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A toy model of innation with a 6rst order phase transition built on a nonminimal generalization
of quadratic gravity efFectively implements a two field infiation and copiously spurs bubbles before
the end of the slow roll. In particular, the phase transition may be brought to completion quickly
enough to leave an observable signature at the large scales. %e identify analytically and numerically
the parameter space region capable of Stting the observed galaxy correlation function, while passing
the microwave background constraints. Thus, astronomical observations can yield information upon
the parameters of fundamental physics.

PACS number(s): 98.80.Cq, 04.50.+h

I. INTRODUCTION

Infiation with a first order phase transition [1] [for
short, first order infiation (FOI)] is now reviving the ap-
peal of Guth's old infiation [2], accelerated expansion and
bubble production in one and the same process. The
bubbles produced during the phase transition may be the
deus ex mccAIina for the formation of large scale structure
(LSS) [3,4], since they can provide the large scale power
that cold dark matter (CDM) models seem to lack. In
particular, a bubble geometry can reproduce observed
features in the galaxy distribution such as the galaxy
correlation function (GCF) [5] and the higher-order mo-
ments [6]. However, a warning must be issued at once [7]
for the deep "scars" big bubbles leave in the cosmic mi-
crowave background (CMB)—a real "challenge to model
builders. " Indeed, it has been shown [7,8] that the ex-
isting variants of FOI do not produce an astrophysically
useful spectrum of bubbles, because, if the bubbles are to
satisfy the CMB constraints, then they cannot have an
impact on the LSS. In this paper we propose a toy model
of FOI which overcomes this difhculty.

Models of FOI were motivated by the graceful exit dif-
ficulty [9]. In fact, since the phase transition is completed
approximately if and when [1]

first grows to order unity (one bubble produced per hori-
zon four volume), where I' is the tunneling rate defined
later and II = a/a = a is the Hubble parameter of a spa-
tially fiat Friedmann-Robertson-Walker (FRW) metric of
scale factor a(t) = a(0) exp a(t), all one has to do is to
increase the numerator or to decrease the denominator
(or both) in Q.

Extended infiation (EI) [10] which slows down the ex-
pansion of the background to a power law by changing
the underlying gravity to Jordan-Brans-Dicke type, with
its diKculties and remedies [11],remains a paradigm of
the latter option. The other way out, by making I' in-
crease with expansion, is achieved by two Geld in8ation

[12], where one field does the quantum tunneling and
the other does the slow rolling under an ad hoc chosen
potential. In this paper, we will implement this very
mechanism of a time-dependent I' by assuming instead
that the underlying gravity is not Einsteinian, but carries
also the quadratic corrections in the Ricci curvature B to
the Lagrangian, suggested by quant»m and superstring
[13] theories and appropriate to the early Universe (see,
however, Ref. [14]). One has then a fourth order gravity
(FOG): this theory has many attractive features among
which the existence of nonsingular solutions and the fact
that canonical general relativity (GR) is its low energy
limit.

The slow rolling field is now the Starobinsky [15]
scotaron, the potential of which, in the conformal kame,
is not chosen ad hoc, but dictated by the field equations.

The presentation of our model is organized as follows.
First, given that our matter content is in the form of
a scalar field @, we choose a coupling of @ to R2 that
carves two channels of difFerent energy in the conformal
potential. This allows for bubble production in a Grst
stage, and for pure slow rolling subsequently. As a con-
sequence, we show that under FOG the phase trensition
is indeed quickly comp/eted, yielding a signature at a mell-
defined, larpe and tunaMe scale in the present Universe.
Second, we evaluate analytically and numerically the tun-
neling rate in the slow-rolling, thin-wall limit, applying
the canonical technique of Coleman [16]. Third, exploit-
ing the relation between the instant of nucleation of a
bubble and its comoving size, we convert the tunneling
rate to a bubble spectrum, and approximate the latter
as a power law, so as to focus on two parameters only.
Finally, we determine the values of the parameters which
pass the CMB constraints on large and small scales and
fit the GCF, following the results of Ref. [5] and, for such
values of the parameters, we display n»clerical bubble
spectra.

Let us observe that the bubble physical size expands
overcomovingly [17]as t ~ (i.e., the comoving radius goes
as ai~s) in the matter-dominated era, so that the volume
contained inside bubbles was much sm311er in the past. A
voinme fraction of, say, 50% today, necessary to produce
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significant structure, was less than 1% at decoupling,
and even smaller at the equivalence. It is this relatively
small perturbation that allows the microwave tests to be
passed. For the same reason, it is also very likely that
other cosmological constraints, such as the yields of an
inhomogeneous nucleosynthesis (see, e.g., Ref. [18]), the
primordial black holes production (e.g., [19]), the grav-
itational wave generation (e.g. , [20]), leave a consistent
windom in the parameter space of our scenario.

The model presented here bears a strong resemblance
to the 4scale-invariant" EI [21] and with our work of
Ref. [22], with regard to the tunability of the epoch
of bubble production. In neither case, however, was
the spectrum of tunneling-induced inhomogeneities cal-
culated and confronted with astrophysical observations.
We earlier introduced the coupling to the R2 term [23]
to solve a 6ne-t~ming problem in a doubly in8ationary
scenario [24].

II. A NEW BUBBLE PRODUCTION
MECHANISM

B I L 4 4/~
dL (3)

to first order in 1/n.
Assuming I' slowly varying with time, Eq. (3) can be

integrated to give the EI power spectr~~m

nay = (L /L)P, p = 3+4/n,
where the normalization constant L can be explic-
itly calculated in terms of the nucleation rate, which in
turn depends on the potential parameters of the speci6c
model. However, the very condition that the phase tran-
sition be completed at a given time t requires that by

Let us first briefiy review why the primordial bubbles
in the current models of EI cannot trigger structure for-
mation. If I' is the bubble nucleation rate and Vpy is
the &action of volume in false vacu»m at the time t, the
number of bubbles nucleated during the interval dt is

dAB

dt
= I'VFy .

Since large bubbles, the ones of interest here, are nucle-
ated far before the phase transition ends, we may ass~~me
that almost all of the Universe still sits in the false vac-
uum state, VF~ ——a . A bubble of comoving size L mill
cross out the horizon when L —(oH) ~. In what follows,
the notation I refers to the comoving size of bubbles,
while the notation R is left to indicate the actual present
size of bubbles ofter the overcomoving expansion. Let
us remark that we will express all lengths as comoving
lengths so that their physical and comoving sizes coin-
cide at the present time; when we say that a bubble was
g times smaller at decoupling we refer to its comoving
size: its physical size was clearly gzg„times smaller. As-
suming a generic power law accelerated expansion a t"
with n » 1, one has dL/dt —1/o so that Eq. (2)
becomes

that time the vol»me contained in all the bubbles pre-
viously nucleated be of the order of the horizon volume.
To an order-of-unity factor this condition is

dn
L dL=L~,

dL (5)

where Lz = 2HO 60006 Mpc, and L, is the size of
the bubbles nucleated at the phase transition end. Let
NpT = in(Lq/L, ) » 1 be the duration in e-foldings of
the phase transition.

This fixes L as

L = Lg exp [(3 p)Np—T/p] . (6)

where R is the Ricci scalar (not to be confused with the
bubble size), and a canonical matter contribution

(8)

The former generalizes the canonical 8, „ofquadratic
gravity [15] with the inclusion of the scalar coupling
W(Q) in the quadratic term.

Vhth this generalization, the mass I of the Starobin-
sky scalaron is replaced by a reduced mass

M,g(@) = MW ~ (vP).

For M and M,~ there are (i) upper limits, of the order
of 10, from the lack of large scale anisotropy in the
cosmic microwave background [15,25] and (ii) lower limits
[26] from the Ynkawa corrections on scales smaller than
M,& or M to the Newtonian potential of a point mass,
neither of which is a problem. The action

(10)

With this normalization, Eq. (4) provides the EI bubble
spectrum (neglecting the overcomoving expansion). In
all the current models of EI one has NpT 60: in fact,
the phase tra~~ition ends when the inBation ends. The
reason why the EI spectrum does not work for making
reasonable structure is that with NpT 60 the scale
L~ is vanishingly small for p even slightly larger than 3.
A detailed comparison mith the observational constraints
shows indeed that a spectrnm with I~ as in Eq. (6) is
far outside the acceptable range of parameters ([8]; see
also below). However, Eq. (6) also indicates the way out:
making NpT a &ee parameter we may hope to generate
some acceptable spectrum. For NpT ~ 10, in fact, we
have L of the order of the large scale astrophysical
structures for reasonable values of the spectral index p.
To obtain NpT smaller than its canonical value 60, all we
need to do is to produce a phase transition shorter than
the infiation itself. This is provided in a fairly simple way
by our model.

Our physics (in Planck n~its) is entirely contained in
the Lagrangian density 8, the sum of a gravity contribu-
tion

R2

6MzW(@) '
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can be recast in a (maybe more familiar) Brans-Dicke
form plus a quadratic correction performing the coordi-
nate transformation x'" = R' /'4x" and the field redefi-
nition @' = W ~ g.

However, in view of the "roadblock" [14] canonical cou-
plings cause to a satisfactory in6ation, it may be worth
to trade a variable G for a harmlessly variable M,ff.

For our FRW metric, the Ricci scalar R = —6(H +
2Hz) can be given by an approximate solution [15],under
the slow roll ()R) « H(R)) assumption and for the vac-
uum case: the latter can be immediately generalized to
the present case for @ =const. By taking o. = In(a/a;„),
one finds

R —R;„
4M~ff

where the subscript "in" refers to the beginning of the
last NT useful e-foldings; whenever necessary for the ac-
tual computations we set NT = 60, without prejudice to
generality.

The theory (7) can be conformally transformed into a
canonical GR [27] with the new metric

M R
P g P' BR 3M2eff

In the slow-rolling approximation, useful relations link
~,I, and the number N = Nz —n of e-foldings to the
end of in8ation:

4H'N= (e ——1) =
eff

Correspondingly, H;„=M,g(NT/3) r . From the La-
grangian (7) we obtain then Einstein gravity with two
scalar fields Q and u, coupled by a potential given by

3M2
(@ ) = ' (0)+ (@)( —")' ( )

In the rescaled Lagrangian, the dimensionless Geld u ac-
quires a canonical (up to a numeric factor) kinetic term,
while the kinetic term for @ is multiplied by the factor
e z . The expression (14) shows the different roles of
the two potentials: W(g) rules the early FOG evolution
when u and @ are large while V(g) comes in later as
u —+ 0 and GR is recovered. Vfe need to impose two
conditions on W(Q) and V(@): that a phase transition
be possible, and that at some given instant, while the ex-
pansion is still inflationary, the barrier between vacuum
states vanishes, so that the phase transition comes to an
end. The minimal ansatz is then a quartic for W(@) and
a quadratic for V(g):

mains at /Tv = 0, while the false vacunro (FV) chan-
nel is slightly displaced from @0. If tu, „&,see below, is
where the barrier between the channels ends, the inequal-
ity u & u,„gmust be satisfied during bubble nucleation;
furtherxnore, since we work in the thin wall approxima-
tion, UF& (( UPK, a shghtly stronger inequality u & u&h~
is required, where 2~qh~ = 2u,„~--ln(l + P) and

m 32m(02

M 3A
(16)

is dimensionless.
In practice, we work with P « 1 and, during the phase

transition, u = 2. Two comments are now in order: (i)
given that there is one absolute minimum at ~ = Q =
0, the final true vacuum, the ansatz of (15) may still
generate an unwanted secondary minimum along the FV
channel; care is taken to avoid this occurrence; (ii) the
classical motion is not a double infiation in the usual
sense, one slow roll for each field, but a sequence of two
slow rolls for the same Geld, co, down the FV channel first
and then, after the end of the phase transition, down the
TV channel.

We must now tackle Q. Although our gravity is com-
plex, basic physics [16] still applies in the conformal
kame: hence,

I' = M exp( —S@),

where M is of the order of the energy of the spontaneous
symmetry breaking and S@ is the Euclidean action:

S@ —— —gd z —e .„'"+U1

(neglecting the kinetic energy of ur). To obtain a canon-
ical kinetic term, we rescale the coordinates [1] as x" =
e x", so that, in the new coordinates

SE=e —gd x — .„'"+U=e S@

A

where finally S@ is canonical.
To evaluate S@,we observe that the potential (14) is in

the form employed by Coleman in Ref. [16], i.e., a quar-
tic degenerate potential to which a symmetry-breaking
term is added, except that the coefficients are u depen-
dent. Because of the slow-rolling approximation, the ~
dependence transforms in a weak time dependence that
we neglect. In particular, in the large cu approximation
in which we will work, Eq. (14) simplifies considerably
and only the symmetry-breaking term keeps the u de-
pendence: by writing

W(g) = 1+ 4W (vP —@o), V—(Q) = —m Q . (15)

where

U(Q, ~) = AW(g) + V(g)e (20)

This carves in (14) two parallel channels of di8'erent
heights, separated by a peak (PK) at @PK = @0/2. The
degeneracy of W(vP) in g = 0 and g = $0 is indeed
removed by V(vP); the true vacuum (TV) channel re-

3M
32.

we may express the Coleman result as
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27~S = 2™
ding/2A(W(g) —1)

where

64~' (y, ~'
3P4 (m&

The result, essentially due to the scalaron physics and
not to the specific coupling W(g), can be recast by use
of (13) in another useful way:

fN)Sz=
I I

E=
I

&4N
(24)

where the subscript "1" marks the scale where S@
1. Since spinodal decomposition [7] occurs for SE & 1,
requiring that N & N, (» 1) gives us confidence that
we are dealing with real bubbles and not with generic
perturbations.

Consistently, the density contrast of the bubble-like in-
homogeneities is (hp/p[ (UpK —U~v)/UpK P for
P ) 1 and 1 for P & 1; therefore, the very condition
that we are in the thin wall limit, equivalent to P & 1,
also guarantees that the bubbles are strong underdensi-
ties. While the smallest bubbles will rapidly thermal-
ize through collisions and matter infall, the biggest bub-
bles will remain essentially void until the present, driv-
ing early structure formation. Turning now back to the
physical kame, after twang into account the conformal
rescaling of four volume [1] I' = e4 I', and expressing H
by the slow roll approximation (13), we have finally

Q(N) = exp
~

(Ns4 —N4 i

(M,~) 64m (Ni )

where we have introduced a new parameter No to mark
the end of the phase transition [Q(NO) = 1], and the
beginning of the pure slow-rolling stage. It is the &eedom
to choose No that will allow for a successful production
of astrophysically acceptable bubbles. An estimate of No
is equivalent to an estimate of W, another instructive
example of the deep links between fundamental physics
and LSS provided by in8ation. Obviously, the constraint
No & Nq must be satis6ed. To make contact with the
astronomical intuition, the comoving scales of interest
L(N) are first read as a function of the N that applies
when they cross out the horizon:

in the thin wall limit and to the lowest order in the
smallness parameter, the energy density H~R'erence 6' =
(UFv —Uvv) = m @e/2exp( —4~). In our model, this
gives (gravitational corrections being small)

S~ Ee

for the comoving scales & 13h Mpc that reenter the
horizon after the equivalence redshift z,~ 24000, and

f(z) = z z~ = 7.45 for all the smaller scales. To fix the
ideas, if N~ ——60 and L p,

——6000h Mpc is the present
horizon, then N = 57 corresponds to 300h Mpc, and
N = 50 corresponds to a &action of a Mpc.

If the t»~~cling process keeps going for N -+ 0, the
situation will be similar to that of EI where there are too
many small bubbles (nucleated at the end of infiation)
and too few big ones.

III. RESULTS A.ND DISCUSSION

The bubble spectrum can be evaluated by the knowl-
edge of the rate at which bubbles are generated [9], as
previously done for the EI. Since we want quantitative
results, we keep now all the relevant factors. The num-
ber of bubbles nucleated in the interval dt is

4~ '. . . , ('d~l= I'a V; exp —— dt'I'(t')a (t')
~

0 E t a(~))

(27)

dngy/dL = —3L&e QL (28)

where I is the arip~~ent of the exponential in (27). We
can approximate Q for N N as

Q(N) = Q exp[a(N —N)], (29)

where Q = exp[(N04 —N4)/Ni4] and s = 4Ns/N4. In
terms of the bubble comoving size L, since L = Lse
(assuaging H is slowly varying during the slow roll), we
obtain

Q(L) =Q (LIL )
'

where L is the comoving bubble scale enucleated at N .
Substituting (30) in (28), we obtain

where V; is the horizon vob~me at N = Nz, V;
4z/3H~~, and where the exponential factor accounts for
the fraction of space which remains in the false vacuum.
For exact results we must resort to the nnmerical evalu-
ation of the rate equation along with the numerical in-
tegration of the field equations and of the generalized
Klein-Gordon equation for Q.

However, one relevant feature of the solution can be
guessed at analytically. We have shown in Eq. (4) that
the bubble spectrum in EI is provided by a power law.
It turns out that in our case too it is possible to approxi-
mate the spectr»m with a similar power law around any
convenient bubble radius. To do this, we first change
variable in Eq. (27) from the nucleation epoch t to the
scale L in horizon crossing at t, by use of the relation
dL/dt H; Lg/a valid—during slow roll. This gives

H(N)L(N) = H;.L, exp(N —N~) . d gy/ = 3Lf,e Q L'L— (31)

Subsequently, they are overcomovingly [17] expanded
into bubble radii R(N) = f(z)L(N), where f(z) = z ~

As before, we now approximate e to»»sty, as we consider
the tn~~eling far from the completion of the transition
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(we will later check this against the numerical integra-
'tion) .

It follows that

3J3~ Is
h && a L—3—s (L /L)P3+ s (32)

so that

p = 3+ s = 3+ 4(Ns/N, ),
= i3Li,Q Li' s/p

(33)

(34)

L is the normalization of the bubble spectrum in a
horizon volnme Vj, ——4mL~&/3 and in comoving scales.

Equation (34) compares directly to Eq. (6). For N
close to Ns, in fact, we can approximate Q —exp[(p—
3)(Ns —N )]. Then N disappears from the expression
for L and we obtain

L
„

I a exp[(3 —p) (NT —No) /p] (35)

where N~ —No is indeed the duration of the phase tran-
sition, now a &ee parameter. However, what we need is
actually the spectrum of bubbles in an observable volume
V, at present, including the effect of the overcomoving
expansion.

We use V, = (500h i Mpc)s in order to compare with
the observational constraints of Ref. [5]. We need then
to multiply L by the post-equivalence amplification
factor f = z,q and by the volume reduction factor 7

where 7 = V, /Vj, —1.4 x 10 . Around a scale of, say,
R = 30 Mpc (corresponding to a comoving scale L = 4
Mpc), we determine finally the power law normalization

(s-3) '~~

m~ = Zeq h
) L&J

R /28h Mpc = (p/10) (37)

For a primordial bubble model to be successful, it is then
required that the normalization of the predicted bubble
spectrum be close to Eq. (37). For the CMB constraints,
we notice that a completely empty bubble of radius I

We underline that the two observables R and p de-
pend only on No and Ni (for fixed N ), while there
are four microphysics parameters, $0, A, m, and M (the
fifth, M, being in principle derivable from them). We
exploit this large keedom to satisfy the constraints on
the potential mentioned in the previous section.

We are now in a position to compare our bubble spec-
trum with the EI bubble spectrum (4) and with the con-
straints on the large scale structure and on the CMB. We
already worked out the constraints on spectra of primor-
dial bubbles in Ref. [5] so we only review and update the
results here.

Concerning the large scale structure, it has since long
been known [3] that a geometry of bubbles can reproduce
several features of the large scale matter distribution. We
have shown in Ref. [5] (see also Ref. [6]) that the observed
GCF is fitted by a model of bubbles drawn &om a power-
law spectrum n~ ——(R /R)" provided

at decoupling produces a Sachs-Wolfe distortion on the
microwave temperature of b,T/T ~ I2/L~&, if L~ denotes
the horizon scale at decoupling. In a pixel correspond-
ing to a size of L& ) L at decoupling, a further fac-
tor of L2/L2 smears the signal [8]. Finally, the overco-
moving expansion stretches the bubble size by a factor

g = z&„=4. There are two xnain CMB constraintsi/5

arising from observational upper bounds to such Sachs-
Wolfe effect. Pull-sky, low-resolution surveys like COBE
can detect rare big bubbles as cold spots. On the other
hand, a large number of small bubbles can be detected as
Poissoaian fluctuations in high resolution, small coverage
experiments with antenna beam around 1'. Assuming a
power-law spectrum like (27), both constraints can be
put in form of restrictions on the two parameters p and
R for large p [5].

For the radii we are concerned with, the Rees-Sciama
effect due to bubbles on the line of sight is a minor one
[28]. The "large-bubbles" constraint amounts to

( Ri(p) =—gL.
7 (p —1)Ig

p

where L„-18h i Mpc is the smallest bubble (at decou-
pling) that can give an observable signal (b,T/T —10 )
in a COBE pixel. The "small-bubbles" constraint gives

R (R, (p) =y
i

(12mLp, v i
p~p~ )

&0 —5)&~g)) Vi+4) —I~l"
I[p(p —1)]' 'Ll '

(39)

where 8„is the beam angular size (we assume 1') in ra-
dians, 4 10 is the observational upper bound on
AT/T, Li is the smallest bubble not completely ther-
malized at decoupling, aad Lq 7h Mpc is the last
scattering surface thickness. The constraints we use in
the following are for reasonable values of Li (see Ref. [5]).

The main results are contained in Figs. 1 and 2. In
Fig. 1, on the plane (p, R ), we display as a shaded area
the parametric region of cosmological interest, i.e., the
models which satisfy the CMB constraints (38) and (39),
and are close to the curve (37) (and are thus able to fit the
GCF). Incidentally, the constraint from the black body
spectrum [5], being much less sharp, is omitted here.

It is clear that the EI spectrnm (4) (corrected for the
overcomoving expansion and reduced to V, ) is far from
the acceptable region. On the contrary, it can be seen
that the curve R (p) given in Eq. (36) crosses the ac-
ceptable region for some values of No and Nq. this shows
that our model is capable to produce pairs p, B~which
pass the CMB tests and have interesting large scale fea-
tures. It turns out that No E (49, 51) and p 6 (6, 15), i.e.,
Ni E (15,21) satisfy all the constraints. As anticipated, a
phase transition lasting 60 —No —1Q e-fol+~gs produces
a bubble spectr»m with interesting astrophysical e5ects
on the large scale structure. If, more q~~~btatively, one
imposes to the model only the minimal requirement to
give some significant structure, for instance that 50% of
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FIG. 1. Models in the shaded region satisfy the observa-
tional bounds on the parameter space (p, R „)discussed in
the text. We plot (i) as a heavy solid line the curve given
by (37); (ii) as a heavy dashed line (labeled R&) the con-
straint from COBE isotropy on the large scales ( 10 ); (iii)
as a heavy dashed line (labeled R,) the constraint from CMB
isotropy on the smail scales ( 1 ); (iv) as short-dashed lines
the curves R (p) given by (36) for No ——37, 50, snd 52
&om left to right; (v) R „(p)for the original [4] EI model:
the intersection with the GCF curve is way out of the CMB
allowed region; and (vi) as a light solid line the lower bound-
ary of the region where at least 50+0 of the Universe is Slled
with bubbles larger than 3 h Mpc.

the space be contained in bubbles of at least 3 h Mpc,
then the allowed parameter space becomes considerably
wider; Fig. I shows that EI bubble spectrum (4) does
not meet even this milder requirement. In Fig. 2 we give
the numerical and analytical bubble spectra. As in (36)
above, the aormalization contains the two extra factors
7 and f The agre. ement between solid and broken lines
is complete as expected on the large scales, i.e., far &om
the turnover. The iatermediate case, No ——50, shows
that it is possible to produce bubbles at the right time
and, therefore, of the right size.

To conclude, in this paper we have attempted to build
a working model of first order in8ation with the help of
the simplest quadratic corrections to Einstein's gravity:
in order to allow for bubble enucleation, we made use of
an ad hoc quartic coupling of the scalar fieM to the curva-
ture squared term. We have shown that the advantage of
quadratic gravity is to allow for a sufEcient period of slow

FIG. 2. Bubble spectra, In[—den(R)/dR], vs present bub-
ble radius in Mpc: solid lines refer to numerical spectra,
broken lines to approximated spectra. &e display one valid
model, Ns ——50, amidst two invalid ones, Np = 52 (early enu-
cleation and hence too much power on the large scales) and
No ——37 (late enucleation and hence too little power on the
large scales). For No ——50, the steeper slope is obtained for
N) ——18 (which yields p = 8), the milder slope for N) = 23

(p = 5)

roll after the completion of the phase transition. This
overcomes the difBculty extended inaation has in pro-
ducing useful bubbles, by providing a bubble spectrum
capable of having an observable impact on the large scale
structure (in fact at the level of the observed galaxy cor-
relation function) and, at the same time, of evading the
CMB constraints. A clear prediction of models based on
primordial bubbles is that the currently observed large
voids should be effectively empty, with the exception of
some matter pushed inside by peculiar motions. From
an observational point of view, however, the situation is
complicated by the fact that i+Sation by itself produces
a spectrum of ordinary, linear, and Gaussian Buctuations
with as many underdensities as overdensities. The evolu-
tion of the former would eventually lead to a population
of large, almost spherical regions not completely emptied
at present.

Our model is a version of two-field inBation where at
least one of the two potentials, that of the slow rolling
field, is built in. Of course, one can design a suitable po-
tential that implements the same mechanism in ordinary
gravity.
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