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We develop the RedGeld equation for b-correlated Gaussian noise and apply it to the case of
two neutrino fiavor or spin precession in the presence of a noisy matter density or magnetic Geld,
respectively. The criteria under which physical fluctuations can be well approximated by the b-

correlated Gaussian noise for the above cases are examined. Current limits on the possible neutrino
magnetic moment and solar magnetic Geld suggest that a reasonably noisy solar magnetic Geld
would not appreciably affect the solar electron-neutrino Bux. However, if the solar electron density
has Suctuations of a few percent of the local density and a small enough correlation length, the
Mikheyev-S~~~nov-Wolfenstein effect is suppressed for a range of parameters.

PACS number(s): 96.60.Kx, 02.50.Ey, 14.60.Pq, 95.30.Cq

I. INTRODUCTION

Neutrino oscillations in the presence of matter and
magnetic fields have been an area of intense study for ap-
proximately the past 10 years. In the Mikheyev-Smirnov-
Wolfenstein (MSW) effect, electron neutrinos on their
journey &om the core are resonantly transformed into
muon or 7 neutrinos [1,2]. If neutrinos are Majorana
fermions with transition magnetic moments, they can un-
dergo a magnetic resonant transformation into muon or 7.

antineutrinos [3]. Neutrinos from a supernova explosion
can be transformed &om one Qavor to another as they
pass through the outer part of the star [4]. In many stel-
lar situations, the matter density and/or magnetic fields
may Buctuate about a mean value. Some well-known ex-
amples where Buctuations are likely to exist include the
magnetic Beld and the matter density in the solar convec-
tive zone and also the turbulence of the post-supernova
matter which has been blown off by the explosion. A
general approach to the neutrino oscillations in inhomo-
geneous matter was developed in Ref. [5]. A study of
matter Buctuations which are not random, but harmonic
[6,7], or occur as a jumplike change in the solar den-
sity [8], is available in the literature. Matter currents
and density changes affect neutrino favor oscillations in
a similar way and have also been examined in Ref. [7].
Although matter current effects become important only
if the velocity is somewhat close to the speed of light,
noisy mixing of matter would also mimic a Quctuating
matter density. A priori, fluctuations in such fields may
be well approximated by random noise added to an av-
erage value. In this paper we show how such noise will
affect neutrino oscillations for the situation in which the
correlation length of the randomly fluctuating part of ei-
ther the matter density or the magnetic Geld is small
compared with the neutrino oscillation length.

The case of neutrino spin precession in a noisy mag-
netic Geld was considered by Nicolaidis for neutrinos in
vacuum [9]. The noise was taken to be well approxi-
mated by a b-correlated Gaussian distribution with the

result that the normal oscillations become damped with
a relaxation time of t„i = (2p, (B„)7;),where B„ is
the randomly Buctuating part of the magnetic Geld and
v; is its correlation time. Enqvist and Semikoz consid-
ered neutrino oscillations in randomly Buctuating mag-
netic field, approximately, by averaging the coefficients in
the third order differential equation for the z component
of the neutrino spin, in a constant matter density [10].
Their result suggested that the effect of the randomly
Quctuating part of the magnetic Beld was similar to the
effect of a larger (constant) matter density, hence reduc-
ing the neutrino precession. Our result is quite different:
namely, that both a noisy magnetic Beld and a noisy den-
sity (for a constant averaged density) act to depolarize
the neutrinos. For a noisy magnetic field, if the proba-
bility of transition is greater than one-half without the
random Buctuations, the inclusion of the random Buctu-
ations will reduce the transition probability, and if the
transition probability without the random Buctuations is
less than one-half, the inclusion of the Buctuations will
increase the transition probability. If the randomly Buc-
tuating part of the magnetic field is strong enough or is
allowed to act for a long enough time, a complete depolar-
ization of particles and/or antiparticles will occur For a.
noisy density, we find that the MS% transition probabil-
ity is suppressed. For the case of strongly adiabatic MSW
transitions and large Quctuations, the averaged transition
probability saturates at one-half.

In Sec. II, we develop the equations governing the time
evolution of the averaged probabilities of being found in
the ¹hlevel of an N-level system, subject to random
and nonrandom potentials. These equations are derived
for the case where the randomly fluctuating part of the
Geld is taken to be a b-correlated Gaussian. In Sec. III, we

show several analytically solvable examples for the case
of a two-level problem, and n»~erically examine cases
the analytical solutions of which are not instructive. In
Sec. IV, we investigate the conditions under which a real,
physical fluctuating field will be well approximated by the
equations developed for the b-correlated Gaussian case.
We then apply these conditions and examine the cases

0556-2821/94/50{8)/4762(9)/$06. 00 SO 4762 1994 The American Physical Society



50 NEUTRINO OSCILLATIONS IN NOISY MEDIA 4763

of spin-Savor and Savor precession of neutrinos in the
Sun. Section V presents a discussion of results and our
conclusions.

and Up satisfies

A A A

i—Up ——HQUp.
dt

(8)
II. FORMUI ATION OF THE APPROACH

We first consider the general case of an N-level sys-
tem with time-dependent level splitting and transition
terms, in the presence of an additional randomly Huctu-
ating term. Since we are interested in the ensemble av-
erage of the probability of finding the system in a given
level at time t, we consider the density operator defined

This equation can be solved by iteration as

t

p(t) = pp —i dt1B(t1)[M(t1), (pp]
0

t ty

dt, dt2B(t, )B(t2)
0 0

x M(t ), [M(t2), pp] + (9)

where

1
We now assume that B(t) is such that

(&(t) )
@2(t)

(t) =

( Q~(t) j
Assuming that g obeys the Schrodinger-like equation

(2)

(B(t)) = 0, (B(t1)B(t2))= o( f(~ &2 —t1 ~), (10)

with the average of all higher odd products of B vanish-

ing, and all higher even products given by the sum of all
possible products of f's, for example:

(B(tl)B(t2)B(t3)B(t4)) o' [f12f34 + f13f24 + f14f32]~

(11)
i Q= Hg, —

dt

p obeys the equation

~ d-i p= —[H, p], (4)

where the Hamiltonian is taken to be linear in a Quctu-
ating field, i.e.,

where f12 = f(~ t2 —t1 ~). This will result in only the
even products contributing to (p(t)).

Further analytic progress can be made if the random
potential is a 8-correlated Gaussian distribution, where

f(~ t1 —t2 ~) becomes 27'(t1 —t2). Averaged values of
functions of the random field B(t) can then be expressed
as a path integral

H = Hp(t) + B(t)M',

where M' is independent of time. Equation (4) becomes
(g(B(&))) = f &I&(&)ig(&)~

where

(12)

where

i pl = [Hr, pl], —
dt

pI=Up pUQ,
"t-

M = UQ M UQ

HI = B(t)M,
(7)

&IB(&)I = ~&(")/
and k = 2a2w. This reproduces the form of the averages
of the even power products, and the integrals in Eq. (9)
can be explicitly calculated with the result

T T
(pl(2')) = pp —& T dt1 M(t1), [M(t1), pp] + cx 7. dt1 M(t1)) M(t1)) dt2[M(t2)) [M(t2)) pp)]

0 0 0

(i4)

This, however, is just the iterative expansion of the dif-
ferential equation

—()pl(t)) = —a' &[M(&), [M(t) (Pl(&))]]. (15)

One may equally well express this result as

—„,( (t)) = — ' [M' [M' ( (t))l] — [Ho (t) ( (t))l-

Equation (16), in general, defines a set of N2 coupled
first order linear differential equations with the constraint
that Trp = 1. This is a matrix form of the Redfield equa-
tion [11]. In the case of neutrinos moving in a varying
background, Eq. (16) is equivalent to Eq. (49) in Ref.
[5]. We should note that a b-correlated Gaussian distri-
bution includes all the 6'.equencies equally as can easily
be seen &om its Fourier transform. This is in contrast
with Refs. [7,8] where the fiuctuation frequency is fixed.
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III. ANALYTIC EXAMPLES

&, ( (t)) = — .M [M ( (t))]
d . k(t). -

(17)

where

Perhaps the simplest examples are those for which one
could obtain an integral expression for the exact solu-
tion for the probabilities of the system being found in
the Nth level at time t, and then perform the aver-
aging using Eq. (12). Such an expression is possible,
in general, only in the case where all N levels are de-
generate. For example, consider the case in which the
Hamiltonian is an N x N matrix which is of the form
H(t) = [Bo(t)+B„(t)]x M, where M has zeros on the di-
agonal and ones everywhere else. One could, for this case,
obtain an integral expression for the probabilities and
then average them In.stead, we take Ho(t) = Bo(t)M
giving Uo(t) = exp[fs ChBp(t)M] and use Eq. (15) which
becomes

d—„[M (Pi(t))] = — k(t)[M (& (t))].

This equation is easily solved with the solution

{'(T))= X(T) —N-'(1 — ——" ~:"*"'*')

x [M, [M, X(T)]], (20)

where X(t) = Uo(t)p(0)Uot(t). This reproduces the result

of Nicolaidis for the case where M' is the Pauli matrix
o, and the initial state is gq(0) = 1, Qz(0) = 0.

A second analytically solvable example is a two-level
system, with an arbitrary time-dependent level splitting,
in a purely random ield. This would correspond to the
case of matter-enhanced neutrino spin precession in a
noisy magnetic field. In this case, there exists no an-
alytic expression for the probabilities which one could
in principle average. We begin by using Eq. (16) with

Ho ——A(t)o', + Bo(t)o~ and M' = o . Defining r(t) =
—2((p~~) —(pzz)), *= 2Re((p»)) and y

—= 21m((p&z)), one
obtains

I (t)/2 = ~'(t)'

Taking the commutator of M with
&~ {pl(t)), and noting

that M = (N —1) + (N —2)M, one obtains

d( ) ( k O B&(
x = —2 0 0 A z

(~) k Bo "") (21)
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FIG. l. (if'(t)~ ) obtained by numerical solution of Eq. (21) (randomly fluctuating off diagonal) with Bs = 1, k = 0.05 for

(a) A = 0, (b) A = Q.S, (c) 4 = 2.0, and. (d) A. = 1Q. The initial condition is @q(0) = 1, @q(Q) = 0.
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If Bp = 0, Eq. (21) is trivially solved giving

r(T) = r(0)e (22)

resulting in

(W.(T)i') = -(1- -'~:"*"&*')+i~.(0)i' '~ *"&*)

This result is surprising in that it is independent of the
level splitting and identical to the result for zero level
splitting. If Bo P 0, one could still obtain an analytic
expression for the averaged probabilities if the level split-
ting is constant, although such an expression is not in-
structive due to the complicated nature of third roots.
We instead calculate numerically cases of constant level
splitting. Figures 1(a)—1(d) show the probability ~@q (t) i

for 4=or ~ = 0, A = 0.5, A = 2, and A = 10, respectively, for
Bp ——1 and k = 0.05. One observes &om these figures
that as A is increased, the oscillations become heavily
damped whQe the exponentially decreasing upper enve-

ope remains essentially unchanged. This qualitatively
indicates that even when one is far from resonance (A = 0
for the case in which A is time dependent), one can still
obtain complete depolarization for such a randomly Huc-

tuating field.

Another possibility occurs if one has the case of a
noisy diagonal term with a non-noisy off-diagonal term,
namely, H = (Ao(t) + A„(t))0, + Bo(t)a . This case
would correspond to a noisy matter density in the con-
text of matter-enhanced neutrino oscillations. Equation
(16) becomes

2
dt

I )

o o B(t) ) (r)
0 k —Ap(t) z

) (, )
(24)

~tPq(t) ~

= —+ —e —sinurt + cosset
2 2

)

where u = /4Bo2 —k2. We again numerically calculate
examples in which the nonrandom diagonal term is non-
zero. Figures 2(a)—2(d) show i/~(t)i for Ao ——0, Ao ——

0.5 44p = 2, and Ap ——10, respectively, for Bp ——1 and
I =O.O. 5. In contrast to the case of a noisy ofF-diagonal
term, in this case one observes that as the oscillations
are damped, the exponential relaxation time increases.

If Ap(t) = 0 and Bo is time independent, one can obtain
an exact solution which, for the initial condition gz(0) =
I, @z(0) = 0 and 4Bo ) k is
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F. N. LORETI AND A. B.BAI.ANTEKIN

Thus, if one is far fmm resonance, the depolarization is
very much suppressed, as is physically reasonable.

IV. NEUTRINOS IN NOISV SOLAR FIELDS

In the Appendix, we detail the expansion of the density
matrix in the case where the randomly Huctuating Geld
has a finite correlation tiine, with the result that Eq. (16)
can accurately describe a real physical situation if

(d/dt[lno. (t)] + [H, (t), M'] jr. « 1, (26)

for all t of interest, where v, is the correlation tixne of the
randomly Huctuating 6eld and o. is its root mean square
value, which may be time dependent. If this is satis6ed
for a given problem, k(t) is given by

k(t) = P~'r, (t), (27)

where P is a factor of order unity, equal to 2 for our choice
in the Appendix of a 8-function correlation.

A. Spin precession in a noisy solar magnetic field

We 6rst consider the case of a matter-enhanced spin-
Qavor precession of Majorana neutrinos with a negligi-
bly small MSW mixing angle. In this case the evolution
equation is 2 x 2, and is given by [3]

Perhaps the most likely place a noisy magnetic field
would exist is in the solar convective zone which extends
from approximately 0.7RO to the surface [13]. The mag-
nitude of the solar magnetic Geld observed at the surface
of the Sun can reach local values of several kilogauss in
magnetic storms, and it is thought that it may reach val-
ues of 100 kG near the bottom of the convective zone [14].
While a large ( 100 kG) field which extends through-
out a large fraction of the convective zone is not ruled
out, such a large, extensive field is thought to be un-
likely [15]. Field strengths as large as several times 100
kG could exist if limited to extensions of about 10—100
km. In order to estimate the maximum efFect of magnetic
field Huctuations, we will assume that the solar magnetic
6eld &om 0.7RO to 0.85RO can be considered to be ran-
domly Quctuating with zero mean and a rms value of 100
kG. We take the neutrino transition magnetic moment
to be y, = (3 x 10 )p~, in accordance with the maxi-
mum bound &om plasmon decay in prehelium Hash red
giant stars [16]. We should point out that such a combi-
nation of magnetic 6eld and neutrino magnetic moment
would not give any anticorrelation of the neutrino Hux
with sunspot activity, but may still be important for a
detectable flux of electron antineutrinos [17]. By choos-
ing a value of b,m~/2E, one can determine the maximum
r, (assumed to be constant) such that Eq. (30) is satis-
6ed throughout the above region in the solar convective
zone. Therefore, we take w, to be given by

y[ ( )+ „(t)] —„)
x

i (28)

where b m = m2 —mz with m; the masses of the mass
eigenstate neutrinos, E is the neutrino energy, p is the
neutrino transition magnetic moment, B and B„are the
magnetic field and its noise, and a, and a„are the matter
potentials given by

a

rn'
r, = 0.1 x — + v 2G~(N, —N„) . (31)

max )

Given that Eq. (30) is obeyed, the average electron
neutrino probability after traversing this region is given
by Eq. (23), with tP, (0) = 1, and for small 2kEr
the muon antineutrino average probability is approxi-
mately given by her. In Fig. 3 we plot the value of
kyar = 4((pB)2)r, (0.15Ro) as a function of Em2/E.

1
a, = G~(2N, —N„),

2

—1a„= a~X„,
2 0,08

where N, (r) and N„(r) are the electron and neutron
number densities. Here, for simplicity, we only consider
Huctuations in one transverse direction. A magnetic field
twisting in the transverse direction [12] with fluctuations
may lead to much richer phenomena.

From the discussion in the previous section of a noisy
o8-'diagonal term, we can estimate whether a reasonably
noisy magnetic field can aHect the transition probability.
In order for the random Huctuations to have much efFect,
2kB' 1. The condition for this real process to be
approximated by a b-correlated Gaussian, namely, Eq.
(26), results, for a constant rms value of the the magnetic
field, in the condition

0.06,"
I

kAl 004

0.0 -10
10 10

I

10 10
d,m IE (eV /MeV)

10 10

Am2
+ ~2G&(N. —N„) && l.

2E (30)
FIG. 3. kyar as a function of Am /E for a randomly fluc-

tuating magnetic field of rms value 1 x 10 G con6ned to a
region of the solar convective zone, as described in the text.
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One observes that the maxim»m occurs at about 1 x
10 s eVz/MeV corresponding to the largest permissible
value of ~ . The peak is due to the fact that the per-
missible values of r are maximized when the neutrino
is in resonance somewhere between 0.7RO and 0.85RO.
If one wished to satisfy the condition on r, for 6mz/E
less than or equal to 4 x 10 s eV2/MeV, one would ob-
tain about 3% muon antineutrinos on average. This is
the same order of magnitude as that produced by reso-
nant transitions in this region of the Sun, for comparable
magnetic moments and magnetic fields [14,17,15].

We would also like to point out that in the case of
nonzero mixing between neutrino species in a purely ran-
dom magnetic field such as that considered above, one
can derive the exact [assuming Eq. (26) holds] time de-
pendence for the s»m of the neutrino probabilities, i.e.,
(Q~(r) [ + [Q„(r)(

. The Hamiltonian is given by [3]

where M' = icr„and

-.28+ .
sin 28

4E S1Xl 28
a4~' cos28 + a„) (33)

B. Flavor precession arith a noisy matter density

If one evaluates Eq. (16), one can derive the equation
for the s~~m of the neutrino probabilities. The solution is
given by Eq. (23), with (~Qq(T) ~2) replaced by the sum of
the electron and muon neutrino probabilities. Therefore,
the same estimates as in Fig. 3 apply to this case but for
the sum of the antineutrino averaged probabilities. One
should note that the Bavor precession will, in general, be
changed by the inclusion of the magnetic Beld.

(6 HI, 0
)

~ )f
0 M'

IIRy "(—M' 0
(32) The equation governing matter-enhanced Bavor oscil-

lations (for two Savors) is given by

cos28+ ~GpN, sin28 l f g„
cos28 —~GgN, ) ( 0v„) (34)

where 8 is the vacuum mixing angle. We investigate the
case in which N, = (1+p)N, (r) where p is a random
quantity whose rms value is the rms value of the density
Buctuations relative to the average density and N, is the
electron density in the standard solar model. We satisfy
Eq. (26) by choosing

(~m'
7., = 0.1 x sin28

( 2E

where the logarithmic derivative in Eq. (26) is much
smaller for the Sun than the term we have kept. To illus-
trate the scale of the alteration in the survival probability,
we plot an example in Fig. 4. We numerically solve Eq.
(24) for the electron-neutrino survival probability (aver-
aged for infinite distance beyond the surface of the Sun),
as a function of Am /E for fixed values of sin 28 and

g(Pz), with r, given by Eq. (35). We have used the
solar electron density of BahcaQ and collaborators. Fig-
ures 5(a) and 5(b) show the electron-neutrino survival
probability as a function of b,mz/E for sin 28 = 0.01
and 0.001, respectively, with g(P2) = 0.02. In these fig-
ures, the curve which reaches the smallest values in the
center of the plot (from about b,m2/E = 1 x 10 to
1 x 10 s eV2/MeV) is the probability in the absence of
the density Buctuations. One observes a suppression of
the flavor transition in this region by as much as 20%%uo

in Fig. 5(a). The region of the largest effect (around
b,mz/E = 1 x 10 s eVz/MeV) is in agreement with the
maximum value of 2kLr, where Lr is the width of the
resonance region. In order to show the sensitivity of the
suppression to the size of the Buctuations, me show the

same plots as Figs. 5(a) and 5(b) in Figs. 5(c) and
5(d), with the exception that the rms fiuctuation in the
density is doubled to 4% of the average density. One
observes a very large efFect in the previously mentioned
region, which saturates at a probability of one-half, for
values near b,mz/E = 1 x 10 s eV2/MeV. One should
note that in Figures 5(a)—5(d), r, was chosen for each
value of 6m /E to obey Eq. (35). Thus, the r, chosen
for 6 m/zE = 1 x 10 s eV2/MeV, while permissible for

1.0
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0.6-

0.4

0.2

0.0
0.0

I

0.2
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FIG. 4. Alteration of the survival probability as a func-
tion of solar radius. In this Sgure b,m /E is taken to be
5 x 10 eV /MeV and sin 28 to be 5 x 10 . r is given by
Eq. (35) and P (percentage Suctuation as described in the
text) is 0 (the lowest P ), 0.02, and 0.04 (the highest P,),
respectively.
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smaller values of Em /E, would aot have given as large
an effect, and would, for larger values of b,m /E, violate
Eq. (35).

In Fig. 5, there appears to be an enhancement of the
transition probability for values of Am2/E ) 1.5 x 10
Neutrinos with these parameter values do not go through
a resonant transition in the Sun, since a resonant transi-
tion would require a density larger than the maximum so-
lar density. However, to a varying extent they are within
the second half of their resonant region near the center
of the Sun. The solar density profile near the center is
rather fiat aad therefore one obtains aa enhaacement of
the transition probability sirailar to that in Figs. 3(c)
and 3(d).

One needs to question whether such Huctuations can
arise in the Sun, and whether the correlation lengths,
which can be quite small (~, for b,m /E = 1 x
1Q 8 eV2/MeV aad sin 28 = Q.Ql is about 10 km) could
be realistic. If one were to do a numerical study utiliz-
ing a good random number generator, one would not be

limited by Eq. (35) and could consider any correlation
length. Our purpose is only to show that such effects
could be important.

%e should also point out that in the above analy-
sis we ignored nonforward scattering of neutrinos. In
dense matter, where such collisions may be important,
one needs to employ the full apparatus of the kinetic
theory and follow the microscopic evolution of the phase
space distribution function.

U. CONCI USIONS

We have derived a Redfield differential equation for the
time dependence of averaged values of fuactions of the
probability of finding an N-level system in the Nth level
after being subjected to a randomly fluctuating field, of
the h-correlated Gaussian type. This formalism applies
as an approximation to the case where the Buctuating
field can be described by a finite correlation time. This
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FIG. 5. (iQ ( ) for infinite distance as a function of Em /E. The lower (upper) curve around Em /B = 1 x 10 eV /MeV
is the curve for a noiseless (noisy) electron density. The rms value of the randomly fluctuating noise is 2/8 of the local density.
sin 29 is changed from (a) 0.01 and (b) 0.001. The correlation length is given by Eq. (35) for each value of b,m /E. (c) and
(d) are the same as (a) and (b), respectively, except that the rms value of the randomly fluctuating density is 4% of the local
density.
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approximation is valid if the product of the correlation
time and the energy scale of the Hamiltonian is small.
Upon applying this to neutrino Bavor or spin-Bavor pre-
cession, we have shown that the probability will relax
eventually to a value of one-half, if the neutrino spends a
sufBciently long time in a medii~m with randomly Buctu-
ating matter density or a randomly Huctuating magnetic
Geld. In the case of a Huctuating magnetic field, the re-
laxation is independent of the matter density, assuming
the correlation time of the Geld Huctuations is small com-
pared to the neutrino oscillation length in matter. In the
case of Buctuations added to a constant matter density,
the probability again will eventually relax to a value of
one-half, but the relaxation time is greatly increased if
one is far from the resonant condition.

We have also examined the case of neutrino spin-Bavor
precession in the Sun, for a purely random magnetic field
and no Bavor mixing. It appears that the current lim-
its on the neutrino magnetic moment and the guesses
concerning the maximum values of the solar magnetic
Geld combine to give only a small effect on the average
electron-neutrino Bux. When there is Havor mixing and a
purely random field, the combined average probabilities
of the neutrinos is again a simple exponentially decreas-
ing function and therefore the results of a purely random
field and no Savor mixing apply to this case as well. For
the case of a randomly Buctuating electron density, the

MSW efFect can be strongly suppressed for rms fluctua-
tions of 4% of the local electron density. However, this
requires correlation lengths of about 40 km, and seems
to give a significant efFect only for neutrinos which have
their MSW resonant transition deep in the Sun.

In spite of these problems, we believe that a numerical
study, which should give similar results for correlation
times which do not badly violate Eq. (35), may bring to
light many interesting efFects. Implications of the den-
sity Suctuations discussed here on stellar collapse and
supernova dynamics will be published elsewhere [18].
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APPENDIX

For Ho(t) given in Eq. (5), one selects the element of largest value during the time the system is in the presence of
the random field. Let this largest value be E . We consider the case where rE « 1. We take f;~ in Eqs. (10)
and (11) to be given by

f,, = e(r - lh' - h, I), (A1)

where again the average of odd products vanishes. We rewrite the average of Eq. (9) as

(pi(t)) = p + (Pi~ (h)) + (Pi (h)) + (Pi (h)) +" (A2)

where

and

t 4N t1

(pI ( )) = ( 1) Q Ck2N Ck2N —1' ' ' Chl+2N[M(h2N)) [M(h2N —1)) ~ ~ ~ )M(hy)] ' ' ']
0 0 0

(A3)

+2N

P(1,2,...,2N)

n1 ' nQN

n1ng ning nsne ngN lnQN ) (A4)

where P(1,2, . . . , 2N) means all permutations. We explicitly show the second and third terms:

(pr (t)) wctu M(tg), — M(t~) + (t2 —t) ),po
dM(t, )

0 t1—T dt

~ —A r dt&[M(t&), [M(T&),po]] + a — dt& M(t~), , po
2 r ' - dM(hg)

0 0
(A5)

where dM(tq)/dt = iU& [Ho, M']Uo and is therefore proportional to E ~. In the third term one has a snm of three
Products of two f's, (F2f24+ fqs f24+ fq4 f22), only the flrst of which has the times in the order of the times aPPearing
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in the nested integrals. The 6rst of these three terms gives

t

(pr (t)) j2 34 ~ lx T dt, M(t, )) M(t, ) I dt2[M(t2), [M(t2), po]]

dM(t, ) dM(t, )dt2[M(t2), [M(t2), po]] + M(t). ), dt2 M(t2), , po
2 dt 0 0 dt

+[M(t ) [M(t ) [M(t ) p.ill + 0( '). (A6)

The last term, however, is not proportional to E „.This will cause a problem since it could contribute to the next
order term of the average . It turns out that it cancels the largest term coming Rom the remaining two f products.
That these remaining f products are of largest order r3 can be seen by noting that when the argument of the 8
function in an f connects two nonsequential times, the intermediate time(s) must also be within r of the larger time

in the 8 function. For example, the remaining two contributions to (pI (t)) are

t t1 t2 t3

(Pl (t))1324+ (Pi (t))i4pa = a d4]M(t|), ]M(fz), ]M(tl), ]M(t ), p|o]]]] dta d4(
0 t1 —T t1 —T t2 —T

T3 t
= ol — dt's [M(ty), [M(ty), [M(ty), [M(ty), po]]]].

2 0

dt4 + dt4

(A7)

This feature appears to continue throughout each term in the entire expression. Therefore, if 7E „&( 1, and
neglecting terms of order ~E and smaller,

t t2N

(pI (t)) = (—1) A 7 dt2N M(t2N)i M(t2N)l dt2N —2 M(t2N —2)~ M(t2N —2)i
0 0 0

~ ~ ~

t4

dt2[M(t2), [M(t2), po]]
0

(AS)

which leads to Eqs. (15) and (16).
In the above derivation we have assumed n to be a constant. If a depends on time, the condition 7Em~ &( 1,

should be replaced by the condition

r([d/dt lna(t)] + E „)~ ((1.
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