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In8ation and squeezed quantum states
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InSationary cosmology is analyzed from the point of view of squeezed quantum states. As noted
by Grishchuk and Sidorov, the amplification of quantum Quctuations into macroscopic perturbations
which occurs during cosmic in6ation is a process of quantum squeezing. We carefully develop the
squeezed state formalism and derive the equations that govern the evolution of a Gaussian initial
state. We derive the power spectrum of density perturbations for a simple in8ationary model and
discuss its features. We conclude that the squeezed state formalism provides an interesting framework
within which to study the amplification process, but, in disagreement with the claims of Grishchuk
and Sidorov, that it does not provide us with any new physical results.

PACS number(s): 98.80.Cq, 42.50.Dv, 98.62.Ai, 98.70.Vc

X. INTRODUGTION

One of the impressive features of an inflationary cos-
mology is the prediction of a set of perturbations on
the background Robertson-Walker metric. These per-
turbations are produced via the amplification of ground
state quantum Buctuations during the inflationary pe-
riod. This process has been widely studied and there is
broad agreement regarding both methods and results [1].
The actual perturbations predicted depend on details of
the inflationary period. A cosmology with a period of
simple exponential inflation and with cold dark matter
(CDM) forms the basis of the "standard CDM" model
for the formation of galaxies and other structure in the
Universe. This model has enjoyed great popularity, but
it is also coming under increasing pressure from astro-
nomical observations [2—5].

Recent work by Grishchuk and Sidorov [6, 7] has sug-
gested that important quantum effects have been ne-
glected in the standard approach. These authors claim
that, because of quantum squeezing, inflation predicts
features in the perturbations which have not been prop-
erly taken into account and which could result in strik-
ing observational consequences. In particular, they em-
phasize the phenomenon of desqueezing, which leads to
approximate zeros in the power spectrum at calculable
wavelengths.

We have systematically investigated the inflationary
cosmology from the point of view of quantum squeez-
ing, using Bardeen's gauge invariant variables [8]. We
have found that indeed each mode of the perturbed field
evolves as a squeezed state during the inflationary period
but that the features discussed by Grishchuk and Sidorov
in [6] and [7] are well known ones, which are essentially
classical in nature. Although we note in Sec. VI an iso-
lated error in the literature which may have prompted
much of Grishchuk's criticism, we argue that the error

'Present address: Physics Dept. , Princeton University,
Princeton, NJ 08544.

can be (and usually is) avoided without appealing to the
formalism of squeezed quantum states. We conclude that
this perspective offers nothing more than an alternative
set of words (and variables) with which to discuss the
inBationary universe. We do however find the squeezed
state formalism well suited to the problem [9] and it may
prove useful in future work.

The structure of the paper is as follows. In Sec. II
we look at a simple mechanical system, the inverted har-
monic oscillator, and show how it exhibits squeezing be-
havior at both the classical and quantum levels. In Secs.
III and IV we use the formalism of gauge invariant cosmo-
logical perturbations, as presented in [10], to construct
the Hamiltonian operator. We then set up the time evo-
lution operator and show that it can be factorized into
a product of a squeeze operator and a rotation operator,
which are characterized in terms of the squeeze factor Rp,
squeeze phase 4g and the rotation angle Og. Rg gives us
a measure of the excitation of the state while 4g gives us
a measure of how the excitation is shared between canon-
ical variables. We show how the evolution of the state
can be characterized by a set of coupled first order ordi-
nary differential equations for Rg, 4g, and eg. In Sec.
V we study the behavior of this system of ordinary dif-
ferential equations (ODE's), identifying different regimes
according to the scale of the perturbations: on scales
larger than the Hubble radius the squeeze phase freezes
out and the squeeze factor grows; on scales smaller than
the Hubble radius the squeeze parameters oscillate.

Having gained some insight into what to expect gener-
ically in such models we look at a simple inflationary
model with baryonic matter coupled to photons (without
dark matter) such that the evolution of perturbations can
be well approximated by a single collective scalar field.
We generate some typical power spectra, [by[, and see
that they are Harrison-Zeldovich type on superhorizon
scales ([hI,

~

oc k—no oscillations) and exhibit standard
sound wave oscillations on subhorizon scales.

In Sec. VI we discuss the desqueezing effect empha-
sized by Grishchuk and Sidorov and argue that it is a
familiar one properly taken into account in standard cal-
culations. In Sec. VII we attempt to clarify the claim
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that these effects are of a distinctly quant»~ mechani-
cal origin. We comment, using the language of squeezed
states, oa the classicality of the harmonic oscillator; we
note that, for large squeezing, the squeezed state satis-
fies the WKB criterion for classicality. This is equivalent
to the WKB classicality at late times in an inverted har-
monic oscillator studied by Guth and Pi in Ref. [11].The
point of this section is to explain that the apparently very
quantum mechanical squeezed state is in fact classical in
the sense with which cosmologists are familiar. That the
truly quantum mechanical features of these states which
are probed, for example, in quantum optics might have
cosmological implications is a fascinating claim but one
which has no substance at present. In Sec. VIII we sum-
marize brie8y and conclude.

II. THE SINGLE INVERTED
HARMONIC OSCILLATOR

The aim of this section is to familiarize the reader with
the language of squeezed states. We apply the squeezed
state formalism to a simple system —the inverted har-
monic oscillator. We will show first how this system ex-
hibits squeezing behavior at the classical level. We show
how this behavior is due to the presence of one growing
and one decaying solution and that essentially the same
behavior carries over to the quantum mechanical system.

A. Classical

The inverted harmonic oscillator (with unit mass and
spring constant) is described by the Hamiltonian

pH ————
2 2'

A convenient choice of variables is

1
b+ —= (p+q).

2
(2)

The general solutions are

b (t) = b (O) ', b (t) = b (O)

The evolution of the inverted harmonic oscillator is illus-
trated in Fig. 1, which shows the trajectories in phase
space of a few representative solutions. The phase space
can be labeled equally well by p and q or b+ and b (the
rotated axes). As time goes on the value of b+ gets expo-
nentially large, while the value of 6 gets exponentially
small. This is because all (but one) of the solutions even-
tually go "rolling down the hill. " As this occurs, p and q
each grow exponentially, while their difference exponen-
tially approaches zero.

The trajectories in Fig. 1 describe squeezing ia the
sense that they get closer together in the 6 direction
and further apart in the b+ direction. For example, the
circle in Fig. 1 evolves into the squeezed shape above it
after a period of time. Any probability distribution in
phase space will eventually become squeezed along the
p = q axis as the system evolves.

0

-.5

FIG. 1. Phase space trajectories for a classical upside-
down harmonic oscillator. The presence of one growing and
one decaying solution produces a "squeezing" e8'ect even at
the classical level. The circular region shown evolves with
time into the squeezed shape above it.

B. Quantum

Now consider the quant»~ system described by Eq.
(i). Using the usual a and at defined for the right-side-
up harmonic oscillator we find that

p2 g2H= ———
2 2

=i—(a e '4 —H.c.).
2

We have written the Hamiltonian in this way because this
is the form directly comparable with the more general
squeeze Hamiltonian which we will consider.

If the system starts in the vacuum state annihilated by
a (which is just the Gaussian ground state of the right-
side-up oscillator) it evolves into a "squeezed state" given
by

l@(t)) = ~lo) = *' ' ""lo).
The "squeeze operator" 8 is specified by two parameters:
r, the "squeeze factor, " and P, the "squeeze phase. " For
a general squeeze operator r and P can be complicated
functions of time, but in this simple case they reduce to
r = t and P = —m/4.

We now discuss the squeezed state in connection with
the Heisenberg uncertainty relationship. Using the rela-
tion

S~a8 = acoshr ——a~e '~sinhr,

it can be easily shown that

pl+(t)) = ~(r &)ql@(t)).

where

.coshr + e '~sinhr
cosh r —e2'& sinh r

It then follows that

(~(t) lj 'l~(t)) = l~(r &)I'&~(t) lq'l@(t))
h= —(cosh2r + sinh2r cos2$),
2



50 INFLATION AND SQUEEZED QUANTUM STATES 4809

and the uncertainty relationship is

[(~(t)lg'l~(t)) (~(t) IJ'l~t)l *

4 = g —'R(B —E'),

O = &+ (1/a) [(B—E')al'
(16)

2
= —(1 + sin 2P sinh 2r) & . (12)

Thus Lqbp —he2~ for t )& 1. The initial minimum
uncertainty Gaussian state which "sits at the top of the
hill" spreads rapidly in q and p.

Consider however

where 'R = a'/a is the conformal Hubble parameter, a de-
notes the scale factor, and the prime denotes the deriva-
tive with respect to conformal time. We can do the same
thing with the matter fields; for example with a scalar
field, y(x, g) = ys(g) + by(x, ri), we can build a gauge
invariant quantity

hy~s*l = hy i y'(B —E'). (17)
(4'(t)~(icos/ —jsing) ~4(t)) = —e "

2

(4(t)~(psinP+ qcosP) ~4'(t)) = —e

(13)

(14)

These gauge invariant quantities can be coxnbined into a
single scalar field

v = a(hy *„+z%'),

For P = —x/4 these are just (Ab+) and (bb ) . Thus
in the p —q plane we say that the state is squeezed along
an axis with slope tan P. The fiuctuations normal to this
axis are exponentially small. This behavior mirrors that
of phase space trajectories for the classical system (see
Fig. 1) and likewise corresponds to the existence of one
decaying and one growing solution.

The state can in fact be represented as a phase space
density, using the Wigner function [12], for which the
contours are ellipses with one axis of length e3" defined
by the angle P and the other axis of length e " as in Fig.
1. The squeezed states which we will consider will have
a time dependent P so they can be pictured as ellipses
rotating in the phase space.

Quantum squeezed states generate considerable inter-
est in various areas of physics, e.g. , nonlinear optics [13,
14], gravity waves [15, 16], gravity wave detectors, and
quantum cosmology [17]. Their striking feature is that
they exhibit dramatically the Heisenberg uncertainty re-
lation, by allowing one variable to have arbitrarily small
uncertainty. The conjugate variable has a compensating
large uncertainty so the Heisenberg uncertainty relation
is obeyed as an equality. In this sense squeezed states
are very quantum mechanical. We will discuss the issue
of classical versus quantuxn aspects in more detail in Sec.
VII.

III. FORMALISM FOR COSMOLOGICAL
PERTURBATIONS

The gauge invariant formalism of cosmological pertur-
bations is well suited to the study of the evolution of
vacuu~ fiuctuations. As discussed in [10],the problem is
reduced to the analysis of the evolution of a scalar field
with a time-dependent mass.

If one looks solely at the scalar degrees of &eedom of
the metric perturbations,

bg„„=a (g)
—B,

(——B(; 2(vjrp;~ —E);~))
it is possible to combine the functions P, @,E,B into two
gauge invariant quantities (invariant under local coordi-
nate transformations)

(21)

which we will find more convenient to work with. We can
now proceed with the standard quantization. Construct-
ing the Hamiltonian we get

I

H = — d x[n +c,(v;) +2—v~]. (22)
2 z

Promoting the fields to operators and taking the Fourier
decomposition so that

(2z )3~3

d3k
1l

(
)3/27lge (23)

we get the two-xnode Haxniltonian
I

Rg = 7I g'kg + c~Ic v yves + —(7l yves + v g'll'g) . (24)
z

We want to work in the Schrodinger picture, in which
the operators v~ and erg are fixed at an initial time. We
define modes with initial frequency equal to k which, suit-
ably normalized, give

1
(ai, + at „)

2k

(ai a—i ).t (25)

where by~ '~~, denotes a generic matter field perturbation,
z is given by

~ = (a/" &)[3(&' —&')]"' (19)

and c, = (bpo/bee)i~ denotes the speed of sound (in
in6ation the correct equations are obtained by setting
c, —:1). The action for the perturbations can then be
written as

Il

Spe&& d z v c+ v + v ) 20
z

which is the action for a &ee scalar field v with a time-
dependent mass (m3 = —z"/z) [10]. Up to a total deriva-
tive term this action is equivalent to the action

I I

Spe~g = — d z v —c~ v;g —2—vv + — v
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The two-mode Hamiltonian operator can be written in
the simple form

vacuum state with the Hamiltonian discussed in the pre-
ceding section.

Rlf, —Rg + Rg(O)
"(I)

= Og(G~Gg + G &Q g + 1)t

+i%),(e '~"cga g —H.c.),
where

0), = —(1+c,),
1(k, l fz'l'

~.= I-(l-c.')
I +I —, I') &)

vr 1 f kz
pa = ——+ —arctan I,(1 —c, ) I

.(2z' ' )

(26)

A. The squeezed vacuum state

To begin with we have to define the initial conditions
of our quantum field theory. We assume that all the
modes of interest (i.e., the modes on subhorizon scales
today) are well within the horizon at the initial time. In
this case we have klgl )) 1, which (with c, = 1) implies
OI, k )) Ag (I/IrlI), and Eq. (26) reduces to the

A,

&ee Hamiltonian W& ~. We then choose for the initial
state the ground state of the free Hamiltonian, i.e., the
Poincare invariant vacuum state, which is defined by

M~„(rl, go) = 8[RE, 4g]'R[Og], (28)

where R is the two-mode rotation operator defined as

Equations (26) and (27) describe the generic
momentum-conserving quadratic Hamiltonian for a
scalar field. It has a kee evolution piece H& with
a time-dependent &equency Op, and a squeezing piece
'R& with a coupling strength Ag(t). The evolution op-
erator produced by this Hamiltonian can be factorized in
the following way:

The action of the rotation operator 'R produces an irrel-
evant phase

&[e ]10)' = * "Io)'-

but, when acted upon by 8[R~, 4~], the vacuum state
transforms into a two-mode squeezed state [18]

ISS),) = 8[R)„Cg]I0);„

= ) ( e' —" tanhRI, )"In, k; n, —k),
cosh Rgn=0

R[O~] = exp[ —iOg(a&a~+ a &a q+ 1)]

and 8 is the two-mode squeeze operator defined as

(29)

where

8[R&, 4&] = exp (e ' "a pa~ —H.c.) . (30)
2

This simple decomposition of the evolution operator is
a general property of momentum preserving quadratic
Hamiltonians [18]. The rotation operator alone gives or-
dinary oscillations (points in the phase space of a classical
harmonic oscillator rotate about the origin). The squeeze
operator alone produces squeezing as discussed in Sec. II.
The complete solution to the problem we are considering
reduces to finding Rg, 4g, and Og as functions of time.
(Note that 4g is not the Bardeen variable which we shall
write e~.)

IV. EVOLUTION EQUATIONS

In this section we address the generation of cosmologi-
cal perturbations by studying the evolution of the initial

In, k; n, —k) = ) —,(a~tat „)"IO);„
n=O

(32)

B. Evolution equations

The problem is to determine the functions Rg, 4g, and
Op. The time evolution operator is given by the time-
ordered exponential

is the two-mode occupation number state. This part of
the evolution operator is responsible for the amplification
of the initial vacuum Huctuations; momentum-conserving
pairs of quanta are created. The squeeze factor is related
to the mean number of quanta, np, in the squeezed vac-
uum state through the relation

ng ——(SSINgISS) = smh Rg.

M(g, qo) = rexp
I

—i drl'Rg(rl')
I

Tl rl

= 7 exp drI'Ag(rl')(e
' "+ ' v' "" " aga g —H.c.) exp i dg'Q~(g')(a&—a~+ a &a g+ 1)

90 QO

We divide the evolution into infinitesimal time intervals e. The composite property of the evolution operator implies

Note that in contrast with the evolution operator which describes parametric ampliScation in [18], the time-ordering problem
is nontrivial.
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g(rI+ e, rl ) = M(rl+ e, rl)M(rl, rip) .

We can recast this in terms of the squeeze operator 8 and the rotation operator R in the form

S[R|„Ch]R[eI,] = S[6R)„6+]R[68),]S[R)„Q]R[8),].

(34)

(35)

Taking account of Eq. (33) we infer that for small c: 6R1, A|,(rI)e, 68~ QI, (rl)e, and 6+ yI, . Using the
computation properties of the squeeze and rotation operators, the right-hand side of (35) can be written as

right-hand side (RHS) = S[6RI„6$g]S[RI„Q—68'] R[8I, + 68|,] . (36)

In order to express the product of the two squeeze operators in terms of a single squeeze operator we use the standard
composition property, as given in [18]

S[6R)„6gg]S[R)„Q—68),] = S[Rg, 4),] R[8),],
where

e' "cosh R|, = coshR& cosh6R|, + e '~~" ~" "l sinhR& sinh6R~

e'~ ( " ~&+ "+ "l sinhR~ = sinhRf, cosh6R~+ e '~~& ~" "l sinh6R|, coshR&.

For suKciently small e we can expand the left-hand side (LHS) in 6' and 68I, to obtain the recursion relations

R~(rl+ c) = RI, (rI) + A|, (rl)e cos 2[pe(rl) ——4g(g)],

4'|,(rl + c) = 4g(rg) —OI, (rp) e + Al, (rj) —[tanh RI, (rp) + coth Rg(rp)] sin 2[rpg(rp) ——41,(ry)],
2

el, (rl + e) = e),(rl) + O), (rl)e —Ag (rl)etanh RI, (g) sin 2[@),(g) —4|,(rl)],
where Og = 8Is + 68' + 8. The difFerential form of these
equations is

(38)

R), ——A|, cos 2(y), —4),),
I Ag

4~ ———OI, + —(tanh RI, + coth R|,) sin 2 (yI, —4~),

0„' = QI, —Agtanh Rg sin 2(y), —O|,) . (39)

These are the equations of motion of our system.
The analogous equations for gravitational waves have

been derived in Ref. [19]. These can be obtained from

(39) by specifying Ag = a'/u, Og = k, and P~ = —z/2,
which is obtained by the formal substitution c2 = 1 in
Eq. (27).

An alternative derivation of these equations is given
in Appendix A, where we use the fact that the mode
functions in the Heisenberg picture can be expressed in
terms of the Schrodinger picture variables R~, CI„and
Op. We then show that the Hamilton equations for the
mode functions reduce to those in Eq. (39).

A. Analytic approach

We assume that Ap, Og, and yg are slowly varying
functions of time, i.e., for kryo & 1 we have b,Q|,/Og,
b,A),/A|„b, y), /yI, « 1.

In the strong coupling or squeeze-dominated regime
(A|, & QI,), the squeeze angle 4~ and the rotation an-

gle e|, approach a stable fixed point (freeze-out). The
squeeze factor grows monotonically with time, which re-
nects the fact that in the course of evolution the growing
mode becomes more and more dominant over the decay-
ing mode. In the weak coupling regime (Ag & O~), the
solution is oscillatory, with the squeeze factor remaining
essentially constant and the dominant features are the os-
cillations of the squeezed state, which are revealed phys-
ically as the pressure oscillations in the hydrodynamic
Quid.

Strong couplirags freeze out-
V. APPLICATION TO A SIMPLE

INFLATIONARY MODEL
For AI, & O~ there is a fixed point (in 4~ and Og) to

the equations of motion

Our aim is to study the growth of cosmological per-
turbations in the squeezed state formalism for a simple
in6ationary mode1. This section is mostly concerned with
studying the solutions to Eq. (39). In general, when AI„
Og, and yg are some complicated functions of time, it is
not possible to solve Eq. (39) analytically. However, be-
fore we proceed to a discussion of the numerical solution,
we can get some insight into the dynamics of the system
using analytical techniques.

with

sin 2(yI, —4f, )
20'

(tanh R), + coth Rg)

(QI, )
i&7»~

'

I I= Of, = 0, RI, = Al, cos 2(yI, —@f,) (40)

(41)
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Using this condition, we can now integrate Eq. (40) for
the squeeze factor to obtain

Ag —Og dg )

so that Rg grows monotonically. Most of the squeezing
occurs in the strong coupling regime.

solution to the equations of motion (39):

1
R~ ——arcsinh

2k@'
1

C g —————arctan
4 2k''

1
Og ——A:g + arctan

2k' (44)

2. Weak couphng: oscillations

For Ag && Og and taking Ag, Og, and yk constant, we

get the solution

tan(4g —fpg) = cos cry tan[ —Og(rl —rip) + cry]
—tan nk

in which sinaI, = AI, /OI, . In the case where ak « 1, this
solution reduces to the form

This solution corresponds to the Bunch-Davies vacuum

[20], which is an attractor. If the initial state (for the
modes within the horizon) is not already highly squeezed,
one Bnds that as the modes get driven to superhorizon
scales they evolve toward the Bunch-Davies vacuum. In
the language of squeezed state parameters this corre-
sponds to the freeze-out of 4g and OI„we see this be-
havior in the limit karl] && 1 of Eq. (44).

C. = ~.- I1.(q - qp),

pRI, = RI, + sin 20I, (rl ——rip)20'
= RI, + sIn 2((pI, —4I, ) .Ag

2 k
(48)

8. A.n exact solution: the Bunch-Dries vacuum

In the exponentially expanding de Sitter stage, when
AI, = k, AI, = 1/]rl], and &pI, = —m/2, there is an exact

We can consider this oscillatory solution as a reasonable
approximation for modes well within the horizon in both
the inflationary era, when AI, /OI, 1/karl~ && 1, and the
radiation-dominated era, when AI, /AI, 1/2. For these
modes Rg is constant on average; i.e., there is no net
squeezing and perturbations do not grow.

For modes that cross the horizon during the matter era,
where Op Ag, we cannot apply this simple analysis.

B. Squeesing in a simple
in8ationary mod. el

92 R

Rg = dlnz ~

ala
(45)

During the inflationary era (superscript i), z can be
approximated by z(rl) (2/3) ~ a/l~ (where lI
(8m'G/3) ~z is the Planck length). The amount of squeez-

Having established that most of growth occurs on su-
perhorizon scales, we now use a simple model to estimate
the amount of squeezing in the perturbation field. We
have found that all of the relevant squeezing occurs on
superhorizon scales, i.e., when karl] & 1. In Fig. 2 this
corresponds to the interval [gI~, rl2~], where rh~ = —1/k
and q2 1/k (2/k) in the radiation (matter) era.

The relevant squeezing occurs for the couplings for
which AI, )) OI, when AI, z'/z. We can then integrate
Eq. (42) to obtain

FIG. 2. Evolution of scales in an in8a-
tionary universe model. x denotes the co-
moving scale and aR the end of the in6ation-
ary stage. The perturbation is on superhori-
zon scales in the interval [aq~, aq~j.

a.init clO
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ing is given by b,RI, ln(a~/aq~) ln (1/~gR~k). In the
hydrodynamical era, if a mode crosses the horizon dur-
ing the radiation era, then z(rI) = 2~~za and bR& ~

ln(a2~/a~) ln(1/~rj~~k). If the mode crosses the hori-
zon in the matter era for which z(g) a ~z2~~ we have

ERI, 1n(g ~/g~), and b,RP (3/2) 1n(axz/a, ~)
3 in(l/krI, ~). This last term is a poor approximation in
the matter era; in fact Ap Og and the squeezing angle
4g is not completely &ozen resulting in a slower growth
of R~. In the case of gravitational waves (45) gives
ERI, 1n(a2~/ass), which is in agreement with the re-
sult first obtained by Grishchuk and Sidorov in [16].

C. Numerical analysis

We shall now study numerically the evolution of per-
turbations in our simple model. It is important to point
out that during the hydrodynamic era we are looking
only at the collective field of baryonic matter and radi-
ation (we are ignoring cold dark matter, or any other
field which cannot be accurately described by a single
collective scalar field). In addition we ignore decoupling
of matter and radiation. We do not expect to get results
which agree completely with the highly refined calcula-
tions which already exist in the literature [21]. However
we do expect approximate agreement if we look solely at
the baryonic and radiation sector of these simulations;
in particular in the radiation era and on superhorizon
scales.

The evolution is given by the recursion relations (38)
and we shall assume the following time dependence for
the scale factor:

1
a; = — (—oo ( rI ( —q~) infiationary era,

IIn

i
+I I (nR&n&~)

1 (q+el' /g+e)
45 &,

hydrodynamical era, (46)

where II = 'R/a = a'/a2 is the Hubble constant during
infiation, 8 and g, are chosen such that a(g~) = a;(ri~)
and a'(rI~) = a!(g~), where conformal time g~ denotes
the end of infiation (we assume instantaneous reheat).

We normalize a such that a q
——1 and we set g, = 1.

As in [10] we assume z = ape/'R in the infiationary
era. During the early radiation era, when most of the
matter particles are relativistic, we take c, = 1/3. We
assume that there is a time, g = g„~, when matter
particles become nonrelativistic. For g ~ q, ~ we have

c, = (Spo/heo)s = s(1+ Ba/4) . (We checked that the
choice of q„i does not infiuence squeezing of the state. )
The wave function is continuous at rl = rI~, which means
that the functions Rg, 4I„and Og are continuous at
gR. The overall amplitude of the perturbations in the
hydrodynamical era will be dependent on the amount of
squeezing in the inflationary era, which in turn depends
on reheat temperature specified by gR.

X. Eeoletioa of the squeeze parenaeters

Figure 3 is a plot of the evolution of the squeeze fac-
tor R~ as a function of the scale factor a. Most of the
growth in the squeeze factor occurs on the superhorizon
scales between the marks 2x and Bx. When kg « 1,
the analytic result discussed subsequent to Eq. (45) is an
excellent approximation: R~ lna/aq .

What about subhorizon scales (k~g~ ) 1)? In infia-
tion (when Ag «Og) RI, 0, while in the radiation
era Rg oscillates [see Eq. (43)]. For the modes which
enter the horizon in the matter era (case kg, q

= 0.1
on Fig. 2), the squeeze factor Rg continues growing as
ARg Cplna, where Cg 1.3 for kg, q 01 and
Cg ~ 1.5 for kg, q && 1. This means that, as a conse-
quence of large coupling in the matter era (Og ( Ag),
the squeeze angle remains frozen (4& const) and the
squeezing continues. Physically, this is related to the
classical process of gravitational collapse.
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FIG. 3. Evolution of the
squeeze factor B as a function
of the scale factor loga in an
in8ationary universe model for
two scales: kg, ~ = 0.1 and
kg ~ = 3. Most of the growth
occurs on superhorizon scales
(period between the marks 1x
and 2z).
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There is a critical wave vector k„;tg 2 (which cor-
responds to the scale A~h„, s A,~ 40(Ooh ) Mpc;
A,~ 13(Oohz) i Mpc is scale today corresponding to
the horizon size at equal matter and radiation, 00 is
the fraction of the critical density today, and h is the
present Hubble parameter in n~its of 100 km/s Mpc). For
k ) k„;q the state oscillates and Rk does not grow, and
for k & k„;t the state is &ozen and Rk grows.

Figure 4 shows the evolution of the squeeze factor with
respect to the squeeze phase. On subhorizon scales in in-
Qation @k grows, while Rk 0. At the horizon crossing,
the squeeze angle freezes out: 4i, ——nx (n 6 X) be-
comes an attractor and, as we can read of &om Fig. 4:
Oi, = 0 (—2z) if k = 1 (10), which is in agreement with
Eq. (40). For the subcritical case kri, ~ = 1, after the
mode crosses the horizon at 2x, the angle 4 4* re-
mains &ozen and Rk continues growing. On the other
hand, for kg, q

——10 & kzpz$Qeq~ after time @2~ the mode
starts oscillating with ARk 1. The amplitude of os-
cillations in Rk is slightly bigger than predicted by the
simple formula (43); the reason being that the condition
for validity of Eq. (43) (Ai, /Oi, « 1) is not strictly satis-
fied (here we have Ai, /Oi, m 1/2). During one oscillation
64k ——m and Rk remains constant on average. Look-
ing back at Eqs. (30) and (43) we observe that if @i,
grows (oscillations), the squeeze operator produces and
destroys, on average, equal number of particle pairs, i.e. ,

there is no net squeezing.

S. EaoltEtiorE of physical qtEaYEtities

and

a ~ik x

(2~) E

lhi I' = k(@'-i,@P)

3
k —LP ~k r

2 RiRc z

(47)

(48)

(49)

VI. COMPARISON WITH PREVIOUS WORK

where l~ = (SING/3) E is the Planck length.
To make contact with the existing work on power

spectra &om inQation, we plot in Fig. 5 the growth of
the power spectrum lhi, l

defined in Eqs. (47) and (48)
against the scale factor for the modes: kg, q

——0.1 and
kg q = 3. On superhorizon scales, during the radiation
era (lna & 0), the power grows as lbi, l

oc a oc g J

which agrees with the estimates based on Eq. (45). In
the rnatter era, for the modes kq q ( 2, the power grows
as lhi, l2 oc a2 oc g4, while for krl, ~ ) 2, the state starts
oscillating and the growth becomes very slow.

Figure 6 shows the power spectrum at two different
time slices: g = 0.1g,q and g = 0.5g,q. The spectrum
is scale invariant, lbi, l k, on superhorizon scales and
lbi, l2 k on subhorizon scales. The turning point,
caused by the oscillations of the squeezed state (see Fig.
5), is at kri, ~ 4 for both time slices. The first dip in the
power spectrum is at kg, q 8 —9, which corresponds to
the wavelength A (0.8 —0.9)A,~ 11(Oohz) Mpc.
These dips correspond to the acoustic oscillations in the
Quid.

We are interested in looking at physical quantities in
the hydrodynamical era, typically the Bardeen variable
4+ (which corresponds to the Newtonian potential inside
the horizon) and the energy density perturbations he/e.
In the standard notation

The features of the power spectrum just discussed are
those expected. We obtained the correct growth on su-
perhorizon scales and found acoustic oscillations in the
modes which reenter the horizon in the radiation domi-
nated era, as described, for example, Bardeen et al. in

k=1
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FIG. 4. The squeeze phase
vs squeeze factor (4J —R) dia-
gram for turbo scales: kg, ~ = 1
and kg ~ = 10. The squeeze an-
gle freezes out on superhorizon
scales. On subhorizon scales
it exhibits two types of behav-
ior: for scales belovr critical
(k„;tYi,o 2), the 4J —R curve
exhibits oscillatory behavior,
and for scales above critical the
phase remains &ozen.
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FIG. 5. The growth of the
power spectrum

~
ba

~

against
the scale factor a for kg, ~ = 0.1
and kg ~ = 3. In both cases
we observe the same power law
growth on superhorizon scales.
In the subcritical case (kryo, ~ =
0.1) the growth continues (with
somewhat slower rate), while in
the supercritical case (kg, q =
3) the power exhibits oscilla-
tions after the horizon crossing.
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2/1)

(52)

The most convenient way to solve explicitly for the
squeeze factor R is to solve the equation for v derived

-10

Ref. [1] and Efstathiou in Ref. [21]. We have simply il-
lustrated that these phenomena can be described in a
different way in the squeezed state &amework.

For a more direct comparison with the work of
Grishchuk and Sidorov in Ref. [7], in particular their dis-
cussion of "desqueezing, " we treat analytically a model
in which matter and radiation instantaneously decouple.
We work with the action of Eq. (20) as in [7]. We take

&om the action and then to use the transformations re-
lating the two sets of variables derived in Appendix A..
The solutions for v in the three eras are

1 ( i l
Vg = —aIIO

~2k ( kri )

(54)

and vr = v'. The normalizations are chosen so that v'v*-
v"v = i in each case. M—atching v and v' ( and therefore
R and O) continuously at each of the two boundaries we
obtain the following expressions for the squeeze factor to
leading order in kg2.
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1
sinh Rq= „,J7& q2

(sinh RI, =
4 l2 —cos

l
I g2+g+gi4k' 4

sinh Rk ——
4 (a+P)

/ [ +, / [ +q I

1 (Zl' 1 t'Zl
4(kg2) 4 (2gi ) (kYIi) (2gi j (29i

+(~ —P) I I
+ I, I I ) ~»~~(2@i 't 1 (2gi l

4k', ' i g)

1 g, 't

(kgi)2 g )

(57)

(58)

where

kgb . 2kgg

v& v&

1 8(kali) l & 8(kgi) l 2kgi 4k@i . 2k@i

2k@i 4kgi . 2kgip= — —1+cos + sin
4 3 3 3

2 ( 2(kqi) ) ( 2(kgi) ) 2kqi

(59)

(60)

(61)

From the second expression in (58) we see that the
squeeze factor is modulated only slightly in the radiation
era in agreement with what we found earlier. For the
matter era however one can show that the coefficients
a+ p and p of the terms which grow with g vanish when
the condition

kgi 2kgi+ arctan = nor
3 3

(n integer) (62)

is satisled. This leads to a signi6cant amount of
"desqueezing" of these modes as the squeeze factor for
these modes is given approximately by

1

sinh R = sinh Rf, ~ ) (2&qI )E

(63)

where R& ——Ri, (2rli) is the squeeze factor at the decou-
pling. In terms of the scale factor,

1 ( a f» kg &) 1.
2 (+dec )

(64)

The existence of this "desqueezing" is again a familiar
phenomenon expressed in a different set of words. When
one matches the oscillating solutions of the radiation era
onto the growing and decaying solutions of the matter
era one 6nds that certain modes match completely onto
the decaying solution. In fact this is the simplest way to
derive the condition (62) above. These modes lose power
and we have approximate zeros in the power spectrum.
These oscillations in the power spectrum are known as
Sakharov oscillations [22]. In order to obtain the position
of the zeroes, we solve Eq. (62) and obtain kg„, = 2kih ——

{6.36, 16.7, 27 4, 38.2, 4.9.1, 59.9, 70.8, . . .j, which cor-
respond to today's scales: A = {89,34, 20.7, 14.8,
11.5, 9.5, 8.0, . . .) h Mpc (h is the Hubble constant to-
day in units 100 km/sMpc ). The occurrence of these
oscillations depends crucially on the matching at the
inBation-radiation transition. In order to match purely
onto the decaying solution (in the matter era), one must

have standing wave solutions in the radiation era and this
in turn depends on having the correct input from the in-
Qationary epoch. It is indeed the squeezing of all of the
physical momentum out of the superhorizon modes dur-
ing inflation that produces the standing waves at the end
of inBation, which one requires to produce this effect.

Grishchuk and Sidorov suppose this crucial ingredient
to be missing in standard treatments of the growth of
perturbations. They claim that incorrect assumptions
about the perturbations produced by inQation are often
made, which lead to traveling wave solutions in the radi-
ation dominated era and the resultant absence of these
Sakharov oscillations in the power spectrum. For exam-
ple, Grishchuk states in [6] that "the unavoidable prop-
erty of squeezing manifests itself in the fact that the
phases of primordial density perturbations are Gxed and
correlated, in contrast with the usua/Ly made assumption
that the phases are distributed randomly and evenly. In
other words, the primordial density perturbations, simi-
larly to the case of gravitational waves, must form a set
of standing waves with definite phases" (our italics). In
fact these two points are not in conBict. Indeed there
are "standing waves with de6nite phases, " but there are
other phases which are distributed randomly and evenly.
One must be careful about which phases one is talking
about. Each standing wave has a "phase of oscillation"
which distinguishes among solutions which are at differ-
ent points in their period of oscillation. This is the phase
which is fixed (relative to the time of horizon crossing)
in inaationary cosmologies.

However, inflation does not predict the location of the
nodes in the standing wave. There is another "spatial"
phase which distinguishes among standing waves which
differ by a translation in space. Since the wave function
assigns equal probability to solutions that differ only by
a translation, one can choose a random spatial phase.
This amounts to making a particular random choice of
h(x) from among the many possible ones.

We are aware of one place in the literature where an
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error is made regarding which phases are random. In a
passage in [23] [preceding the paragraph containing Eq.
(7)], Peebles argues that the temporal phase of the stand-
ing waves may be taken to be random. This statement is
incorrect and, to the extent that Grishchuk's criticisms
refer to it, we are in agreement with him. However, this
is an isolated error and is not of significance in either
the work of this author or others who produce detailed
predictions based on specific models (see, e.g. , Ref. [21]).

Typically the correct standing wave solutions are used
without making reference to the squeezed state termi-
nology. That this is so can most simply be seen by
the fact that the usual Bunch-Davies vacuum matched
onto the oscillating radiation era solutions gives precisely
the standing waves noted by Grishchuk and Sidorov. In
[21], for example, the matching is described in terms of
growing and decaying modes in the radiation era, but
amounts to the choice of standing waves and indeed both
the acoustic oscillations and Sakharov oscillations which
result are seen in these simulations. The reason why so
little attention is paid to these features is that they oc-
cur only in the baryonic component of matter and are
almost completely swamped in dark matter dominated
models. It is an interesting possibility that this difFer-

ence might be exploited to distinguish between baryonic
and dark matter dominated models. Attempts have in
fact been made to look for these Sakharov oscillations
but the results are inconclusive [24].

The other important claim of Grishchuk and Sidorov
is that these features can be said to be of a distinctly
quantum mechanical origin. Speaking of desqueezing,
they state in [7] that "we relate this quantum egect to
the effect of the so-called Sakharov oscillations known in
the classical theory of matter-density perturbations. " In
[6] Grishchuk opines that "it is quite possible that the
very specific properties of the large scale density pertur-
bations related to their quantum mecharw'eel origin can
be revealed in the appropriate observations" (our ital-
ics). We will attempt to clarify this question in the next
section.

very classical in the WKB sense. We then discuss the re-
lationship between the WKB classicality and the various
treatments of perturbations &om inBation.

A. WKB classicality of squeesed states

Consider the q representation of the squeezed state in
the static inverted harmonic oscillator which we consid-
ered earlier:

q(q) =Ne-& +' l~,
where

(65)

(BlN=
l l, B=, C=tanh2r
ibad)

' cosh2r '

We will show that for large squeezing this wave func-
tion is very classical in the WKB sense and becomes in-

creasingly so with time. The wave function can be writ-
ten

(66)

4(q) = ~(q)e*"" (67)

If S(q) varies much more rapidly with q than p(q) the
state is a WKB state for which

pl@) = F&es(q)ll&). (68)

To the extent that this holds the state assigns momentum
and position simultaneously according to

p(q) = ».S(q). (69)

p(q) = Ne
g2

S(q) = —C—.
2h

(70)

(71)

The WKB condition is met when the quantity
p(B~S(q)/8&p(q)) is large. From Eq. (65) we find

While p(q) need not be localized, it does represent a dis-
tribution in classical phase space which evolves classically
in the WKB limit.

For the evolved state given by Eq. (65) we have

VII. THE CLASSICALITY
OF SQUEEZED STATES

8~S(q) C
p = —= sinh 2r. (72)

A squeezed state seems to be an especially quantum
mechanical state. It is not well localized in p and q and
therefore cannot be represented by a point in classical
phase space. It may instead be viewed as a coherent su-
perposition of many localized wave packets. It is very
unlike the archetype classical state, the coherent state,
being very squeezed in one variable. It is this feature
which generates so much interest in these states in quan-
tum optics and other areas of physics and leads to their
characterization as very "nonclassical" [14].

In general, there is not universal agreement on a pre-
cisely defmed boundary between quantum and classical.
We will now show, however, that the squeezed states are

We are grateful to Jim Peebles for a discussion of this point.

Therefore as the initial state evolves and becomes more
squeezed, it also becomes more classical in the WKB
sense.

Equivalently this can be seen from Eqs. (8)—(11) since
they imply

l(@(t)lqJ l@(t))I
= —(I+»~'2r) ' = -e".

2
(73)

This just expresses more directly the efFective irrelevance
of the noncommutativity of the position and momentum
operators on the state for large squeezing. It is precisely
these properties of the inverted harmonic oscillator which
were used by Guth and Pi in [ll] to illustrate how a
quant»m mechanical state can be treated in certain cases
as an ensemble of classical states.
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B. Implications of VfKB classicality

The WKB classicality means that the squeezed state
can be approximated in its evolution as a classical phase
space distribution, as long as one only measures classi-
cal quantities. When a particle in a spread out WKB
state interacts with another system which responds to
(or "measures") the value of p or q, one can predict the
outcome using only the probability distribution in clas-
sical phase space.

In fact, it is well established that when such a mea-
surement takes place correlations are set up which cause
the quantum coherence to be lost (see for example [25]).
From that point on the particle is in a density matrix
rather than a pure state, and the possibility of observing
the effects of quantum coherence is even more remote.
(See [26] for a discussion of quantum coherence in the
context of WKB classicality. )

In quantum optics, where squeezed states of the elec-
tromagnetic field can be produced, detections are often
represented as measurements in the number eigenstates
of the field modes. Because these are not classical vari-
ables one cannot predict these results using a classical
probability distribution. Interesting quantum coherence
effects have been calculated, which can be thought of as
interference among the many coherently superposed clas-
sical trajectories comprising the squeezed state. How-
ever, because of practical limitations Zhu and Caves [27]
argue that such effects have not been experimentally ob-
served.

The crucial question then is: when matter interacts
with a density 6eld in a squeezed quantum state, does it
respond to (or measure) the classical field values or some-
thing else? We have given this question some thought,
and find it hard to see anything other than very clas-
sical processes in these interactions. The matter, after
all, evolves according to the values of things such as the
Newtonian potential, which is local in the field variables.
Furthermore as the Universe evolves and the matter re-
sponds to the perturbations, correlations will be set up
which destroy the initial coherence as discussed above.

If one wishes to show that the initial quantum coher-
ence of the squeezed state is of physical importance, one
must demonstrate interactions which measure something
other than classical quantities before the ordinary inter-
actions destroy the quantum coherence. It would be very
interesting if this could be done, but we do not see how.

The particular features of the power spectrum dis-
cussed by Grishchuk and Sidorov are not the result of
quantum coherence. They are features which appear in
individual classical solutions (e.g. , properties of each tra-
jectory in classical phase space) and do not represent
quantum interference among different classical solutions.
The physical origin of the fluctuations (the vacuuin fluc-
tuations) is quantum mechanical but their known physi-
cal effects are indistinguishable &om fluctuations &om a
classical stochastic 6eld.

Regarding the phases of Inodes which oscillate inside
the horizon, these are predicted regardless of whether
there is quantum coherence. The prediction is based on
the fact that the modes in question have spent a long

time outside the horizon, where there is one growing and
one decaying solution to the equations of motion. The
growing component becomes completely dominant for the
modes which are amplified during inflation. This growing
solution has a uniquely determined oscillatory behavior
when it enters the horizon, and thus the phase of the os-
cillations is predicted. The original work on this subject
has correctly accounted for these predictions [1].

The quantum squeezing is also a consequence of the
presence of one growing and one decaying solution, but
that does not mean that observing the phases of the oscil-
latory behavior amounts to a test of quantum coherence.
An incoherent superposition (such as would result from
the establishment of correlations with particles and pho-
tons mentioned above) would provide the same results,
as long as each mode was dominated by the growing so-
lution. The particular features of the power spectrum
discussed by Grishchuk and Sidorov are only quantum
mechanical in origin in the mundane sense in which all
perturbations in in8ation are. The physical origin of
the Quctuations is quantum mechanical but they are in
their known physical effects indistinguishable &om fl.uc-
tuations &om a classical stochastic field.

VIII. CONCLUSION

We developed the squeezed state formalism to study
the growth of cosmological perturbations. The formal-
ism is then applied to a simple inflationary model with
baryonic matter. We discussed how the standard fea-
tures, such as acoustic oscillations and Sakharov oscilla-
tions, are characterized in the squeezed state formalism.
At late times density perturbations are semiclassical and,
for all practical purposes, can be well represented. by a
classical probability distribution function.

Confusion can be avoided if one keeps in mind that
there are three very different phases which enter into
the discussion. Firstly, there is the complex phase of
the wave function. To the extent that the system be-
ing studied is WKB classical, this phase is simply ab-
sorbed in the construction of the classical phase space
distribution. The classicality of the subsequent measure-
ments determine whether there are any interesting quan-
tum cohernece effects. Secondly, there is the phase of
oscillation of standing waves in the density field. These
are very precisely fixed in inBationary cosrnologies and
this can lead to predictable Sakharov oscillations at late
times. Note that this second phase is a classical phase.
Thirdly, there are classical phases for each Fourier mode
which correspond to translations in physical space. Since
the inflationary universe assigns equal probability to den-
sity 6elds which differ only by a translation, these spatial
phases are random within the linear approximation.

The use of squeezed states in a cosmological setting
was first advocated and implemented by Grishchuk and
Sidorov to calculate the power spectrum of primordial
gravitational waves [16]. The treatment is entirely anal-
ogous to that of cosmological perturbations; it is possible
to reduce the problem to, again, quantizing a scalar 6eld
with a time dependent mass (z = a). The power spec-
trum of this scalar field exhibits oscillations on certain
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scales. It is possible, as Grishchuk claims, to predict the
position of the dips in the power spectrum. However,
this feature is also present in the standard Heisenberg
formalism as treated by Abbott and Harari [28]. The
squeezed state formalism gives us an intuitive way of
looking at the generation and evolution of cosmological
perturbations. However, the formalism we have devel-
oped is not restricted to cosmological applications; the
equations of motion are quite generic of systems with
quadratic Hamiltonians that can be put in the forxn of
Eq. (26).
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APPENDIX A: RELATING THE HEISENBERG
AND SCHRODINGER PICTURES

In this appendix we show how to parametrize the
Schrodinger picture variables in terms of the squeezed
state parameters Rg, 4g, and Og. We then demonstrate
that the classical equations of motion for the mode func-
tions reduce to the evolution equations for Rp, 4g, and
eI, derived in Sec. III [Eq. (39)]. This shows how the
Schrodinger picture problem can be reduced to solving

s), (q) = -i [ (~) — '
(n)] (A3)

It is now easy to show, using the Heisenberg equations
of motion for ir and k, that the mode functions ug(g),
urg(g) satisfy the Hamilton equations

I
&g = ~a+ —&x~

z
z'

~k —Cs ~ (A2)
z

These are the configuration and momentum variables
of the classical Beld theory given by the action in
Eq. (21). With the initial choice of u~(rip) = (2Q)
and mg (rip) = i(Ih/2) ~, corresponding to an initial (right
moving) traveling wave, the solutions to Eq. (A2) are
uniquely defined for all times. At g = go we obtain the
Schrodinger picture operators (25). At some later time g
we have

1
~ (~) = [a (n) + a' (~)l

2k

where ag(rl) and a &(g) are the Heisenberg picture annihilation and creation operators defined by

ag(g) = Qt(g, gp)a), M(g, gp)

Rt(e&)8t (RI„C'g)ag8(Rg, Chg) R(Og)

=coshRge ' "ag —sinhRge' "+ "&a &.

From Eq. (Al) we then get

(A4)

on(ci) = as (coshRse ' " —sinhRse ' + i ~+a s (coshRse' " —sinhRse' "+ ")
2k

s), (g) = -i a~ cosh R~e * " + sinh R~e '~ "+ "
[
—a & cosh RI,e' " + sinh RI,e*~ (A5)

Comparing Eq. (Al) with Eq. (A5) we can identify the mode functions to be

1
uI, (g) = coshR~e* "—sinhRge*

~2k

mI, (g) = i (coshRse' " +sinhRse'i "+ i)
and these define the transformation that we seek between the Schrodinger picture variables and the Heisenberg picture
mode functions. It is now a matter of algebra to show that Hamilton's equations for the mode functions (A2) give
the equations of motion for Rg, Og, and Og (39).
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APPENDIX 8: INVARIANCE OF THE
EQUATIDNS DF MDTIDN FDR Rg„@g„AND es

Here we show that for the two actions (20) and (21) differing by the total derivative term [(z'/z)v2]', the equations
of motion for Ri„@y, and Oy have invariant form. For the action (21) Ag, Og, and pjc are defined in Eq. (27). On
the other hand for the action (20) we have

W„= -(I —c.') +
2 ' 2kz'

Oi, = —(1+c,)—
2 ' 2kz'

Pa = ——.
(Bl)

Even though canonically related Hamiltonians give diferent evolution for Rg, 4g, and Og, the physically measurable
quantities are invariant. We have not investigated how generic is the invariance of the equations of motion (39). We
leave this as an exercise to an inquisitive reader.
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