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As a complement to the analysis previously presented about the leading behavior of the subset

of the eikonal diagrams in the three-body partonic interaction, we add a few remarks on terms next
to leading in lns.
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The large n»mber of semihard rescatterings of high en-

ergy partons, which has been foreseen in production of
minijets on nuclear targets [1], is a reason for interest in
three-body parton interactions. In a recent paper [2] we
have approached a few aspects of the problem of three-
body parton interaction in the high-s fixed-t region. The
most general case of three-body parton interaction has
a very complicated structure in /CD [3]. Among the
difFerent components of the three-body amplitude with
vacuum quantum number exchange, gauge invariant and
with a definite color-group factor, one may identify a
term whose space-time factor is given, at the lowest or-
der in the coupling constant, by the set of Feynman dia-
grams at the saxne order in the Abelian theory. The set of
Fey~man diagrams which contribute to this term of the
three-body parton amplitude is the set of graphs where
the interaction of the projectile parton with each of the
target partons is represented by a box diagram or by a
crossed box diagram. The order in the coupling constant
is gs and there are altogether 24 diagrams. In Ref. [2]
we have worked out the leading behavior of all the dom-
inant cuts of the corresponding term in the three-body
parton axnplitude and we have shown explicitly how the
Abramovskii, Gribov, and Kancheli cutting rules [4] are
satisfied.

The graphs which we have considered are indeed typ-
ical of an Abelian theory, and, in the lixnit s ~ oo,
t/s -+ 0, the leading behavior is obtained by the eikonal
approximation [5]. In order to implement the eikonal ap-
proximation [6], the longitudinal variables are integrated
while the transverse variables are kept fixed and, for the
coupling at the vertices, only the leading contribution of
the convective current is taken into account. The singu-
larities to be considered for an eikonal line are only those
in the Glauber region, namely, the singularities with val-
ues for the longitudinal light-cone variables of order qt2/s,
with qz a transverse xuoment»~ loop variable. A novelty
to be pointed out when considering a three-body interac-
tion is that the longitudinal variables to be integrated
include a further one in addition to the loop integra-
tion variables. More explicitly, in the case of interest,
a projectile parton with large light-cone momentuxn p+

hits two target partons with large light-cone components
(kq —Q) and (k2+ Q) yielding, as a final result of the
interaction, three partons with momenta p+, (kt), and
(ks), the light-cone components p, (kq)+, (k2)+, Q~,
and all transverse components being negligible. While
the force which bounds partons in a hadron allows Q
to vary within a range of order +s, one may explicitly
verify at the lowest order in the coupling constant that
the three-body parton amplitude has singularities in Q
inside the Glauber region. In the case of the three-body
interaction the eikonal approximation is implemented by
treating the integration on Q in the same way as the
longitudinal loop integration variables.

Within the eikonal approximation all the leading con-
tributions of the dominant cuts of the three-body parton
amplitude have been obtained in Ref. [2]. The eikonal ap-
proximation allows one also to work out, graph by graph,
the leading terms in lns. One can, in fact, divide the
graphs into three difFerent groups according to the be-
havior at large s: (lns) 2, lns, and no lns. All graphs with
a lns factor are irreducible, while reducible graphs do not
produce any lns factor. A graph is called reducible when
it may be disconnected by removal of one line. Reducible
graphs do not produce any lns factor as a consequence of
the integration on Q . When the integration on Q is
treated as the other loop integration variables, namely,
it is extended from —oo to +oo, in each reducible graph
Glauber singularities can be avoided by contour defor-
mation in such a way that the contribution of reducible
graphs is exactly zero.

To gain a better insight into the meaning of the eikonal
approximation with respect to the analysis presented in
Ref. [2], we find it useful to add here a few remarks
on the efFect of a more careful treatment of the inte-
gration domain, which gives rise to next to leading lns
corrections to the eikonal approximation. The correction
term is obviously xnost important for reducible diagrams,
which within the eikonal approximation are zero. A re-
ducible diagram here is constructed by linking two box
(or crossed box) diagrams. The simple box (or crossed
box) behaves as a lns at large s. For each reducible di-
agram the efFect of integrating on Q is to degrade to
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a constant the (lns) behavior at large s, which corre-
sponds to the product of the lns behavior of two box
diagrams. On the other hand, the behavior at large s
of each irreducible diagram is not modified by the fi-
nite integration limits of Q . The eikonal approximation
therefore gives correctly, graph by graph, all leading ln8
terms. It does not give correctly, graph by graph, the
constant term, which, however, for a reducible diagram
is the leading one.

The most important case to be considered is there-
fore the case of reducible diagrams. %e will use in the
following the same notation used in Ref. [2]. It is suf-
ficient to consider the four diagrams in the first line of
Fig. 2 (Ref. [2]). The relevant integration for this set of
reducible diagrams is expressed as

1 1 fl 1) (1 1) 1
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—+ —,
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By representing the light-cone components of the exter-
nal momenta p, Itx, kz, Q and the loop variables ql, qz as

p—:+s(a, 0, 0),
~x,z —= Ks(0, P..., o),

Q
—= +s(O, PQ, O),

q1,2 = V s(a1,2 P1,2 'Qtl, z/V s)

the explicit expressions for the a s in expression (1) are

ax, (qz —Q) = nz(pz —pq) s-
(kz+ qz)' = az(P2+ Px, )s —

qzt

os, (qz)' = azPzs —qzt
2

o'„(kz+ Q —q.)' = -a.(P., Pz-+Pq)s —q't

4 (ql + Q) —nl(pl + pq)s qlt

(Itx+ ql)' = nx(pl+Pl, )s —qlt

tx6 &1 (ql ) —ax px s 'qlt ~

2

"., (kx -a- qx)z = -nx(p. , Px -Pq)-s qxz„-

o~, (p qz+-Q)' = (a —az)(-Pz+ Pq)s —
qzt

o., (s —ql)' = (a —al)(—Pl)s —qlt

xxs, (u —qx —qz)' = (a —al —az)( —Pl —Pz)s —
qt

a'„(p+ q)' = npqs+ t.,

where q&
——q~& + q2& and q;~ cs defined as q, = q., —i~.2 2 — 2

The integrations in expression (1) run on nl, nz, P1, Pz,
and Pq. The integrations on Pl, P2 are performed by
taking the residua of the poles 1/ar and 1/xxs and force
az and n2 to vary between 0 and 1. The quantity to be
integrated on aq, a2 is
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—nz(1 —nz)px„s —
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Because of the numerators the region a; = 0 dominates over the
1 —a; 1. Using the scaled variables a;s = u; one may write

(1 —a, )' (1 —a, )'
az(1 —az) pqs —qz, ax(l —ax)pqs —qlt pq + ie

(2)

region n; —1. For a; 0 one may approximate
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6 6 s'qltqzt .(Px, +Pq)uz —
qzt Ps uz+qzt. Pq+ie

1 1 1 1

Px, ttx —qlt (Pl, —Pq}ttx + qlt Pqttz —
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with m, =small number xs. The integrations on uq, u2 give as a result
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The large-s lixxlit (actually m; ~ oo) gives no problems
if Pq g Pl,„—Pl„. Explicitly the limit is

For pq M pl„one may wri—te pq = ps, + y when a-
singularity might arise and Pq = —P», in all other cases.
One obtains

—1 1
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which is integrable for pq ~ —p~, . The case pq ~ pt„
is analogous.

The contribution of each of the four terms in expression
(1) is given by each one of the four terms in expression
(4). As one may notice, each of the terms in expression
(4) develops a (lns) when Pq ~ 0, which would corre-
spond to the product of two box or crossed box diagrams
with on-shell initial and final states. Integrating rather
on Pq one obtains a constant for each of the four terms
in expression (4). If, moreover, the integration on Pq is
extended &om —oo to +oo one gets zero.

One may verify that keeping into account the inte-
gration limits for Pq the leading behavior of the irre-

ducible diagrams is not changed, because it is originated
by the behavior of the integrand in a small region around

Pq = 0. As an explicit example one may consider the
case where in expression (1) the factor 1/as is replaced
by 1/as, which corresponds to a topology with two over-

lapping box diagrams and gives rise to a leading term
of order lns. Because of the pole 1/as the integrations
on Pl and on P2 are no longer independent. It is there-
fore convenient to introduce the sum and the diH'erence

of Pl and P2. After integrating on the difFerence one may
express the result as a function of p—:Pl + P2 and of
h=—v+Pq:

1 1 1 1

.~2(pcs 'Y)s + A2 &2(p/es + h)s —A2 cr2bs + A2 A2 YS + A2

1 1 1 1 1 1
X

o'1(pk + Y)s + Al farl(pk h)s Al cribs + Al crl Ys + Al (1 —C12)hs + A2 8 —(1 —cll)Ys + Al —8
(?)

where
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Introducing the variables y; = a;s the integration domain
grows with s. One obtains terms with lns only if either
a single yq or a single y2 is left in the denominators.
This may only happen when both p and. h are close to
zero, which shows that the integration limits for Pq are
irrelevant for the terms proportional to lns. The same
conclusion can be drawn for the "box in the box" graphs,
which, term by term, produce (lns)2 factors.

Our conclusions are, therefore, that a more careful
analysis on the integration domain, namely, the finite
integration limits for Q, gives rise to a correction term
to the eikonal approximation for the three-body partonic
interaction discussed in Ref. [2] which affects, graph by
graph, the next to leading lns terms. For the present
discussion the most important case is the one of re-
ducible graphs: they are zero within the eikonal ap-
proximation and the correction term, graph by graph,
is constant with s. An important remark is, however,
that by adding the leading terms of all the nonreducible
diagrams (P,. s M;, using for Af; the explicit expres-

sions in Ref. [2]), one obtains as a result the eikonal ex-
pression, in spite of the fact that the sum does not include
all possible orderings of the quanta exchanged by the pro-
jectile line. Since the eikonal expression represents also
the behavior (constant with s) of the whole sum of dia-
grams, both reducible and irreducible, one may conclude
that the constant term, which is obtained for each re-
ducible diagram separately, as a consequence of the finite
integration limits of Q, is compensated by a term with
opposite sign, which originates analogously from the ir-
reducible diagrams. Similar considerations hold for the
difFerent cut amplitudes, which also behave as a constant
at large s. Although each difFerent cut diagram receives
a constant contribution by the finite integration limits
on Q, only the constant contribution, originated in the
Glauber region and which is taken into account by the
eikonal approximation, contributes to the final cut am-
plitude.
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