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The mechanism of the initial in6ation of the universe is based on gravitationally coupled scalar
fields P. Various scenarios are distinguished by the choice of an effective self-intemction potential
U(P) which simulates a temporarily nonvanishing cosmological term Us. ing the Hubble expansion
parameter H as a new "time" coordinate, we can formally derive the generel Robertson-Walker
metric for a spaha/ly flat cosmos. Our new method provides a classiScation of allowed in6ationary
potentials and is broad enough to embody aQ known exact solutions involving one scalar Geld as
special cases. Moreover, we present new in8ationary and de6ationary exact solutions and can easily
predict the inSuence of the form of U(P) on density perturbations.

PACS number(s): 98.80.Cq, 04.20.Jb, 98.80.Hw

I. INTRODUCTION: EINSTEIN'S BIGGEST
BLUNDER

The introduction of a cosmological constant A in the
field equations of general relativity later on struck Ein-
stein as "the biggest blunder of my life" [1,2]. Such an
amendment was not even completely new, since von Seel-
iger [3] and Ne»mann [4], e.g. , considered already in 1896
a corresponding term in the Poisson equation for the
Newtonian potential in order to compensate the energy
density of the '3:ther. '

Nowadays, Einstein's dream of a completely geometri-
cal description of fundamental physical interactions has
evolved into supergravity [5] and superstring models [6]
in a way which was unprecedented in his time. Never-
theless, the cosmological term is still a major problem of
these new approaches, as can be inferred Rom the review
of Weinberg [7].

The overall reason being that, in alxnost all quan-
tized theories of particle interactions, the vacuuxn den-
sity p, gives rise to a huge bare cosxnological constant
Ao ——mp„„wheree is the gravitational constant. This
can be traced back to the fact that the vacuum Quctua-
tions "feel" all the complicated physics originating &om
Higgs fields, fermion condensates, etc. , which enter into
today's unified field theories. For much higher energies
or, equivalently, to very short spacetime distances, the
sxnall scale behavior of the quantum world would deter-
mine the large scale structure of the universe.

On the other hand, it is known that the observed
macroscopical energy density is extremely small. For
the range of 45—100 km s Mpc of today's Hub-
ble constant Ho, the critical density is estimated as
p, = 0.5 —2 x 10 g/cm . From local as well as
large scale astronomical measurements, the xnacroscop-
ically observed cosmological constant A is estimated [8]
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to be less than 4 x 10 cm . Since the vacuum en-

ergy may also be time dependent at the early stages of
the universe, the exact fine t»~ing of the various vacuum
contributions to a very small A in the low temperature
regime of today appears to be one of the great mysteries
about unification.

Higgs-type scalar fields become more and more impor-
tant. They not only induce the masses for the elementary
particles via the Higgs-Kibble mechanism, but they can
also form stable boson stars [9] and kinks [10]. For spin-
one particles, exact nonsingular solutions of the Einstein-
SU(2)-Yang-Mills system are not yet known, but the new
power series expansion technique of Ref. [11] can be re-
garded as a first attemption in this direction.

But the scalar fields, in disguise as the "infiaton" P,
can also dominate the early universe, the epoch of infla
tion. Before symmetry breaking, a self-interaction U(P)
of such gravitationally coupled scalar fields allows us to
introduce a variable "cosmological term" without violat-
ing the Noether-Bianchi identities of Einstein s general
relativity.

II. MODEL OF A UNIVERSE WITH INFLATION

From new astronomical observations (COBE) we know
that the Universe expands and is rather homogeneous on
the large scale and in the microwave background. How-

ever, the standard Friedxnann model of the cosmos offers
no solution to such issues as the singularity problem, the
problem of Bat space, the horizon problexn, the homo-
geneity problem on great scales, the absence of magnetic
monopoles [12],and the problem of large number of par-
ticles [13,14].

The idea of inflation (see Guth [15] and Linde [16])
attempts to solve several of these problexns. Scalar fields

(Higgs, axion) are expected to generate, shortly after
the big bang, an exponential increase of the Universe.
However, in these first attempts, there was no so-called
graceful exit to the Friedmann cosmos, and the infiation-
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ary phase did not end. This problem was solved in the
nets inflationary universe. In this model, the scalar Beld
is ruled by a slightly difFerent self-interaction potential
which possesses a slow-roll part (a plateau) of the poten-
tial (acting as a vacuum energy), which dominates the
universe at the beginning.

Later on, power-law models were constructed which
possess no exponential but an a(t) t" increase of the
expansion factor of the universe [17,18]. The intermedi-
ate inflation is merely a combination of exponential and
power-law increases [19]. Mathematically, inBation is de-
scribed by a positive second derivative of the scale factor
a(t) of the universe. In general, this requires p+ 3p ( 0,
where p is the density and p the pressure of the matter
field.

In the models of the new and chaotic iri6ationary mod-
els, we have a fine-tuning problem, which consists of the
combination of the largeness of the scale factor and an ac-
ceptable distribution for density perturbations [20]. So-
lutions for these problems are attempted in the scenarios
of extended in/ation [20—22].

In all of these models, the isotropy and homogeneity
are prescribed. It was also shown that all initially ex-
panding homogeneous models (the Bianchi and Sachs-
Kantowski universes), which include a positive cosmo-
logical constant, approach asymptotically the de Sitter
solution [23,24], which is isotropic. This is called the
"cosmic no-hair" theorem. For models with scalar in6a-
tion, the question of damping a possibly initial anisotropy
of the universe is not relevant, because the model merely
has to a ensure a very small anisotropy in the universe
after inBation [25].

In this paper, we present in Sec. V a general inBa-
tionary solution in terms of the Hubble parameter which
comprises all previous exact solutions. This enables us,
in Sec. VI, to classify the potential U(P) for the scalar
Beld according to the different onset of inBationary, de-
Sationary, and Friedmann phases of the ~Iniverse. Within
this new description, some new exact solutions of the so-
called new and chaotic type are found in Secs. VIII, IX,
and X. The potentials found have a rather complicated
form however, which so far have no motivation &om Beld
theory.

Recently chaotic modeLs with several scalar fields Pl
including the inBaton have attracted much attention.
Linde termed his model "hybrid inBation" [26]; cf.
Copeland et al. [27]. In the vacuum dominated regime,
the back reaction of the other scalar Beld on the in6aton
is negligible and we can follow their evolution explicitly
by using quantum field theory in curved spacetime, in the
case of a de Sitter background; see [28], for example. In
these hybrid models, all the other scalar Belds vanish, if
they sit in the false vaccum. For the remaining in8aton,
we can then simply apply the general solution of Sec. V.

~ = 2„V'I~ [Ã+ ~[~""(&~&)(&-~)—2U(4)]) (3.1)

where P is the scalar field and U(P) the self-interaction
potential. We use natural »Its with c = h, = 1. A con-
stant potential Ue ——A/m would simulate the cosmologi-
cal constant A. Scalar coupled Jordan-Brans-Dicke type
[29] models can be reduced to (3.1) via the Wagoner-
Bekenstein-Starobinsky transformation [30—33]. We are
looking for solutions of the Einstein equation

1
Rpv gpvR = —tcTpv y

2
(3.2)

which are of the Robertson-Walker type

dr2
ds = dt —a (t) +r (d8 +sin ed@ )1 —I ~2

I = 0, +1, (3.3)

where a(t) is the expansion factor with the dimension
length. An open, Sat, or closed»~&verse is characterized
by k = —1,0, 1, respectively. This means that we will

investigate homogeneous and isotronic spacetimes. The
scalar field depends only on the time t, i.e., P = P(t).
Then, the only nonvanishing components of the energy-
momentum tensor read

p = To ———gP + U,
2

p = Ti = Tg-= Ts-——-gP-—U .3 12
2

(3.4)

(3.5)

IV. REPARAMETRIZED SELF-INTERACTION

Let us assnme that a(t) g 0; furthermore, we express
our result in terms of the Hubble expansion rate

a(t)
a(t)

' (4.1)

3/ H + —
/

=rp.( 2 k)
a') (4.2)

It describes the conservation of the energy. The (1,1),
(2, 2), and (3,3) components are given by

k
2H+ 3H + —= —scp.

Q2

The resulting Klein-Gordon equation is

(4.3)

Only the diagonal components of the Einstein equation
are nonvanishing. The (0, 0) component is

P = —3HQ —U'(4), (4.4)

III. FRIEDMANN SPACETIME which, after multiplication by P, can be transformed into

For a rather general class of in8ationary models the
Lagrange density reads

—[(&)'l' = —3H(&)' —U .
2

(4 5)

From (4.2) and (4.3) we obtain by linear coinbination
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and

A: ]c
H = —— —(a+p) = ——-4'

a 2 a 2
(4 6)

2H

= p —2U.

(5 2)

(5 3)
2kH+ SH'+ —= —(p —p)a 2

= ~U.
(4.7)

Observe that (4.7) is, in view of (4.5) and (4.6), a first
integral of (4.4) for all values of the normalized extrinsic
curvature scalar k. Alternatively, if we eliminate the k/a
terms in Eqs. (4.2) and (4.3), we obtain the Raychaudhuri
equation

~ ~a KH+H = —= ——(p+Sp) .
a 6

(4 8)

There are several options to calculate solutions for the
given system of differential equations (4.2) and (4.3) or
(4.6) and (4.7), respectively. The first possibility is to
ass»me a reasonable functional dependence of the scale
factor a(t) and then to calculate simply the Hubble ex-
pansion rate H(t). However, even for k = 0 the equation
(4.6) is not easily integrable in closed form.

Secondly, one could imagine a potential U(P) which
possesses the physically desirable features, and consider
(4.6) and (4.7), which, for k = 0, form the autonomous
nonlinear system

H = ~U(P) —SH (4.9)

QSH2 —~U(P) . (4.10)

U(&) = U(4(t)) = U(4(t(H))) = U(H) (4.»)
Another question is whether it is possible to construct
H = H(t) from the inverse function t = t(H) in closed
form. Only in this case, the Hubble expansion parame-
ter and the scalar Geld can be expressed explicitly as a
function of time, and the self-interaction potential U(P)
can be recovered from U(H).

In the phase space [34], the equilibrium states of this
system are given by the constraint (H, P) = 0. This
constraint is fulfilled by eU(P) = 3H2, where the Hub-

ble expansion rate is constant, i.e., Hp ——QA/3. For

P = 0, we obtain a de Sitter-type infiation with a(t) =
exp( gA/3 t).

For eU(P) g 3H, we find (H, P) g 0, which implies
that the solution P = P(t) and H = H(t) are invertible.
Then we can write the potential in (4.9) and (4.10) in
the repammetrized form

Hence, the density p is always a positive function,
whereas the pressure p is indeGnite and changes sign at
~U = 3H /2.

For zU P SH2, we find from (4.9) and (4.11) the formal
solution for the coordinate time

~=~(H) = J' dH

KU —302 (5.4)

In formal expressions involving indefinite integrals, we
omit the constant of integration. The scale factor in the
metric follows from the definition (4.1) of the Hubble
expansion rate as a(t) = apexp(f Hdt) where ap is a
constant with dimension length. Inserting (5.4), we thus
can determine the general solution as

t' HdH
a = a(H) = ap exp

~

~U —SH2 )
(5.5)

This implies for k = 0 that the reparametrized
Robertson-Walker metric for in8ation reads

d8 2
dH2

2 ( HdH—ap exp
U 382 K,U —3H

x dr +r (d8 +sin ed&p ) (5.6)

Note that the Hubble expansion rate H has become
the (inverse) time coordinate. This resembles the
reparametrization of Hughston (cf. [2], p. 731) for the
Friedmann solution, in which a(t) serves as the new time
parameter. In view of (5.4), the general solution of (4.10)
for the scalar Geld can be calculated in terms of the Hub-
ble parameter 0 as

4 =4(H) =+ dH

QSH2 —~U
(5.7)

Our general formula (5.7) resembles the Wagoner-
Starobinsky transformation &om the conformal Brans-
Dicke frame to an Einstein frame, cf. [32]. In metric-
affine gauge theories of gravity [35] this transformation
has a rather natural origin from generalized conformal
changes of the metric.

If we introduce the conformal time T via dt = a(t) dT,
the Robertson-Walker metric (3.3) (for k = 0) acquires
the manifest conformally Hat form

V. GENERAL METRIC OF A SPATIALLY FLAT
INFLATIONARY UNIV'ERSE

ds = a (t) tdT —dr —r (d8 + sin Hd&p )j ~ (5.8)

For our general solution, the conformal time can be ex-
pressed by the relation

In view of (4.2), (4.3), and (4.11),for k = 0, the density
and the pressure can be reexpressed as

dH HdH
exp~

icU —3H2 ( SH2 —~U)
(5.9)

3 2p= —0
K

(5.1) Our general solution holds for k = 0 and for U
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U(H) = 'H-+ '(H) (5.10)

for the potential, where g(H) is a nonzero function for
the graceful exit.

3H2/K, . Since this singular case leads to the de Sitter
inBation, we try in the explicit models the ansatz

2H' & ~U & 3H' and H &0, (6.6)

can read ofF the di8erent regions of the potential. All
values within the parabola, i.e., ~U ) 3H2, are forbid-

den. All points on the curve tcU = 3H~ are singular for
our system (4.9) and (4.10) and describe the de Sitter
solution. The origin is the Bat and empty Minkowski
spacetime. Solutions within the domain

VI. ALLOWED INPLATIONARV POTENTIALS
bounded by parabolas, describe universes with inflation.
Solutions within the domain

a&0, a&0 -::- H &0, (6.1)

whereas for de/ation we require

a) 0, a&0 -::- H&0. (6.2)

For a classification of the potentials, we follow Ref. [2)
(p. 773) and call

aa & H~q(t):= ——., = — 1+a2
& Hi

U
2 —K

2

(6.3)

(6.4)

the decelerution parumeter. Because a2 and a are posi-
tive, an accelerating cosmos (a ) 0) is described by neg-
ative q values. Thus, acceleration can only occur for a
potential satisfying

Infiation and defiation necessarily occur for all poten-
tials which satisfy the matter condition p+ 3p ( 0, i.e.,

a(t) ) 0. In order to discriminate infiationary &om de-
fiationary models, one has to take into account also the
rate of change of the scale factor a(t) or the sign of the
Hubble expansion rate, respectively. For in/ation, we
require

2H' & ~U (3H' and H (0 (6.7)

describe universes with deflation If th. ese solutions leave

this area through eU = 2H2, they make contact with a
Friedmann cosmos for which a & 0.

According to [28], the discrimination between infia-
tion and deBation depends on the choice of the confor-
mal &arne. For the scalar matter, we find &om (4.8)
that p+ 3p = 2(gP —U). For potential-dominated eras
this term is negative and hence inBation can occur. The
condition for inBation a ) 0 is then equivalently to
H & —H'.

For k = 0 and scalar matter, we can infer &om (4.6)
that always H & 0, i.e., —H~ & H & 0. For other types
of matter it is possible that H & 0, cf., e.g. , the spin
driven infiation [36]. Such pHysical models are also called
superinffationary, in contrast to the subinflationary ones
[37,38,17] considered here.

Several models are now conceivable which have combi-
nations of in- and defiationary potentials. One can con-
struct models where inBation never ends, those with a
combined inBation-Friedmann cosmos, or some where the
universe enters the deBationary regime. In the following,
we will recover known models &om our general formalism
and present some new ones, too.

]cU ) 2H (6.5)

20

According to (5.3) the pressure is then necessarily neg-
ative and drive8 the inBation. Another constraint is
found by looking at the general solution for the scalar
field (5.7). The scalar field remains real only if the po-
tential fulfills IcU ( 3H2. [Otherwise, we would have a
scalar "ghost" in the Lagrangian (3.1).] From Fig. 1, we

VII. POWER-LAW AND INTERMEDIATE
INFLATION

The ansatz

g(H) = —AH", (7.1)

where n is real and A a positive constant, leads to sev-
eral known and new solutions. The integration constants
Cq, C2, C3 are, of course, different in every model. As it
turns out, n = 0, 1, 2 are special cases which we consider
6rst.

For n = 0, we 6nd the following solution:

10

0-
—2 —1 0 1 2 3

H(t) = (At+ C,), —

(a(t) = ao exp
~

— (At + Ci) + C2 ~,2A )

(7.2)

FIG. 1. Classification of iufiatiouary potentials U(H). U is
measured in units of (1/e ) aud H in units of (1/tc ~ ).

and
2A

P(t) = + (At+C, —C,). (7.3)
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The chronology in this model is the following: at 6rst,
there is an in8ationary phase for which the maximal size
of the universe is ao exp[—Cz/(2A) + C2]. This is very
extended for Ci (& 0 or C2 )) 0. The transition kom
in6ation to the standard Friedmann cosmos occurs at the
point H = +~A. There exists also a transition from the
standard Friedmann cosmos to deBation which occurs at
H = —~A. This all can also be recognized by looking at
the classification diagram (Fig. 1). The self-interaction
potential is only quadrutic as it is normally investigated
in the chaotic scenario:

4(t) = +
A~ (C, At+C, i

The self-interaction is the exponential potential

(v.9)

H(t) =, a(t) = ao[C2(At+Cd)] /, (7.8)At+ Cg
'

U(y) = — 3
~ y+ C.

i

- A
)

(v.4)
U(P) = Cs exp(kv'2~A (t)) . (7.10)

For n = 1 we have

and

H(t) = Ci exp( —At),

/' Cg
a(t) = ao exp

i

— exp( —At) +
A Ay

(v.5)

This case describes power-law inQation t i if 0 ( A ( 1,
which means that 2H & ~U & 3H' and H & 0. For
A = 3/2 the pressure (5.3) of the scalar field vanishes and
we get a(t) t2/2 as in the matter-dominated Friedmann
cosmos [41]. One recognizes that for A = 3 the scalar
field possesses a vanishing potential (see the Appendix).

For n g 0, 1,2 the constant A has the dimension
length" . For the Hubble expansion rate, we get

8 f At-
/(t) = + QCi exp

~

—Cs
i

H = [A(n —1)(t+ Cg)]'

whereas the scale factor reads(7.6)

(v.ii)

so that Ci ) 0. The universe in this model starts with
an infiationary phase up to the point H = A, where it
crosses the boundary eU = 2H2 and evolves towards a
conventional Friedmann cosmos. The universe reaches
the size ao exp(C2/A) after infinitely long time. The po-
tential

a(t) = ao exp (A(n —1))'/ ' "l

x (t + C )
{2—n)/{1—n) (7.i2)

U(P) e2cg P2
~

e2cg $2
8 ( 8

(7.7)

has here a linear combination of $2 and (]t)4 terms which
are familiar from the Higgs potential of spontaneous sym-
metry breaking. For a pure (t) potential, an exact and
an approximate solution is found in Refs. [39] and [40].

The scalar 6eld is then given by

g(t)+c, = / [g(n —1)(&+c,)]" "' "' "".2

A&2 —n

(v.i3)

The corresponding potential reads

„(
3 (2 —n) P+ Cs ]

—A ] (2 —n)" P+ Cs . (7.14)
) {, ) { )

VIII. NEVI PGTIHTXAX IN THE PRAMEVfORK
OF CHA.DTXC XNPLATION

Another model can be obtained from the ansatz

Hence, we recover the models [19] of intermediate infia-
tion exp(t{2 "&/{i &) with 0 & (2 —n)/(1 n) & 1, which-
is equivalent to 1 & n & 2. For (2 —n)/(1 —n) = 2/3, the
Bat Harrison-Zel'dovich spectrum is recovered. Trans-
lated into our model this holds for n = 4, i.e.,

~U = 3H —AH (7.15) g(H) = + QACH —H2H, —4
C

(8 1)
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where A, C are constants. For this model we find the
scale factor

3..
2.5..

a(t) = ao exp[C arctan(At + B) + F] .

See Fig. 2. For

a(t) = ao exp[Carccot( —At) + E],

(8.2)

(8.3)

2-

1.5-

0.5-

we find the same model, but the scale factor reaches for
t ~ oo another limit (A ) 0): ao exp(Cn).

The Hubble expansion rate is

AC
(') =

1+(At+B)2 ' (s.4)
FIG. 3. The scalar Seld 4t(t) in units of (2C/s, )' and time

t in units of (1/A) (D = 0).

which vanishes for t -+ oo. The solution of the scalar
field (Fig. 3) was determined via the computer algebra
system MACSYMA as

tt(t) = A cretan(tr'2(At+ B) + 1)
2C t

+ cretan( sr 2(At + B) —1)
(

—— tn~ At + B+ trt(At+ B) + 1)
1

2

—ln~ At+ B —/2(At+ B) + 1 + Ci . (8.5)
(

In the following, we will only consider this model with
positive scalar field. The potential U depending on the
time t reads

Because of the complicated functional dependence of
P(t), we have not found a closed form of the inverse func-
tion, but have numerically determined U(P); see Fig. 4.
This potential has rio plateau at the origin P = 0. But it
possesses a minimum with a negative value of U. After
the minimum a limiting point follows, for which the po-
tential vanishes: The scalar field needs infinitely long in
order to reach this point.

Equation (8.5) gives the constraints C ) 0 and At +
B) 0 on the integration constants. Real solutions occur
only for initial times t; & B/A. Th—e condition [42] for
an infiationary phase is in general given by (6.6). For
A ) 0 we have a & 0 and find

at A2C exp[C arctan(At + B)]
(1 y B'+ 2ABt + A't')2 C —2At —2B

Ut = A'C 3C —2At —2B
[1+(At+ B)2]2

'

1
0.75
0.5

0.25
0

-0.25
-0.5

0 2 4 6 8 10

(s.6)
(8.7)

In each model, depending on the constants A, B,C, the
scale factor starts with the value a( B/A) —= 1, the ve-
locity a( B/A) = AC,—and the acceleration a( B/A) =-
A C . Then the universe in8ates exponentially up to
the time tf = (C —2B)/(2A) ~ a = 0 (f means final).
Then, a positive pressure of the scalar field prevents a
further expansion of the universe. Hence, the duration
of infiation, is tf —t; = C/(2A). Only the constant C
determines the strength of inQation, whereas both con-
stants A and C determine the duration of the inBation.

3.5
3

2. 5
2

1.5
1-

0 2 4 6 8 10

2. 5

1.5

0.5

—0.5 0.5 1 1.5 2 2. 5 3

FIG. 2. Below: The scale function a(t) in units of (att) and
time t in units of (1/A) (C = 1). Above: Its second time
derivative.

FIG. 4. The numerically determined potential U(2tt) in
units of (A C/m) and scalar field ttt in units of (2C/22)
vrhere ere have set C = 1.
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a(t) = aoexp[Carctan(At+ B) + Dt+ E] . (8.8)

Then, we find

AC
1+ (At+ B)2

:D. (8.9)

We get the same solution for the scalar field, whereas the
time-dependent potential is changed to

The constant B has no geometrical meaaiag. At the end
of inflation the scale factor is constant. After infinitely
long time, in practice, very soon after the inflation phase,
a Minkowski spacetime emerges.

It is also possible to take into account a de Sitter-type
expansion, i.e., the Hubble expansion rate is becoming
constant after a short starting phase determiaed by the
new model. We may connect the two models by

IX. EXACT SOX UTXQH OF NE%V INFLATION

For the graceful exit function, we consider a polyno-
mial in H up to second order, i.e.,

g(H) = H—'+
~

D —
~

H+ —AD,G) (9.1)

DG exp(Dt + F)Ht =A—
1 + exp(Dt + I" )

(9 2)

In the limit of infinitely long time, H is becoming the
constant A —DG. For this universe the scale factor reads
(Fig. 5)

where A, D, G are constants. Again, it is possible to cal-
culate the model completely. For the Hubble expansion
rate, we find

3( AC() = —
„ I(, +(A, +B), +

)I

2A' (At+ B)C
[1+(At+ B)z]z ' (8.10)

exp(At + K)at =ao
[1+exp(Dt + F)]

From (5.7) we get the scalar field (Fig. 6)

(Dt+Fi
arctan exp

~

+C.
)

(9.3)

(9.4)

so that in the limit t -+ oo we have: U ~ 3D2/~ The.
disadvantage of this model is that the de Sitter infiation
very soon plays the decisive role and infiation never ends.

The constants F, K, C are further iategration constants.
We read off the reality condition G ) 0.

The potential is given by

U(P) = , 3A'+ (6A' —6ADG —D'G) tan' + (P —C) ~

1+ tan2 + e —C 8G 8G

+3 (A —DG) tan
~

+ (P —C)
~8G )

(9 5)

cf. Fig. 7.
The constants A and D have the dimension 1jlength.

For large times, the scale factor (9.3) reaches the value

a(t) as exp[(A —DG)t] . (9.6)

One recognizes that for A g DG the scale factor is either
exponential in- or decreasing depending on the sign of
A —DG. Hence, in these cases we find models with either
in- or deflationary behavior. Only for A = DG, we have
a limitiag value. In this case, the constant aq determines
the limiting value a . From the potential (9.5), we can
distinguish three types of diferent physical behavior of
our model universe.

Hence, in this model, a fine-t»~lag problem arises.
Only if three constants fulfill the exact condition A = DG
is the graceful exit secured. In all other cases, the infia-
tion can first stop, then occurs again or the resultiag
universe will recollapse to its original state.

For A = DG, the potential U(P) is vanishing with in-

creasing scalar field. These models are the exact solutions
of the new infiationary theory.

For A ( DG, the potential U(P) reaches a positive
value with increasing scalar field. Therefore a defusion of
the universe is born later. The chronology of this model
is in8ation, Friedmann cosmos, deflation. The universe
contracts again after a maximal radius.

For A ) DG, the inflationary phase Erst ends, then
it is renewed and never eads. In order to be precise, for
increasing deviations of A from DG, the limiting value
of the potential becomes more and more negative, and
finally the minim»m of the poteatial vanishes. Hence the
chronology is the following in8ation, FneHmann cosmos,
in8ation. The duration of the Friedmann phase decreases
with increasing A and Exed product DG. The slow-roll
approximation occurs again.

Because all models start with aa iaBation phase, we
can first calculate the end of infiation, which we define
by ii(ty) = 0. It occurs at the time t y which is implicitly
given by
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FIG. 7 T.he potential U(P) in units of (A /~) and the
scalar field P in units of (8G/e) . We have set G = 1
and C& ——0. It has all features which are demanded by the
theory of the new in8ation, but with one exception: it does
not possess an increasing potential wall after the in8ationary
phase. Instead we have there a limiting point which prevents
the scalar field from reaching lower points on the potential.
The limiting point simulates the potential wall for large P
values.

FIG. 5. Below: The scale factor a(t) in units of (as) and
time t in units of (1/A) for the graceful exit solution with
A = DG and F = K = 0. Above: The second time deriva-
tive of the scale factor a(t) in the same units determines the
dHFerent parts of the universe model. For ii & 0 the universe
is in8ationary.

e '~+ = —2A +2ADG+D G (9.7)
1

universe was the Planck length fo 10 ss cm where the
infiation has started. Nowadays, the Hubble expansion
rate is H(ty) = 3.24 x 10 is s

Let us concentrate on the graceful exit case, i.e., A =
DG. There we set G = 1. Because the in8ation is aris-
ing till 10 I s, we set the constants A = D = 10ss/s.
In order to get at least our size of the present universe,
Eq. (9.6) requires a(tf) ao ——10 cm. We find from
(9 9)

+QDsG(D2G + 4ADG —4A2) . (9.8) F = ln G —D7. = 130.5 . (9.10)

For the case A = DG we find

1
tg ————+ —lnG.

D D (9 9)

Using the Planck length at t; gives the condition K =
4.54 x 10

At the origin P = 0, the potential (9.5) possesses the
following power series expansion (the infiationary part)

There exist several constraints on the constants in or-
der to fulfill today's astrophysical estimates [43]. We
suppose that infiation ends at tf .= 7. = 10 ss s. At
the Planck time t; = 10 4s s the initial extension of the

4.

+
I

+ +,l

4'+ o(&)'.
64 32 G 48 Gp

(9.11)

6A+ D
6DG+ D —6A

(9.12)

It is also interesting to calculate the minimum of the
potential U. This minimum occurs at the time tm;»
where

2

0
—10 10 t; = —[ln (6G + 1) —F],1

(9.13)

Observe that no minimum exists if the right-hand side
is negative or zero. For the constraint A = DG, we can
find a minimum in every case. For this special choice of
constants, we 6nd

FIG. 6. The scalar Beld P(t) in units of (8G/e) ~ and t in
units of (1/A) where we have set C = E = 0. It monotonically
increases to a nonvanishing limit.

D2G
U, ~xnin, A=17Gl =

4~(1+ 3G)
(9.14)

and a negative value of the potential at the minimum
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After the initial submission of the present paper, fur-
ther exact infiationary solutions were published [44]. The
first solution is a special case of (9.1) for DG = 2A, i.e. ,

U(P) = qP($ +A ) ~

. +2/ +A —6
~

. (9.24)
12A2 (A4

~ ~

g(H) = -2H'/A'+ 2A'~'

(in the notation of [44]). Then the solution reads

P(t) = A ln[tanh(At)],

H(t) = A'A coth(2At),

a(t) = ao[sinh(2At)]

U(P) = A A (3A —2) cosh
i

—.
i
+ 2

(A)

(9.15)

(9.16)

(9.17)

(9.18)

(9.19)

X. DEFLATIONARY UNIVERSES

One could suppose that the Hubble expansion rate in-
creased in the beginning of the Universe and then became
constant. Having this idea in mind, we try the ansatz

The second solution of [44] corresponds, in our notation,
to the following ansatz:

g(H) =
2

= AC cos (H/C),
AC

1+ tan2(H/C)
(10.1)

(9.20)

In the notation of [44] the solution is then

(H) 3A
—10/3) —2/362/3Hs/3 + A

—2(3A2 9)H6/3

61/3A —2/3P2/3 (A2 + 1)H4/3
2
62/3

A' 'A' 'H' '
12

which yields

H = C arctan(At + B) .

Then the scale factor is

(10.2)

exp [(Ct + BC/A) arctan(At + B) + F]
[1+(At+ B)']

(10.3)
P(t) = A csch(At),

A2A

6
cotji (At),H(t) =

a(t) = a0[sinh(2At)] exp
A2

12
coth (At)

9.21
and the scalar 6eld reads

(9.22) 2C
P(t) = — arsinh(At + B) —D .

AK
(9.23)

The potential is given by (Fig. 8)

(10.4)

1 ~ ~ (
U(P) = — 3C arctan sinh

K
—2C(&+ D) (10.5)

AC

1+ sinh —
z& + D

(10.6)

In order to have a real scalar 6eld solution, we have to
require C/A. ( 0. A more detailed investigation of the
behavior of the scale factor shows that for negative At+
B we find an infiationary phase before a(t) reaches a
maximum. For positive At + B, a de8ationary phase
starts.

A further solution is found if one supposes that the
Hubble parameter is not becoming constant but is in-
creasing logarithmically

20

15

10

—3 —2 —1 0 1 2 3 4

H = Cln(At+ B),
which follows &om the ansatz

g(H) = AC exp( —H/C) .

(10.7)

(10.8)

FIG. 8. The potential U(P) in units of (C /r)
and the scalar Beld P in units of [

—2C/(Aa)) / for
g(H) = AC cos (H/C) We have put A =. C = 1 and D = 0.
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gravitational spectral indices in first order approximation
read

5

-5
—10

dlnP~n. :=1+ = 1 —4~+ 2g,
dink

dlnPg
Ag o = —2E' )

dink

(11.3)

(11.4)

—15 1 2 3 4 5 6 7 8 where the two slow-roll parameters e and g are defined
[44] as follows:

FIG. 9. The potential U(P) in units of (C /tt)
and the scalar field P in units of [

—SC/(Att)] for
g(H) = AC exp( —H/C). We have put A = C = 1 and D = 0.

2 (H''ts:=3
tt |H)

2 H"
tt H

(11.5)

(11.6)

Then we find the exact solution (Fig. 9)

u(t) u (At + B)(et+Bc/A)e (ct+—Bc/A)+F

P(t) = — /At+ B —D,SC
A]c

- 2

U(P) = — 3C ln
i

— (P+ D), 8C +

8C2

(10.9)

(10.10)

(10.11)
(P+ D)2

i

For a real scalar field, the constraints C/A & 0 and
/At+ B ) 0 have to be fulfilled. The infiation starts
at the time t; = B/A with —a short increasing (because
of the exponential function in the scale factor), but then
decreases very rapidly to zero (because it becomes a func-
tion of the type I/tt). Hence, the solution has a purely
defiationary character. However, the discrimination be-
tween infiation and defiation is also depending on the
conformal frame [45].

g
H2 (11.7)

After inserting (4.4) and (4.6), the second parameter can
be expressed as

dU 1 dg

2H dH 2H dH
(11.8)

Thus, the condition n, = 1 for a fiat spectrum of the
Harrison-Zel'dovich type converts into the relation

In general, they are scale dependent and have to be eval-
uated at the horizon. The parameter e describes the rela-
tion between the kinetic and the total energy, whereas g
is a measure for the relation between the "acceleration"
of the scalar field and its "curvature-dependent velocity. "
In the slow-roll approximation e and tI are small quan-
tities. Actually, the phase of acceleration (the slow-roll
approximation, a ) 0) is now equivalently to the condi-
tion t: ( 1. The flat spectrum of the Harrison-Zel'dovich
form is obtained for n, = 1.

By using (4.10), the first slow-roll parameter is given
by

Xi. DENSiTY PERTURBATIONS
H =4gdg (11.9)

For a long time it was thought that the spectrum
of density perturbations was described by the scale-
invariant Harrison-Zel'dovich form [46—48]. But new ob-
servations by COBE [49] show the possibility of small de-
viations. The spectra of scalar and transverse-traceless
tensor perturbations [50,51] are given by

( H'
~4( ) =

l(4

&a*(&) =
I 2

(11.2)

where R denotes the perturbation in the spatial curva-
ture, H' = dH/dP, and k the wave number. The expres-
sions on the right-hand side have to be evaluated at that
coinoving scale k/a which is leaving the horizon during
the inBationary phase. The results are only valid in first
order slow-roll approximation [51]. The scalar and the

~* H(P)ln a(Pi, P2) = —— dP .
H'(P)

(11.10)

In the new two models of chaotic and new inBation, the
slow-roll phase appears for the regime of small P values.
Here we investigate only the new inBationary model be-
cause of its explicit P dependence. Only for A = DG, we
find an in8ationary model for our universe which works
rather well. Hence, we can calculate (for small P values
up to order gP)

3 P2

]cG 8~G2 ' (11.11)

for the graceful exit function g. This Euler-type relation
for homogeneous functions is solved by g = CH, which
corresponds to, our earlier Eq. (7.15); cf. [42].

In the era of inBation, the scale of the nniverse has to
explode at least by a factor eso 10so. The number of e
foldings between scalar field values Pi and Ps is given by
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ng
4 ~G' (11.12)
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R&(.):= Z&~(tensor) 12.4 P~

Z) scalar 8 KG
(11.13)

APPENDIX A: SOLUTIONS FOR CONSTANT
SELF-INTERACTION POTENTIAL

The scalar field P has to be evaluated at that time scale
where the corresponding Lth multipole leaves the hori-
zon. This result is very similar to the one found for the
intermediate inflation (see Eq. (21) of Ref. [42]).

The relation between the relative amplitude and the
scalar spectral index is given by

In this appendix, we derive all solutions for a constant
self-interaction potential U(P) = A/e for closed, open,
and Hat universes. Then, a 6rst integral of the Klein-
Gordon equation (4.4) is

(Al)

Equation (4.2) yields
1 3R)n. —1—

KG 12 4
(11.14)

a +k= —Aa
1 ~ C
3 6a4 ' (A2)

Again, we can read ofF that, for G &) 1, we have a scale-
independent spectrum.

It is quite useful to compare this result with those cal-
culated &om other inSationary Inodels. For the interme-
diate inQation,

n —4
n, - 1 + R)

12.4
(11.15)

Gg Hr (11.17)

The inflation occurs for
~

H —DG ~&& 1. The scalar
spectral index reads

2 3D
ns =1+—— (11.18)

was found [42], whereas for the power-law in6ation,

n. -—1—R) (11.16)
6.2

holds. In the last case, both n, and R~ are scale inde-
pendent.

We can now coinpare these +dependent results with
those emerging &om the H dependence. For A. = DG we

6nd

where we have replaced H by the scale factor a(t).
The general integral of Eq. (A2) reads

a dat=+v6
/2Aas —6ka4+ Ci~ ' (A3)

for which Cq is a second integration constant; cf. [2],
p. 731 for the reparametrization of the time coordinate.

For U = 0, we obtain H = 1/(3t) as the solution of
(4.9).

The integral (A3) belongs to the hyperelliptic integmls

([52], part 251, 6). It can be transformed by means of
y:= a~ into an elliptic integral ([52], part 244),

v6 ydy
2 /2Ay4 6kys + Ci&y

' (A4)

2Ay —6ky + Cy y = 0.
Case k = A = 0. The solution reads

(A5)

The solutions depend on the special form of the zeros of
the quartic equation

Hence, in the era of ianation,

1
n ~ 1 ——

G
holds. The relation between R~ and n, reads

4 R) 2K, DK,

124 G
which in the inflationary era reduces to (11.14).

(11.19)

(11.20)

a(t) = +C,

2
P(t) = 6 —ln +Ci

) 1/3

&+&g I (A6)

(A7)
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Case k = 0 and A g 0. For A ) 0, the solution is
Il(y, k) = (A13)

(C21 /

a(t) =
I

I
sinh / [+v'3A(t+C2)] )(2A)

& &3A
P(t) = + —lntanh + (t+ C2) + Cs . (A9)

3K ( 2 )

(A8)

For A & 0, the hyperbolic functions are converted into
the trigonometric ones:

( C 2)1/6
a(t) =

I

— '
I

sin'/ [+Q—3A(t+ C2)],
2A )

P(t) = + —lntan
I
+ (t+C2)

I
+Cs. (All)

2 ( g—3A

)3K ( 2

(A10)

Case A = 0 and k = +1. We have

6 dct=k
QCi2/6 —sa4

(A12)

where e = 1, for k = +1, and e = i, the imaginary unit,
for k = —1. This integral is again of elliptic type. In
terms of the elliptic integrals

and

E(y, k) = f y 1 —k~sin @dg
0

(A14)

1 )—&I v» ~ I
(A15)

where a = —(1/+s) (Ci /6) cos p.
For k = +1, the solution is also given by the in-

tegral tables of Grobner and Hofreiter ([52], part 244,
Sb15c), whereas for k = —1, we find the solution in

([52], p. 91, part 244, Sc8) (with s:= ri ——si ——s2 ——

"2 = +Ci/(24) ).

of the first and second kind, respectively, we find the
solution

1 1 (C,') ' ( l1t+C2=+
I I

2EI v,
2 os(6g'2)
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