilson re-
sults at =5.7 and K =0.1675 with sinks of size 0,1,2 [14].

masses at m,a =0.01 are shown as a function of 1/La.
We also plot the GF11 results [14] for the Wilson action
in the quenched approximation obtained with a Gaussian
smeared sink of a size 0, 1, and 2 at 8=5.7 and
K =0.1675, for which a =0.136 fm fixed by the p meson
mass yields hadron mass values similar to those of our
Kogut-Susskind results. A particularly conspicuous de-
crease as a function of the lattice size is seen for the nu-
cleon; we observe a decrease of (6.5+2.3)% between
La=1.7 fm (L =16) and the largest lattice size La =2.5
fm (L =24). The nucleon mass at m,a =0.02 also shows
a similar decrease, albeit of a smaller magnitude of
(3.5£1.4)% ; this indicates an increasingly important
finite-size effect toward the chiral limit. The decrease of
the GF11 result extending to a larger lattice size La ~3.3
fm is somewhat less but still significant [(4.8+2.0)% be-
tween La~2.2 fm (L=16) and La=3.3 fm (L=24)].
(We should add that no size dependence is found in the
GF11 data for the sink size 4 [14] and also in the previ-

T T | B e e

25 F 4
my/m,_ at m =0 (quenched QCD)

2.0 F + 4

sl L ;
o Wilson(B=5.7)[14]
1.0 [ —— P T . L PP T
0.0 0.5 1.0 1.5 2.0

1/La(fm™)

FIG. 8. Quenched my/m, as a function of 1/La (fm) ob-
tained after extrapolation of hadron masses to the chiral limit
m,=0. Open symbols are the GF11 Wilson results at 8=5.7
with sinks of size 0,1,2 [14].

ous APE Collaboration data for the Wilson action at the
same 3 and lattice sizes [12].)

We expect that the size-dependent shift becomes ex-
ponentially small [6] when the size of the lattice is taken
sufficiently large compared to the hadron size [5]. A
trend of flattening of the size effect for the pion around
1/La~(1.25 fm)~! may be a symptom for the onset of
this behavior. A flattening might also be present in our
nucleon mass data between 1/La=~(1.7 fm)~' and
1/La~(2.5 fm)”!. The evidence, however, is too weak
to take it as a serious basis for an onset of the exponential
behavior toward the infinite-volume limit. An extraction
of the value of the nucleon-to-p mass ratio in the chiral
limit m, =0 is even more problematical; as shown in Fig.
8, the ratio drops by 11% between La=1.7 fm (L =16)
and La~=2.5 fm (L =24) with no sign observed for the
onset of an exponential size dependence. This means that
an error possibly as much as 20% may be present in the
physical value of my /m , predicted in the present simula-
tion.

IV. RESTORATION OF CHIRAL SYMMETRY

In Fig. 9 we show m?2 at vanishing quark mass, ob-
tained by an extrapolation of the form

(m,,a)zzA,,mqa+B,, , (3)

as a function of the spatial lattice size. A corresponding
plot for the value of the chiral condensate linearly extra-
polated to m, =0 with the form

(Xx)a’=A,mea+B, @)

is given in Fig. 10. Numerical data for the above are
summarized in Table VI.

A marked feature apparent in these figures is a gradual
restoration of chiral symmetry for quenched QCD as
compared to a rather abrupt restoration at La =1 fm for
full QCD. To understand this difference, let us look once
more at Figs. 3 and 5 showing the distribution of spatial

20 T \ T T T T
i} 2 2
m_(GeV’) at m =0
15 f -
o full QCD
| e quenched QCD
10} \ .
\
\
\
05 \ 4
+ ‘\m
0.0 p—— Q el .
05 1 1 1 1 i
0.0 05 1.0 15 2.0 25 3.0

La(fm)

FIG. 9. Size dependence of m? at m, =0 for full (open sym-
bols) and quenched (filled symbols) QCD. Solid line is a fit of
the form m_=c /L? for full QCD predicted by chiral perturba-
tion theory.
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t + * t I
0.06 | + .
0.04 | -
0.02 | + 4
1 ¢ e 1 Il .
0'00040 05 1.0 15 2.0 25 3.0
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FIG. 10. Size dependence of {¥yx) at m,=0 for full (open
symbols) and quenched (filled symbols) QCD.

Polyakov loops for a small lattice size. For quenched
QCD (Fig. 5) the ensemble is a mixture of “confined”
configurations with a small value. of the Polyakov loop
and ‘“deconfined” ones with the Polyakov loop
away from the origin toward the Z (3) directions. We ex-
pect the former to induce spontaneous breaking of chiral
symmetry while the latter tends to restore the symmetry.
Thus, signals for restoration of chiral symmetry arising
from the deconfined configurations are diluted by the
presence of confined ones, leading to a gradual restora-
tion of symmetry. For full QCD, dynamical sea quarks
push the bulk of configurations away from the origin (see
Fig. 3) at L=8. As the size is decreased from L =12
(La=~1 fm) to L =8 (La =~0.7 fm), this causes an abrupt
restoration of the symmetry. A support for this picture is
provided by the time history of the chiral order parame-
ter shown in Fig. 11. A wild fluctuation observed for
the quenched case [Fig. 11(a)] may be interpreted as aris-
ing from an alternate occurrence of confined and
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FIG. 11. Comparison of time histories for {(¥y) at

m,a=0.01. (a) quenched QCD on a 6*X 40 lattice, (b) full QCD
on an 83X 16 lattice.

deconfined configurations. In contrast, the full QCD
time history [Fig. 11(b)] exhibits a predominance of small
values expected for deconfined configurations.

Let us finally note that chiral perturbation theory pre-
dicts that m % at m, =0 behaves as

TABLE VI. Chiral order parameter and fitted values of 4, , and B, ,. See Table II for values of
m .a. Full QCD data are recapitulated from Refs. [1,3] (for L =16 values for 4, , and B, , are our es-

timate using data for m,a =0.01 and 0.02).

(a) Quenched QCD

{(xx)a® 4, B, A, B,
L m,a =0.01 mg,a=0.02

6 0.02277(58) 0.041 38(60) 1.86(83) 0.004 2(13) 5.6(1.1) 0.085(18)

8 0.025 71(56) 0.043 83(85) 1.81(10) 0.007 6(14) 5.48(57) 0.0507(84)
12 0.029 08(35) 0.04629(28) 1.721(45) 0.011 87(75) 5.68(21) 0.007 1(33)
16 0.028 66(24) 0.046 00(24) 1.734(34) 0.011 32(54) 5.57(12) 0.0029(18)
24 0.029 39(34) 0.046 70(30) 1.731(45) 0.01208(74) 5.505(72) 0.00196(86)

(b) Full QCD (N,;=2)
(x¥x)a? A, B, A, B,
L m,a=0.01 m,a=0.02

8 0.02047(15) 0.04036(31) 1.989(34) 0.000 58(43) 3.3(3.3) 0.305(55)
12 0.02576(64) 0.044 74(60) 1.898(88) 0.006 8(14) 8.15(99) 0.006(14)
16* 0.0277(3) 0.048 3(2) 2.060(36) 0.007 1(6) 5.83(21) 0.005(3)
20 0.02755(13) 0.048 52(14) 2.097(19) 0.006 58(30) 5.57(16) 0.0043(25)

*Reference [3].
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m, = fc}_ , (5)
with ¢ =3/(2f%)=173 GeV ~? for two flavors of dynami-
cal quarks [19]. Fitting the full QCD data in Fig. 10 we
obtain a value ¢ =90(9) GeV 2. On the other hand, the
increase of the quenched data toward small sizes is too
mild to be fitted with this form; the best fit with a power
law m _=cL ~*yields a=1.56(21).

V. CONCLUSIONS

In this article we have analyzed the question of wheth-
er finite-size effects of hadron masses differ between full
and quenched QCD. Our main conclusion is that finite-
size effects are much more severe for full QCD. The
difference originates from dynamical sea quarks and the
associated breaking of the center Z(3) symmetry, which
enhance the amplitude for the process of valence quarks
propagating around the lattice. In quenched QCD the
Z (3) symmetry of the pure gauge action eliminates such
amplitudes, and hence leads to smaller finite-size effects.
This mechanism is not specific to a particular form of

quark action, so that it should apply not only to the
Kogut-Susskind quark action, as discussed here, but also
to the Wilson quark action as well.

We have found that the finite-size shift of hadron
masses is still significant up to a lattice size of La
~2.5-3.3 fm even in the quenched simulation, especially
for the nucleon. Furthermore, the exponential decrease
of the size effect expected for large volume is not yet es-
tablished. We consider that a convincing determination
of the nucleon mass (or the nucleon-to-p mass ratio) at
the few percent level, which is a current goal of quenched
QCD, is not possible unless the onset of an exponential
size dependence is clearly identified.
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