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I. INTRODUCTION

The effective Lagrangian approach of Leutwyler,
Hasenfratz, and collaborators [1—3] has shed new light
on the finite-size scaling properties of lattice systems in
more than two dimensions. In particular, a system pos-
sessing a global continuous symmetry which undergoes
spontaneous breakdown will develop Goldstone bosons,
and the massless Goldstone bosons then control the re-
sponse of the system to changes at low energies or tem-
peratures, and large distances. One may write down an
effective Lagrangian for the Goldstone bosons, and hence
obtain a systematic large-volume expansion which gives
universal formulas for the leading finite-size corrections
in the theory. Conversely, measurement of the finite-size
corrections can give estimates for the parameters of the
effective Lagrangian.

In a recent paper [4], hereafter referred to as I, a sim-
ilar approach was applied to the Hamiltonian version of
compact U(l) lattice gauge theory. Here the U(1) gauge
symmetry is local rather than global, and there are no
Goldstone bosons in the usual sense. The theory may,
however, possess massless particles, namely, photons, and
these might again be expected to control the large dis-
tance behavior. In reference I, the leading term of the
effective Lagrangian was taken to be simply that of free
electromagnetic theory, and the finite-size scaling behav-
ior was predicted on that basis. Simple dimensional ar-
guments show that any interactions between the photons
must be "soft" at low energy, which again allows a sys-
tematic large-volume expansion. This was previously re-
marked by Kovner, Rosenstein, and Eliezer [5], in fact,
who argued that the photon could itself be regarded as
a Goldstone boson, arising from spontaneous breakdown
of a global symmetry generated by the magnetic Hux. A

Although their argument was actually for the noncompact
theory in 2+1 dimensions [(2+1)Dj.

complementary weak-coupling perturbation analysis was
also carried out in I, which predicted similar finite-size
scaling behavior, and also gave an expression for the pho-
ton velocity (i.e., the speed of light), which appears as an
unknown parameter in the effective theory. The results
were tested against Monte Carlo measurements [6] in the
massless, Coulomb phase of the (3+1)D model, and were
found to be correct.

A more interesting question is whether the results can
also be applied to the (2+1)D model, because that model
has no massless phase. Gopfert and Mack [7] have proved
that the model remains confining at all couplings, and
that in the continuum limit it reduces to a theory of
free, massive bosons, on a mass scale M that decreases
exponentially as the lattice spacing a goes to zero. On
the other hand, Gross [8] has proven that in the "naive"
continuum limit where the coupling and energy scale are
held fixed as a goes to zero, that the Villain version of
the model, at least, does indeed converge to free electro-
magnetic theory at the level of F„„orthe Wilson loops,
as of course it was designed to do. On this basis it was
predicted in I that the finite-size scaling behavior follow-
ing from the effective Lagrangian theory should be valid
not for arbitrarily large lattice size, but for intermediate
lattice sizes L obeying

1« I, « I/Ma,

where M is the mass scale referred to above. One of the
objectives of the present work is to test these predictions
against numerical data.

The U(1) model in 2+1 dimensions has been well ex-
plored, by approaches including variational approxima-
tions [9—17], strong-coupling series expansions [18—23],
the related t expansion [24,25], a finite-lattice approach
[26], block renormalization group [27], momentum-space
lattice [28], and quantum Monte Carlo simulations [29—
36]. It is perhaps the one lattice gauge model where the
bulk behavior is more precisely known in the Hamiltonian
than in the Euclidean forxnulation. None of the previous
finite-lattice or Monte Carlo calculations, however, have
been of suKcient accuracy to give a reliable picture of
the finite-size scaling behavior.
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It is probably fair to say that the development of
Hamiltonian Monte Carlo methods in lattice gauge the-
ory lags behind Euclidean methods by about a decade.
The approaches used hitherto [29—36] have usually used a
strong-coupling (electric field) representation, giving rise
to a discrete set of basis states. Unfortunately, an at-
tempt to apply a similar technique to the non-Abelian
SU(2) gauge theory failed, because it appeared to run
into the infamous "minus sign" problem. There is a need,
therefore, to develop methods based on a weak-coupling
representation, which should be able to avoid this prob-
lem, for a pure gauge theory at least. That is the second
objective of the present work.

A weak-coupling algorithm was in fact developed by
Heys and Stump [29], and Chin, Negele, and Koonin [37],
based on the Green's function Monte Carlo techniques of
Kalos and collaborators [38]. In later work, however,
Chin et al. preferred to use the Monte Carlo technique
as a tool in variational approximations. This introduces
an unknown systematic bias due to the form of the vari-
ational wave function, which can be quite serious, espe-
cially for local observables such as mass gaps. Here we

prefer an "unbiased" form of the original algorithm [38],
in which a trial wave function is indeed used to guide the
random walkers in the ensemble towards the most likely
region of configuratio space [39], but the results should
be independent of this guidance.

In Sec. II of the paper, we summarize the predictions
from efFective Lagrangian theory and weak-coupling per-
turbation theory obtained in reference I. In Sec. III we

discuss the Monte Carlo method, and in Sec. IV the re-
sults are presented. Our conclusions are set out in Sec. V.
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The finite-size behavior of the axial string tension on
the lattice was also predicted:

2
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or, for D=2,
Q

2

o L~~ 2pL
(2.6)

Now it is known [40,7] that the compact U(1) lattice
model in 2+1 dimensions is not in fact a massless theory,
but a confining one, with boson excitations of mass M
estimated by Gopfert and Mack [7] to behave as

Ma —exp
~

——~,a-+o g2 ( g2 j

corresponding to the Casimir energy of D —1 massless

boson degrees of freedom, where o. i&2(1) is a known(D)

"shape coefficient" [2], v is the speed of light in the the-

ory, and L is the number of sites on an edge of the lattice
(assuming periodic boundary conditions). For D = 2,
this reduces to

II. THEORETICAL PREDICTIONS

A. ESective Lagrangian theory

An effective Lagrangian approach to the compact U(l)
lattice gauge theory was discussed in reference I. The
leading term in the Euclidean effective action was taken
to be that of a free photon field:

1 « I. « 1/Ma, (2.8)

remaining less than the Compton wavelength of the mas-
sive bosons.

where cq and c2 are constants, and g = e2a, with e being
the bare lattice electric charge and a the lattice spacing.
It was therefore argued in I that the predictions (2.4) and
(2.6) should be valid not for arbitrarily large lattice sizes

L, but only for intermediate distance scales

(2.1) B. %'eak-coupling perturbation theory

where

I'„=O„A„—0 A„. (2-2)

Weak-coupling perturbation expansions for the lattice
model have also been discussed in reference I. The quan-
tum Hamiltonian for the model can be written as [9,41]

The coupling parameter p we shaH refer to as the "helicity
modulus, " by analogy with spin-wave theory, for lack of
a better name. The interactions between the photons are
"soft" at low energies [5,I], and Eq. (2.1) is sufficient to
predict the leading terms in a systematic large-volume
expansion of the theory.

Starting Rom this point, it was shown in I that the
finite-size corrections to the ground-state energy per site
for the D+ 1 dimensional model should have a universal
form:

I = ) Ei —2x ) cosO~,
P

(2.9)

OP ——Ag + A2 —A3 —A4 (2.10)

in terms of gauge fields Ag on links k = 1, 2, 3, 4 sur-

where l denotes links and P denotes plaquettes of the
two-dimensional spatial lattice. Here E~ is the "electric
field" on link l, and the plaquette angle OP can be written
in the usual way as
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rounding the plaquette. The electric field E~ and gauge
field Ap are conjugate variables:

(2.11)

The strong-coupling parameter x = 1/e a2 = 1/g4.
By Taylor expanding the cosine in Eq. (2.9), Fourier

transforming, and performing a Bogoliubov transfor-
I

mation, one obtains an equivalent boson (i.e., photon)
Hamiltonian with one independent degree of freedom per
site. Terms up to second order in the fields are diagonal-
ized by the Bogoliubov transformation, and higher order
terms can be treated as perturbations, leading to an ex-
pansion in powers of x ~ . Using Rayleigh-Schrodinger
perturbation theory, the following results were obtained.
The ground-state energy per site was found to be

ep(L) = Ep

= —2z + 1.916183x i —0.2294848 —0.0268602z i —0.009315x + 0(z i )

——[1.4376x ~ —0.34434 —0.07533x —0.0421x + O(x )] .13 (2.12)

E(k) vk, (2.i3)

the speed of light was computed as

—0.479046 —0.104783x
—0.05847x '+ 0(x-'~') . (2.i4)

The energy E(k) of a single photon state with momentum
k was calculated, and from the dispersion relation

able for use with a weak-coupling representation. The
weak-coupling states are taken to be eigenstates of the
plaquette angles OP, which can take continuous values,
and previous methods [29—36] are inappropriate to such
a case. Instead, we have chosen to use the Green's func-
tion Monte Carlo [GFMC] method [38,39], a version of
which was discussed by Heys and Stump [29], and Chin
et al. [37]. A brief summary of the method can be given
as follows.

Finally, the axial string tension in the model can be com-
puted. It is dominated by the "zero modes" at weak
coupling, and is given by

A. Ground-state energy

o =1/L (2.15)
In a weak-coupling representation, the Hamiltonian

(2.9) can be written symbolically as

V2
1

2p
(2.i6)

which then is an identity relating the parameters of the
efFective Lagrangian for this particular lattice system.

exact to all orders in the weak-coupling expansion (but
not accounting, of course, for nonperturbative efFects).

The results (2.12) and (2.14) agree precisely, to the
order calculated, with the efFective Lagrangian prediction
(2.4). The result (2.15) also agrees with (2.6), provided
that

H = —),+V(O), (3.i)

where

V(O) = —2z ) cos Op,
P

(3.2)

and the plaquette angles OP and link angles A~ are re-
lated by (2.10). The imaginary time Schrodinger equa-
tion for the system is

III. MONTE CARLO METHODS

We have carried out one set of finite-lattice calculations
using a strong-coupling set of basis states, namely, eigen-
states of the electric field operator E~ on each link. Since
the gauge field variable Ag, is taken to lie in the compact
domain [0, 2m], the conjugate electric field is quantized,
E~ ——0, +1,+2, . . ., so that the strong-coupling basis is
discrete. We employed the method of "stochastic trunca-
tion" used previously in a study of the (3+1)D model by
Hamer and Aydin [6], which needs no further discussion
here.

We also wished to develop and test a technique suit-

8 ~ 8——4(O, t) = —) + V(O) —ET C(O, t),Bt OA
l

(3.3)

O(O, t) - cp exp[—(Ep —ET )t]4p(O), (3.4)

where @p(O) is the ground-state eigenfunction, provided
the initial state is not orthogonal to 4p.

where ET is a trial energy, representing a constant shift
in the zero of energy, which will prove useful. At large
times t the component corresponding to the ground state
will dominate
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Equation (3.3) is a diff'usion equation in configuration
space, and is easily sixnulated by the Green's function
Monte Carlo method. It is assumed that the ground-state
wave function can be chosen positive everywhere, and it
is sixnulated by the density distribution of an ensemble
of random walkers in con6guration space. The 6rst term
on the right of Eq. (3.3) produces diffusion, and is simu-
lated by a Gaussian random walk of the members of the
ensemble as time proceeds, while the term [V(O) —ET]
produces a growth or decay in the density which is sim-
ulated by a branching process.

The eKciency of the simulation is greatly increased by
the use of variational guidance or importance sampling
[39]. Let @T(0) be a variational approximation to the
true ground-state wave function, and de6ne a new prob-
ability distribution

f(O, t) = C(O, t)4&(8). (3.5)

Then the modi6ed imaginary time Schrodinger equation
for f reads

+) &&
(fF«(e)).0

BAi
(3 6)

Here

1
EL, (O) = HC»

CT
(3.7)

is the local energy obtained &om the trial function, and

(3.8)

is a "quantum force" term, which turns out to produce
a directed drift in the ensemble. By a good choice of

and ET the "excess local energy" term [EI,(O)—
ET] can be made very sinall, which reduces the amount
of branching necessary, and reduces Buctuations in the
results.

For small time steps At, an approximate Green's func-
tion solution to Eq. (3.6) is

G(O —0', bt) exp( —[EL,(O) —Er]bt)
(

x exp{—[Az —Ag";.q i/4~at

—AtFqi(O)] /46t}
~

. (3.9)

In the Monte Carlo simulation, each iteration corre-
sponds to a tixne step At. At each iteration, we sweep
through each link in turn, and simulate the correspond-
ing exponential factor in the large parentheses in {3.9)
by a random displacement of the link variable for each
walker:

AA( = AtFg((O) + y, (3.10)

@T(0)= exp c) cosO~
P

{3.11)

where the constant c is a variational parameter to be
optimized. Then the local trial energy is

where y is randomly chosen &om a Gaussian distribution
with standard deviation i/2b, t. The first term in (3.10) is
the "drift" term, and the second is the "difFusion" term.
The first exponential on the right of (3.9) is simulated by
multiplying the "weight" of each walker by an equivalent
amount.

At the end of each iteration, the trial energy Eg is a,d-
justed to compensate for any change in the total weight
of all walkers in the ensemble; and a "branching" pro-
cess is carried out, so that walkers with weight greater
than (say) 2 are split into two new walkers, while any two
walkers with weight less than (say) 1/2 are combined into
one, chosen randomly according to weight &om the orig-
inals. This procedure of "Runge smoothing" [42] max-
imizes statistical accuracy by keeping the weights of all
the walkers within 6xed bounds, while minimizing any
fluctuations in the total weight due to the branching pro-
cess.

When equilibrium is reached after many sweeps
through the lattice, the average value of the trial energy
ET will give an estimate of the ground-state energy Eo,
and the weight density of the ensemble in con6guration
space will be proportional to 40@T. Various corrections
due to the 6nite time interval At have been ignored in
this discussion, and the limit At + 0 must be taken in
some fashion to eliminate such corrections.

In the simulations presented here, the trial function for
the ground state was chosen as [37]

82
EL, (O) = @~' —) —2x) cosOJ @T

l P
(3.12)

= —2x ) cos O~ —) [c (sin 0„2 i —sin O„i ~)
—e(cos O~i ~ + cos 0„2~)],

P
(3.13)
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and the quantum force term is

Fqi(8) = 2c(sin 0~2 ~
—sin O~q ~) . (s.i4)

Aopy $:AA$ ) Aop2 $ AA$ (s.i5)

in the plaquette angles.

B. The mean plaquette

An observable we would like to measure is the ground-
state expectation value of the plaquette operator:

The configuration variables are taken to be the plaquette
angles, and in Eqs. (3.13) and (3.14) the symbols pl, p2
denote the two plaquettes adjacent to the link /, such
that a change AA~ in the link angle produces changes

to approximate Eo and Eo. At each iteration the primary
weight fp evolves exactly as before, while the weight fq
is treated similarly, except for the addition of a second
term on the right of (3.24), proportional to fp A.t the end
of each iteration, Ez is adjusted to compensate for any
change in the sum of the weights fp, while E& is adjusted
to compensate for any change in the sum of the weights
fq. At equilibrium, the average value of ET estimates
Eo, and the average of E& estimates Eo. The addition of
variational guidance only modifies the simulation of the
first, exponential terms in (3.23) and (3.24), in the way
discussed above.

A similar technique could be used for the expectation
value of any operator which is diagonal in the weak-
coupling representation.

C. Mass gaps

P = (cos0~)p. (s.i6)

By the Feynman-Hellmann theorem, this is related to the
slope of the ground-state energy per site:

(3.17)

In the strong-coupling, stochastic truncation algorithm,
this derivative can be estimated using the technique dis-
cussed by Price et al. [43]. A similar technique involving
"secondary amplitudes" also works for the GFMC algo-
rithm, as follows. Consider a small increment 6 in the
coupling z: then we can write the Hamiltonian as

H = Hp(x) + b,Kg,

where Hp(z) is the Hamiltonian (3.1), and

(s.is)

Hi ———2) cos O~. (s.ig)
P

Perform a Taylor expansion for the eigenvector and eigen-
value,

lf(~+ a, t)) = lfp(~, t))+ elf, (*,t))+ o(a'), (s.2o)

Ep(z + 6) = Ep(z) + AEp(x) + O(6'), (3.21)

and substitute in the evolution equation (ignoring any
variational guidance for the time being):

If(x+6„t+At)) =e [ '[+ ]] 'If(&+A, t)),
(3.22)

where the exact ground-state energy is here being used
for the trial energy. Now expand Eq. (3.22), and equate
powers of 4, to obtain

if.( t+&t)) = -"-"'*' *If.( t)) (323)
and

I f ( t + /t)) —[H EQ(K)]nt—
x lf&(~, t)) + b,t[Eo(x) H~]lfp(x, t)) .

(s.24)

The Monte Carlo algorithm is now straightforward,
based on Eqs. (3.23) and (3.24). Each walker in the
ensemble now carries a "primary" weight fp and a "sec-
ondary" weight fq, and trial values ET and E& are chosen

The calculation of mass gaps in an unbiased fashion
is a difBcult task. One option in the weak-coupling rep-
resentation would be to adopt the standard Euclidean
Monte Carlo techniques, and analyze correlation func-
tions on the spatial lattice as functions of distance. A
drawback with this approach in the Hamiltonian formu-
lation is that one needs to know the "speed of light" in
order to translate a spatial correlation length into an en-
ergy gap. Dimensionless mass ratios could be directly
predicted, however, and although we have not attempted
it here, the method deserves exploration in future work.

%e have chosen to try two diferent techniques, one for
the "antisymmetric" glueball state, and the other for the
"symmetric" glueball state.

The antisymmetric glueball state lies in a diferent
symmetry sector &om the vacuum state, and in the
strong-coupling limit it can be formed by acting on the
vacuum with the operator 8 = g&sin8~. The weak-
coupling wave function should therefore be antisymmet-
ric in the variable S, and we can employ the "fixed node"
method of Reynolds et al. [44]. The wave function is as-
sumed antisymmetric in S, and chosen positive for S & 0;
the simulation is then carried out only for values S & 0.
The ensemble evolves exactly as before, except that when
a walker crosses the boundary S = 0 it is assumed to "an-
nihilate" with a "mirror-image" walker carrying negative
weight coming &om the other side, and is removed from
the ensemble. Subtracting the vacuum energy &om the
energy found for this antisymmetric state, we should ob-
tain a measure of the antisymmetric glueball mass. Un-
fortunately, our attempts to apply this technique have
been unsuccessful so far.

The "symmetric" glueball state lies in the same sector
as the vacuum state, and in the strong-coupling limit it
can be formed by acting on the vacuum with the oper-
ator C = P& cos O~. To measure its mass, we adopted
the simple strategy of "exciting" the vacuum periodically
during the simulation, and then measuring the rate at
which the trial energy or "score" decays back to its equi-
librium value as a function of Euclidean time. The ex-
citation process involved multiplying the absolute value
of the weight of each walker by a factor proportional to
[P&cos O~ —NP], where P is the mean plaquette value,



4698 C. J. HAMER, K. C. O'ANG, AND P. F. PRICE

which should produce a state a roximp o o ogo
s a e. egative weightss a e. ot positive and n

, an are evolved se arate'a p a ely according to the

-7.40

IV. RESULTS

The stochtochastic truncation method and stro
b ' dt 1e o ca culate the oun-
site the 1e mean p aquette value and t

ground-state energy per

the model f 1o e or attices up to 10 x 10 s'
, and the string tension in

was much the sam
x sites. The algorithm

uc e sam s y [ j for the (S+l)Duc e same as used previousl ~6

ep a unge smoothing" ~42' was
rocess o reduce Buctuations.ss d

'
ns. Production

a ice size and cou 'oupling value consisted of
i erations or sweeps, with an enan ensemble size of 10K

a ions. e first 2K iteratioa i era ions were discarded
or equilibration, and the results w

over blocks of 640
s s were averaged

o iterations before estimatin
to minimize correl t rre a ion errects.

ima ing the error

The GFMC method and weak li b
used to calculate tha e e ground-state ener an

11 he mass gaps, using the algorithms
e in e previous section. At each cou lineac couphng, the

e er c was adjusted to minim'
ror by a series of t '

I

A. C round-state energy

For the GFMC method, our first
the de enden

o, our st task is to analyze

wo 1 erent values of the variational arame
The data can be well fitted b a '

ne y a linear dependence on

a c =Q. C

strong coupling resutt

I

0 05
h, t

0.1Q

FIG. 1. De endenp dence on time interval At of esti
energy o tained via the we

o erent values of the variatio
The point at Et =

variational parameter c.
= 0 was obtained via t e

algorithm.
t e strong-coupling

At. It cann be seen that the results de
atAt=0. 1 b t h

s epend strongly on c

to At =0th ul
u w en the strai ht lin

e res ts for both values of c
g ines are extrapolated

other, and with th
ues of c agree with each

p gwi t e strong-cou lin r

and At = 0.
sequen wor, estimates wwere made at 4t = 0.05

.005 and extrapolated to At = 0 ass»mi
linear dependence on At. It ma be
h 1um va ue of c at z = 1 is c 0.42, and at

e na weak-couplin estimates
pared with he wi t ose obtained &om the

imates can now be com-
og op g

0 0 o ases, and their acs over ap in 60
acy is also quite comparable. The. is provides evidence

TABLE I. Values for the ground-state ener
and couplin z. Also l d l d

u -s a e energy per site so(L as a fu

g u ling series estimat [23]
oge er with

1.0 2.0 4.0

2
3
4
5
6
8
10

I -+oo
Series

t expansions

0.1318(1)
G.12273(4)
0.12266(2)
0.12266(2)

0.12265(1)
G.12265(1)
0.1226698

O.5S86(2)
0.4691(1)
0.4651(2)
0.4651(2)
0.4652(1)
0.4652(2)
0.4649(2)
0.4651(2)
0.46509
0.465(1)

1.1200(5)
0.9897(2)
0.9701(2)
0.9677(2)
0.9673(2)
0.9670(4)
O.9675(3)
0.9673(4)
0.96729

1.7880(2)
1.6172(1)
1.5824(2)
1.5729 (2)
1.5708(3)
l.5700(2)
1.5699(3)
1.5699(3)
1.5700(1)

4.7786(2)
4.5138(1)
4.454S(2)
4.4342(2)
4.4254(2)
4.4186(4)
4.4172(3)
4.414(2)
4.43(2)
4.408(2)



FINITE-SIZE SCALING FOR THE U(1) LAl LICE GAUGE. . .

-1-56-

-1.60

a) x=2-0

or large x values, as in Fig. 2(b), the finite-size results
are well fitted by a straight line in 1/Ls, as predicted by
Eqs. (2.4) and (2.12), unless L becomes too large, when
the curve levels ofF. A hint of this is seen for L = 10 in
Fig. 2(b)., and it happens for L & 5 in Fig. 2(a). The
straight line in Fig. 2(b) corresponds to

-1-64—
2.60

Ep(L) = —4.414— (4.1}

-4.4—
b) x=4 0 whereas the series result (2.12) at z = 4 gives

e (L) = —4.413(2)—
2.48(1)

(4.2)

-45

I

0.02
1/L

FIG. 2. Finite-size dependence of estimates of the
ground-state energy per site: (a) at coupling z = 2; (b) at
s; = 4. The curve in (a) is merely to guide the eye; the curve
in (b) is a straight line.

that both algorithms are working correctly. A table of
estimates of the ground-state energy per site is given in
Table I.

The finite-size dependence of these results is illustrated
in Fig. 2. At strong couplings (small z), the finite lattice
results converge exponentially fast to their bulk limit, as
can be seen from a glance at Table I. At weak couplings

The agreement is remarkable.
Extrapolating these curves to L ~ oo, one obtains

estimates of the bulk limit which are listed in Table I, and
graphed in Fig. 3. Also shown for comparison are strong-
coupling series estimates [23], and some results from the
t expansion of Morningstar [25]. The overall agreement
between the results is excellent. At strong coupling the
series estimates are of course the most accurate, but by
x = 4 the Monte Carlo results are better.

B. Mean plaquette value

The weak-coupling algorithm for estimating P was dis-
cussed in Sec. III. When extrapolated to At = 0, the re-
sults are found once again to agree quite well with those
from the strong-coupling algorithm. The results are given
in Table II. The finite-size scaling behavior follows from
that of the ground-state energy, by Eq. (3.17), and will
not be discussed further. Extrapolating to L m oo, es-
timates of the bulk limit are obtained, which are listed
in Table II, and graphed in big. 4. The agreement with

0' 2
"

3
10

oe-

06

0-4

0.2

0
0 2

FIG. 3. The ground-state energy per site ~0 as a function
of coupling x in the bulk limit. The points are Monte Carlo
estimates, and the line graph estimates from a strong-coupling
series analysis [23].

FIG. 4. The mean plaquette P as a function of coupling
x in the bulk limit. The points are Monte Carlo estimates,
and the solid line shows results &om a strong-coupling series
analysis.
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TABLE II. Mean plaquette values P as a function of coupling x and lattice size L. Also listed
are the resulting estimates of the bulk limit L + oo, and estimates obtained from a strong-coupling
series expansion [23] and t expansion [25].

I
2
3

5
10

L-w oo
Series

t expansion

x=0.5
0.279(2)
0.2431(7)
0.2446{8)
0.2453(8)
0.2408(2)
0.241(1)
0.240775

1.0
0.5177(6)
0.4425(4)
O.4342{5)
0.4335(3)
O.432(2)
O.433(1)
0.43336

0.4333(3)

1.5
0.6325(9)
0.5856(7)
o.5656(s)
O.56O5(7)
0.558(2)
0.558(2)

0.56083(4)

2.0
0.6909(4)
0.6585(3)
O.64S7(6)
0.641(2)
0.638(2)
0.639(3)
0.6382(5)

4.0
o.7854(3)
0.7661(2)
0.7620(3)
0.7594(2)
0.7558(8)
0.756(1)
0.80(3)
0.757(4)

series [23] and t expansion [25] results is once again ex-
cellent. The variation of P with coupling x is extremely
smooth, with no sign of any phase transition, as we
should expect [7].

C. String tension

In the strong-coupling representation, the axial string
tension can be calculated as usual [6] via the formula

1
o =- (E, —Ep)—,L

where E, is the energy of the lowest state in the string

10
o L=2

L-3

0.8

sector, with a string of unit electric Qux wrapping around
the periodic lattice. In the weak-coupling representation
the calculation is more difEcult, because the basis states
are no longer eigenstates of the electric Hux. Since the
strong-coupling results are quite satisfactory, we have re-
stricted our attention to them.

Results for the string tension are listed in Table III,
and graphed in Fig. 5. The first obvious feature is that
at large x, the finite-lattice results very rapidly level ofF at
the value 0 (L) = 1/L predicted by Eq. (2.15). At a given
coupling, this behavior will hold until L becomes so large
that cr(L) becomes comparable with the exponentially
small bulk string tension. The prediction of reference I
is thus verified. At z = 4, Eq. (2.15) describes the data
right up to I = 10.

Estimates of the bulk limit are also presented in Ta-
ble III, along with2 some values obtained by Irving and
Hamer [21] using an "exact linked cluster expansion"
(ELCE). The convergence of the finite-lattice values to
the bulk limit is not as rapid as for the ground-state en-

ergy, and so the accuracy of the extrapolation to L ~ oo
is not nearly so good. Nevertheless, the agreement with
the ELCE estimates seems reasonably satisfactory, apart
from a small discrepancy at x = l.

0.6 D. Mass gaps

0-I

0-2—

0
0

]

2
X

—C3——~
I

I ]

As outlined in Sec. III C, the mass of the "symmetric"
glueball state can be estimated by "exciting" the ground-
state ensemble periodically, and measuring the rate of
relaxation back to the ground state. An example of the
results is shown in Fig. 6. Here the system has been
excited every 400 iterations, and the results have been
averaged over many repetitions of the process. It can be
seen that the data for the "score" (or trial energy) are
well fitted by an exponential decay curve

FIG. 5. The string tension u as a function of coupling x
and lattice size L. The points are Monte Carlo results for
various lattice sizes; the solid line showers estimates of the bulk
limit from an ELCE technique [2].

Strong-coupling series expansions cannot be used here be-
cause of the problem of "roughening. "
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TABLE III. Values for the string tension 0 as a function of coupling z and lattice size L. Also
listed are estimates of the bulk hmit L ~ oo, and some estimates derived from an ELCE technique
[21].

L
2
3
4
5
6
8
10

L m oo
ELCE

+=0.5
0.7809(2)
0.8438(5)
0.8716(4)
0.8838(4)

0.8981(l)
0.900(2)
0.902(1)

1.0
0.5844(5)
0.5520(6)
0.573(1)
0.590(1)
0.601(1)
0.610(2)
0.612(4)
0.614(5)
0.601(1)

1.5
0.520(1)
O.397(1)
0.367(1)
0.369(1)
o.s77(2)
o.sgs(s)
o.s96(5)
0.39(1)

2.0
0.5077(5)
0.3519(6)
0.284(1)
0.255(1)
0.246(2)
0.246(2)
0.251(5)
0.28(1)
0.282(2)

4.0
0.4998(7)
0.335(1)
0.250(2)
0.200(2)
0.166(2)
0.121(4)
0.103(5)

S(t) = So+ ae ™, (4.4)

and it can be checked that the asymptotic value So agrees
with the ground-state equilibrium score or energy. The
parameters of the fit carry a statistical error, of course,
and depend quite strongly on the range over which the fit
is made, so that the resulting estimate of the mass m was
found to be accurate to only about 10%. At this level,
the estimates were in approximate agreement with earlier
finite-lattice [26] and series [23] works, but it is hardly
worthwhile to present any more quantitative results.

V. CONCLUSIONS

The first aim of this project was to study the finite-size
scaling behavior of the model. The data have confirmed

10-7—

10.65—

10 6—

10-55—

100 200 300
No. of interations

1,00

FIG. 6. The "score," or trial energy (in arbitrary units),
at coupling x = 2, lattice size L = 3, and time interval
Et = 0.005, as a function of the number of iterations fol-
lowing an excitation. The solid line is a least-squares St of
the form (4.4).

very well that the predictions of effective Lagrangian the-
ory and weak-coupling perturbation theory [4] are indeed
correct, provided that one remains at intermediate dis-
tance scales

1 « L « 1/Ma, (5.1)

where the mass scale M is given by Eq. (2.7).
The interpretation of this fact may be open to more de-

bate. It appears that at scales given by Eq. (5.1) the the-
ory behaves like a theory of free, massless photons. This
fits with the conclusion of Gross [8], who showed formally
that the model does converge to &ee electromagnetic the-
ory in the naive continuum limit a + 0 with e2 fixed. If,
on the other hand, one renormalizes the coupling in the
usual way so that M remains fixed as a ~ 0, then on this
smaller energy scale, or larger distance scale, one obtains
the confining theory of free massive bosons discussed by
Gopfert and Mack [7]. There is no inherent conflict be-
tween these statements, because the ratio between the
two energy scales becomes infinite in the limit a ~ 0.
Thus it would appear that the same lattice model can
give rise to two different continuum theories, depending
on the way in which the continunm limit is taken.

Our second aim was to implement and test an unbiased
quantum Monte Carlo method based on a weak-coupling
representation for this gauge model. We have chosen to
use the Green's function Monte Carlo method [37—39]. It
was found to work extremely well for the ground-state
energy and its first derivative (the mean plaquette), be-
ing accurate to about 0.01% for the energy and 0.5% for
the mean plaquette at a coupling x = 2 in the scaling
region, and agreeing within errors with strong-coupling
series estimates. Thus the viability of the method is es-
tablished.

The string tension was measured using a strong-
coupling basis rather than the weak-coupling one; but
there seems no reason why Wilson loops and Creutz ra-
tios should not be measured by similar techniques to
those used for the mean plaquette. This would give the
tension as an inverse area: translation to an energy per
»~it length would require knowledge of the speed of light.

Attempts were also made to measure mass gaps using
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two din'erent methods. For the antisymmetric glueball
state, a "6xed node" technique was tried, but it failed for
reasons which are still not understood. For the symmet-
ric glueball state, we simply measured the exponential
decay in Euclidean simulation time of an excited state
system. This technique gave reasonably convincing re-
sults, but only at a level of 10%%uo or so in accuracy. This
is not really satisfactory for quantitative work, and more
sophisticated procedures will need to be considered in the
future.
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