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Baulware state and the generalized secend law' of thermodynamics
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We show that the appropriate vacuum state for the interior of a box with re6ecting walls being
lowered adiabatically toward a Schwarzschild black hole is the Boulware state. This is concordant
with the results of Unruh and Maid, who used a diferent approach to obtain the stress-energy inside
the box, but does not agree with Li and Liu, who only consider the quantum state outside of the
box.
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I. INTRODUCTION

One of the most remarkable developments in gravita-
tional theory in the last century has been the discovery
that fields quantized on a black hole background exhibit
thermodynamical properties [1]. This discovery was pre-
saged by the work of Bardeen, Carter, and Hawking [2]
in which they pointed out an analogy between laws gov-
erning certain properties of black holes and the laws of
ordinary thermodynamics. In particular, the analog of
the second law of thermodynamics is Hawking's theorem
that the surface area of a black hole is nondecreasing [3]:
i.e.,

and the matter released into the black hole, the energy
of the matter will have been reduced by the redshift fac-
tor y = (1 —2M/r)iI2 so that the black hole's energy is
increased by

Since we can lower the box to approximately the dis-
tance R (the dimension of the box) from the event
horizon before releasing the energy into the black hole,
we can provide the black hole with as little as E
[1—2M/(A+2M)] I2E energy. However, as Bekenstein
demonstrated, this will lead to a change in the black hole
entropy of

dABH

d7
1

bSsH = —bAsH = 8+ME.
4

(1.4)

It was based on this analogy between (1.1) and the sec-
ond law of thermodynamics that Bekenstein [4] conjec-
tured a generalized second law (GSL) of thermodynam-
ics: The sum of the black hole entropy and the ordinary
entropy in the black hole exterior never decrea8e8. More
precisely, the GSL states that for any physical process

After the box is exnptied, it can be slowly pulled back out
to infinity. But observe that, if R & S/(2vrE ), we will
have bSBH & S and the GSL will be violated. Therefore,
Bekenstein concluded there was a bound on the entropy
of matter with energy E that could be placed in a box of
dimension R:

1
bS gt„+ —bAsH ) 0

4
(1.2) S/E & 2n.B.

(units 5 = c = G = k = 1), where Smst«, is the entropy
of the matter outside the black hole. In (1.2), 4AsH, one-

quarter of the black hole's surface area, plays the role
of the entropy of the black hole. This correspondence
between the surface area and entropy of a black hole has
become firmly established in the context of black hole
therxnodynamics, beginning with Hawking's discovery of
the thermal radiation emitted by a black hole [1].

Bekenstein [5] further argued that an entropy bound
on matter was required in order for the GSL to hold. His
argument relied on the following gedankenexperiment.
Imagine that a box of linear dimension R with reBect-
ing walls is filled with ordinary matter of energy E and
entropy 8 at a very large proper distance &om a black
hole. The box is then slowly (adiabatically) lowered to-
ward the black hole of mass M. V/hen the box is opened

Unruh and Wald [6] (UW) have pointed out, however,
that Bekenstein failed to consider black hole quantum
effects in his analysis. In particular, they point out the
effect of acceleration radiation on the box as it is be-
ing lowered. Since, in the reference kame of the almost
stationary (hence accelerated) box, the black hole is sur-
rounded by a bath of thermal radiation, there will be an
upward pressure on the box. In fact, when this is taken
into account, Unruh and %aid dexnonstrate that a box of
negligible height will Boat when the energy contained in
the box, E, is exactly the same as the energy of the accel-
eration radiation displaced by the box. In order to lower
the box further, one will have to do work against this
buoyancy force. Unruh and Maid go on to show that
in order to minimize the entropy increase of the blacK
hole, the box xnust be opened at the Boating point. They
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further shovr that the matter released at this point will
contribute at least enough energy to the black hole to
increase its entropy by an amount

hSgH ) S, (1.6)
vrhere S is the entropy of the matter in the box. Thus,
they conclude, the GSL will hold independently of the
validity of (1.5).

More recently, Li and Liu [7] have stated that the be-
lief of Unruh and Wald that the Hawking radiation is
thermal near the black hole is in error. In support of this
statement they use the approximate stress-energy tensor
for a massless scalar Beld surrounding a black hole found
by Page [8]. Based on this stress energy they find that
the pressure of the Havrking radiation near the black hole
is not large enough to produce a substantial buoyancy ef-
fect, and they derive a bound on the entropy very similar
to (1.5) of Bekenstein.

Page's approximate stress energy is for the Hartle-
Hawking state associated with a conformally coupled
massless scalar field in a Schwarzschild background. This
is an adequate description of the state outside the box
as seen by a freely fe&bng observer. However, as demon-
strated by UW, in the &arne of a stationary (accelerated)
observer the box is subject to a bath of acceleration ra-
diation. Equivalently, UW show that in the &arne of a
freely fal&ing (inertial) observer, this acceleration can be
thought of as affecting the energy density inside the box.
Li and Liu consider neither this change in the energy den-
sity inside the box nor the efFect of acceleration radiation
in their analysis of the buoyancy effects.

How can the acceleration of the refiecting walls of the
box afFect the energy inside? Let us first answer this
question for a box of fixed proper length accelerating in
Sat space. It is well established that, when quanta~
effects are considered, a mirror experiencing nonuniform
acceleration vrill radiate two Buxes of energy proportional
to the change in acceleration, dE/d7 oc da/d7 [9]. One of
these Suxes will be in the direction of the change in the
acceleration of the mirror, and will have negative energy.
The other, in the opposite direction, will have positive
energy.

We first consider the situation &om the point of view
of an inertial observer watching an empty mirrored box
accelerate &om left to right. If the box increases its accel-
eration, two Buxes of energy vrill enter the box. The Bux
&om the rear (left) wall will be negative and the Sux
from the &ont (right) wall will be positive. However,
these Buxes will not be equal. As the box accelerates,
it will undergo Lorentz contraction. The rear wall vrill
therefore be forced to accelerate, and change its acceler-
ation, at a higher rate than the kont vrall, and will thus
emit a larger Bux. As a result, the inertial observer sees
a negative energy density developing inside the box.

Now, let us consider the situation &om the point of
vievr &om an observer inside the box, accelerating vrith
it. This observer does not notice a negative energy den-
sity developing inside the box. Indeed, this observer,
who started in the empty Minkovrski vacuum, still be-
lieves that the interior of the box is (apart &om himself)
empty. Thus, with respect to vrhat he sees as the vac-
uum state, the exterior of the box is filled with a positive

energy Buid. This Buid is none other than the accelera-
tion radiation described by UW. It should be emphasized
that the bath of acceleration radiation seen by the accel-
erating observer is an artifact of this observer measuring
energy vrith respect to the vacu~lm of his non inertial
(accelerated) frame. The true stress energy is properly
described by the inertial observer, who sees a negative
energy density inside the box.

Let us now return to the case of the rigid box being
lovrered tovrard a black hole. Both the top and bottom re-
Secting walls will undergo a change of acceleration when
lowered. The positive energy Bux from both mirrors vrill

be tovrard the horizon, the negative energy Buxes avray
&om the horizon. Thus, as vre lower the box, positive
energy will Sow &om the mirror at the top of the box
into the box's interior, while at the same time, negative
energy will Sow &om the bottom mirror into the box.
But for a box of fixed proper length, the change in accel-
eration during lowering is larger at the bottom than at
the top. Therefore, the Sux from the bottom mirror will
be larger, and there is a net negative energy Bovr into the
box. The interior of a box which is initially empty will
consequently acquire a negative energy density through
the lowering process. This negative energy density is ex-
actly what one would expect from the Boulware state.

Using a (1+1)-dimensional model, which we believe
captures the essential features of the problem, we will
show that energy of the contents of the box of negligible
height is indeed correctly measured with respect to the
(negative) energy of the Boulware state. Furthermore,
it is easy to show that the measurement of the box's
internal stress-energy vrith respect to the Boulvrare state
is in full agreement with UW.

We wish to stress, however, that this does not necessar-
ily lend credence to UW's conclusion that the buoyancy
is sufhcient to preserve the GSL on its ovrn. The ne-
cessity of a bound of the form (1.5) is, in our opinion,
still an open question. Indeed, Bekenstein has recently
pointed out that the Soating point for such a box will be
at a proper distance above the event horizon similar to
the height of the box [10]. In this case, our assi~mption
that the height of the box is negligible is not valid near
the Soating point, and thus we will not be able to draw
a conclusion about the GSL &om it. Therefore, we will
not consider here the Soating condition, nor the efFect of
the buoyancy on the validity of the GSL.

Rather, we wish to simply point out that the efFect
of the accelerating mirrors on the quant~~m fields can-
not be ignored in analyzing the buoyancy, and that their
contribution can be understood as imposing a Boulvrare
state background for the matter inside the box. We also
wish to emphasize that we obtain the Boulware vacuum
energy &om considering only the acceleration of the re-
flecting walls of the box in a pat background. This, we
feel, is a remarkable result which may be exploited more
fully in the future.

II. (1+1)-DIMENSIONAL BLACK HOLE
VACUUM STATES

Let us begin by considering a (1+1)-dimensional black
hole with the metric
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dr2
ds = f—(r)dt

f(rp) = 0, f'(rp) = 2~, (2.1)

where rp is the horizon radius, f' denotes df/dr, and
~ is a constant. The redshift factor for metric (2.1) is

y = and dz:= dr/~f defines z which measures the
proper distance &om the horizon.

Let us introduce null coordinates u and v defined by

dpdv:= dt+ = —n dx,f(")
= —l dx, (2.2)du .—dt

where indices a, b, c, . . . range over 0, 1. The expectation
value for the stress-energy tensor of a massless field on
the background (2.1) can be written in the form

T = Tg +— E(L l yn n)+El l,1
(2.3)

where the unspecified functions T;(r), E(r), and F(r)
correspond to vacuum polarization, an isotropic radia-
tion field, and a net outward fiux, respectively.

For a massless scalar field, the function T; is given by
the "trace anomaly":

(2 4)

where B is the curvature scalar for metric (2.1) and f'
denotes the derivative of f with respect to r One .can
obtain the remaining components from the conservation
law, T s~ ——0, where the vertical bar denotes covariant
differentiation. In terms of E and F the conservation law
takes the form

S"(r) =0,
1 dE'(r) = —-f(r) —T:(r).
4 dr

The specific vacuum state with respect to which the ex-
pectation value of the stress-energy tensor is taken is
given by the boundary conditions which are imposed on
(2.5).

We will be interested in two types of vacuum stress
energy here. The Boulware state appears empty, apart
from the vacuxx~ polarization represented by (2.4), to
stationary observers. This is expressed by the boundary
condition T -+ 0 as r ~ oo. This condition and the
conservation equations (2.5) imply

1 (1 „1E=Ea =
I

ff" — f"-I, —
48Ir (2 4

F =F~ ——0. (2 6)

When (2.4) and (2.6) are substituted into (2.3) the stress
energy takes the form of a stationary Quid with energy
density and pressure:

( „ f")
24 I 4f) ' (2.7)

ff2

Pgy ———
24z 4f

(2.8)

respectively.

The Hartle-Hawking state is the one which is appropri-
ate for an eternal black hole inside a cavity with re8ect-
ing walls, in thermal equilibrium with its own radiation.
It appears exnpty (modulo vacuum polarization) to f'ree-

falling observers at the horizon. This corresponds to the
boundary condition that the stress energy be regular on
both the past and future event horizons. By imposing
this boundary condition on Eqs. (2.5) we find that E
and F take the form

ff-+~ f--l1 fl „2 1

48z k2 4

(2.9)

Thus, the expectation value of the stress-energy in the
Hartle-Hawking state also takes the form of a stationary
fiuid with energy density and pressure:

4~2—
24z 4fpHH =

I

f" — I, (2 1o)

1 4~2—
24m 4f

(2.11)

respectively. Notice that as r m oo we have PHH

pHH = z /24II. This is the thermodynamical equation of
state for black-body radiation at temperature

T = TnH = ~/2z. (2.12)

PHH

TBH is taken to be the temperature of the black hole.

III. ACCELERATION RADIATION AND THE
BOULWARE STATE

dZ a'
= T gv

d7

1 dG

12' dv' (3.2)

where r, v, and a are the proper time, velocity vector
and acceleration vector of the niirror, and a = gg pa~a~

is the magnitude of a .
For the spacetime (2.1), a is given at a proper distance

z &om the horizon by

a = ——= ~

1&X f'
(3.3)gdz 2

Thus, the magnitude of the energy Bux &om a mirror is

dE 1 („ f") dz

«24Ir ( 2fj « (3 4)

Fulling and Davies [9] have found the regularized in-in
vacuum expectation value of the stress-energy tensor for
a massless scalar field in (1+1)-dixnensional Minkowski

space bounded by a mirror executing arbitrary motion.
They find

(Inlrgiliil) = (iIilT, liI1)

= -(InlT~-lin)

3.13z z+z —zz
12~(1 —z ) (1 —z)2'

where x and t are the usual Minkowski coordinates,
x = z(t) is the trajectory of the mirror, and the right-
hand side is evaluated at the retarded time tR defined
implicitly by tR —z(tR) = t —z. From this tensor it
is straightforward to show that the energy Bux &om the
mirror is
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Now, let us consider a rigid box with reBecting walls
being lowered adiabatically toward the black hole. We
will ass+me the top and bottom walls are rigidly sepa-
rated by a proper length k which is much less than the
radius of the black hole. We will consider the energy Bux
at an arbitrary fixed surface (a point, in this case) labeled
by z, (za ( z; ( z~), in the interior of the box. Consider
the Bux from, say, the top mirror of the box. In terms of
the proper time r; for stationary observer at z; the Bux
at the top will have the form

(3.5)

where the subscripts i and T denote quantities at z; and
the top of the box, respectively. At the surface z;, the
Bux will be blue-shifted:

1 V'f(») |'
n f"&t

d7&
'

24m gf(z;) ( 2f j & dr;

K
+net = +HH PB =

24m f ' (3.11)

Thus the net contribution to the force needed to lower
the box is

But this is just the energy of the Boulware state (2.7).
Thus, the energy of the matter content of the box is prop-
erly measured with respect to the Boulware vacuum en-

ergy.
Alternatively, let us examine the forces involved in low-

ering the box toward the black hole. By taking the Boul-
ware state to be the vacuum state inside the box, and the
Hartle-Hawking state to be the state outside the box, one
can recover the results of UWe To prove this, let us con-
sider the contribution of radiation pressure on the top
and bottom of the box to the force needed to lower it.
The pressure on each of the reBecting webb is the differ-
ence between the pressure of the Hartle-Hawking Quid on
the outside of the box and the pressure of the Boulware
Buid on the inside:

The net fiux of energy at the surface z; will be (3.6) plus
the energy Bux from the bottom of the box, redshifted to
the appropriate value:

fl 1
Fnet =

I I

= (Tr Ta)~24~ &fz fa) (3.12)

d&nea 1 t Qf(zr) ( ii f"i
d7. 24m

[ gf(z;) ( 2f y ~

V'f(za) t'
ii f"&

gf(z) E 2f p a J
d7;' (3.7)

where Tz ——TaH/yz and Ta = TnH/ya are the red-
shifted values of the black hole temperature at the top
and bottom of the box, respectively. This is precisely
the expression obtained by UW for the contribution of
the acceleration radiation to the force needed to lower
the box.

dF F(z + E) —F(z)
e

(3.8)

for any function F(z). Therefore, we rewrite (3.7):

dE... e d ( „ f i dz

f
(3 9)

The total energy is the sum of the energies entering the
box as it is lowered from ia6nity to z:

'('= )
Ence(z) ™

24K ~.(». ~)

24m i 4f), (3.1O)

where the subscript B denotes quantities at the bottom
of the box. In obtaining (3.7) we have taken advantage
of the fact that since the proper length of the box, E,
is ass»med constant, zB ——zz + E, and therefore dzB ——

dz~ = dz.
Let us now assume the length of the box is small com-

pared to other relevant length scales in the problem. This
will not be true close to the horizon and will therefore
prevent us from considering the Boating point of the box.
Nonetheless, when the box is far from the horizon and 8
is small,

IV. CONCLUSION

We have examined once more the long debated
gedankenexperiment of lowering a box containing mat-
ter fields from infinity to a finite proper distance from
a black hole. We have shown that the effect of the ac-
celeration radiation on the energy density inside the box
is exactly the same as obtained by considering the vac-
uum state of the interior of the box to be the Boulware
state, and concluded that the acceleration of the box has
induced a Boulware state inside it.

That the in vacuum for the box's interior is the Boul-
ware state is to be expected on general grounds. The in-
terior vacuum is initially the Boulware state (the vacuum
for a stationary observer at infinity) and is invariant un-
der the adiabatic (quasistatic) process of lowering. This
is the real quant»m state of the boxes interior. It will
be natural, however, for different observers to calibrate
energies in different ways. Table I summarizes the obser-
vations made by both inertial (freely falling) observers
and accelerated (static) observers.

It is clear from Table I why the analysis of the buoy-
ancy force by Li and Liu [7] is in error. They assume
that the exterior state is the Hartle-Hawking state. This
is the natural state as observed by an inertial observer
and corresponds to column (i) from Table I. However,
for such an observer the energy density of the radiation
inside the box is decreasing as the box is lowered by an
amount equal to the Boulware energy density [row (c) of
column (i)]. By failing to take this into account, Li and
Liu have implicitly ass»med the point of view of a static
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TABLE I. Energy densities outside and inside a box lowered adiabatically to a proper distance z
from the event horizon of a n dimensional black hole as observed by (i) a local I'ree-falling observer
aud (ii) a local static observer. Note that the energy densities in column (ii) are those which have
a real gravitational efFect while those in (ii) are recalibrated so that the interior of the box is taken
as the ground state. a = ~ is the acceleration at z and only the dominant contribution as z m 0
has been included.

(a) Outside box
(Hartle-Hawking state)
(b) Inside empty box

(Boulware state)
(c) Inside box filled at
z = oo with radiation

(Trad )) THH)

(i) Energy density as
observed by free falling

(inertial) observer
~ pHH

bounded as z -+ 0

pBoulware
= -(a/2s)"

= p, a —(a/2z)"

(ii) Energy density as
observed by static

(accelerated) observer
~ pacceleration rad

= (a/2s. )"

Bounded as z ~ 0

~ Prad

Box is empty at z = oo when lowering process begins.
Box is Med with high density radiation at z = oo before being lowered.

observer [column (ii)] for the measurement of the interior
energy density. By measuring the interior and exterior
energy densities with respect to difFerent states, Li and
Liu obtain the wrong result for the buoyancy force on the
box.

Thus, the Li-Liu criticism that the buoyancy forces are
negligible based soley on Page's stress-energy tensor is
uufounded. We have, furthermore, shown that using the
Boulware state for the interior of the box leads to agree-
ment with UW as to the form of the buoyancy force for
a box of negligible height. As pointed out by Bekenstein
[10], the assumption of negligible height breaks down
near the Boating point, however.

It may be surprising that the acceleration of an empty
box in fiat spacetime can be used to obtain the energy
density of the Boulware state. However, this is not dif-
ficult to understand. As we mentioned, it is expected
that the state inside an adiabatically lowered box is the

Boulware state. However, a small enough box sees the
gravitational 6eld of the black hole as being essentially
homogeneous. By the equivalence principle, such a box is
unable to determine whether it is accelerating in a grav-
itational field or in Rindler space [11]. We have demon-
strated how this allows us to obtain the Boulware en-
ergy density simply by considering the energy balance
between two accelerating mirrors in (1+1)-dimensional
Rindler space. We are presently investigating possibility
of carrying out this procedure in (3+1)-dimensions.
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