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For the two-dimensional standard O(3) nonlinear o model with the Hamiltonian H = —P P&, )
cr;

oi, we report a bulk correlation length (( ) up to P = 2.7 (where the corresponding g 15000)
obtained based on a Snite-size-scaling Monte Carlo technique. We Snd that asymptotic scaling starts
to set in around P = 2.3, and that the analytical prediction on ( by Hasenfratz, Maggiore, and
Niedermayer agrees better with data as P increases.

PACS uumber(s): 11.10.Lm, 11.10.Kk, 11.15.Ha

I. INTRODUCTION

Two-dimensional (2D) nonlinear cr models are of spe-
cial interest in particle physics due to their similarity to
four-dimensional (4D) non-Abelian gauge models. For
both 4D non-Abelian gauge models [1] and 2D nonlin-
ear o models [2] perturbation theory predicts that the P
functions are negative in the weak coupling region, with
their vanishing value at zero coupling; this property is
referred to as perturbative asymptotic scaling (AS). The
P functions in the 2D nonlinear o models are negative in
the strong coupling region as well, which is known &om
strong coupling expansion [3]. Determining the sign of
the P function in the intermediate region is very impor-
tant for establishing the validity of /CD: the positive sign
of the P function in some intermediate region implies the
presence of at least two critical points, which could make
/CD nonasymptotic free, and would make it implausible
for the quark confining property in the strong coupling
regime, for example, to be translated into the continuum
limit of the theory.

Usage of various series expansion techniques is limited
in the intermediate region [except for 1/N expansion], so
the behavior of the P function remains by large»»known.
The Monte Carlo simulation tech»que is suitable to the
studies in the intermediate region. Indeed, using such
effective Monte Carlo algorithms as one cluster or over-
relaxation, correlation lengths up to about 200 (in lat-
tice unit) are available for the 2D standard O(3) model,
showing that the correlation length scales faster than the
prediction of AS [5]. Indirect Monte Carlo methods such
as the Monte Carlo renormalization group method and
finite size scaling analysis of Monte Carlo data of O(3)
[6, 7] and O(4) models [8], however, support AS. For the
O(N) models with the larger values of N, AS appears to
start to set in with smaller values of correlation length
than for the O(3) model [9].

For some other type of the nonlinear 0 model such as
the RP2 model, Monte Carlo data reveal that the cor-
relation length scales much faster than the prediction of
AS, thus leading some authors to conjecture [10] the pos-
sible divergence of the correlation length; i.e., a possible

vanishing of the P function in the intermediate region.
There have been some rigorous approaches questioning
AS also [11]. The current conventional wisdom, never-
theless, holds that there is no critical point in the inter-
mediate region for both O(N) models and RPN ~ models
with N & 3.

In this paper bulk correlation lengths (() of the 2D
O(3) standard model are computed up to ( 15000
based on a finite size scaling technique. Our data show
that correlation length scales faster than the prediction of
AS until P 2.3 (where the corresponding ( 1400),
but the AS tends to set in for P & 2.3 within the statisti-
cal errors of the data. The agreement of our g with the
analytical prediction by Hasenfratz et aL [12) is shown
to be improved as P increases.

II. THE MODEL

The Hamiltonian of the standard (nearest neighbor)
O(N & 3) nonlinear cr models is defined as

H = —PZ(s)o; os,

where P denotes the inverse temperature (coupling), and
cr takes values in the imit sphere SN ~, and (ij) rima
over all the links of the nearest sites i and j.

By the (perturbative) AS of the mass gap, it is meant
that the mass gap m = 1/f behaves as

m=|" AL, ,

(2~P) 1/(N —2) e 2'/(N 2) [1 + a —
/P + 0(—1y2)]

as P ~ oo [2]. The coefficients a~ are nonuniversal; espe-
cially, from the lattice three loop perturbative calculation
[13]aq [0.486+0.089(N —2)]/[2n (N —2)). C has been
exactly computed to be

—2s/2(8/ )
~/(N —2) /2(N —2)/I'(1 + 1/(N 2))

(2)

&om two separate relations: one is the relation between
the scale of the minimal subtraction (MS) regularization
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scheme and that of the lattice, i.e.,
25/2 m/[2(iv —2)]

obtained based on lattice perturbation theory [14], and
the other [12] is

rn/A = (8/e) '/( )/I'(I + 1/(N —2) ) (4)

based on Bethe ansatz and Zamolodchikov's 8 matrix
[15].

Liisher, based on the renormalization group equation,
pioneered a finite size scaling study on the 2D 0(N)
model [16]. Namely, he derived, for N & 3,

z = LmL, = L/Q, . (6)

The coefficient CN depends on N only, and bs can be
calculated f'rom perturbation theory.

III. METHOD AND SIMULATIONS

Rewriting Eq. (5) as tnL, = m q (z), one immediately
notices that Eq. (5) is a particular form of the general
finite size scaling formula [17]. Namely, for any multi-
plicative renormalizable quantity P,

P (t) = P (t)& (*(t)) *(t) = ~ (t)/L (7)

g ( /)( -)/( -) I+)-g
Ms )

where mz, and z represent, respectively, the mass gap on
a L x I lattice and a dimensionless parameter defined as

the O(3) model indeed has no P dependence, we evalu-
ated [z(P), qg(z(P))] for several arbitrary points of z(P)
at some arbitrarily different P, and observe that the data
set belonging to difFerent P tend to overlap (Fig. 1).

For a given z(t), therefore, the prime thing for the
method is to estimate qf (z(t)) by means of interpolation,
given some set of [z(t'), q~(z(t'))] available via Monte
Carlo simulations at a temperature t' where ( (t') is al-
ready known. The accuracy and efficiency of this method
has already been well demonstrated for the 2D and 3D
Ising models [19].

We employed Wolff's one-cluster algorithm [20] for our
Monte Carlo simulations, imposing the periodic bound-
ary condition on squsre lattice. For each P and L, 20—
40 difFerent bins were obtained, where each bin is com-
posed of 10000 measurements each of which is separated
by 4—50 consecutive one-cluster updating. We averaged
over the bin values estimating the statistical errors by
the jackknife method. In most cases, much lower statis-
tics of the data than above were sufficient to extract bulk
values with reasonable accuracy. However, when interpo-
lation happens to occur in the region of z where qg(z) is
quite steep, s»anciently high statistics of the data were
required to obtain» accurate results. If an interpolation is
made where q~(z) is very small, one may suspect that an
estinuite of b»% value would be too sensitive to interpo-
lation to get a reasonably accurate result. It turns out,
however, that with s»anciently high statistics of Monte
Carlo data an esti»iate can be still reliable even for the
values of qf 10 z, because in this region q~(z) becomes
almost fiat with z (see Fig. 1).

In order to define a correlation length, we consider the
Fourier transform of the two-point correlation function

where t represents (reduced) temperature.
In particular, Eq. (7) for the correlation length reduces

to

G(k) = Z„e'" (oo o„) . (9)

(8)

at a critical point (t = 0) [17], and it has been observed
numerically that Eq. (8) hold. s for most models [18] with
remarkable accuracy for L & L~s, where L is between
10 and 20, in general with our deRmtion of the correlation
length [Eq. (10)]. We stress that Eq. (7) is valid even
when z is s»anciently large (i.e., Q, /L is s»Riciently small)
for L & L:otherwise, if Eq. (7) would not be valid for
too small a value of L/(, one would have never observed
the validity of Eq. (8) on a finite lattice, since at a critical
point I /f ~ 0 for any finite L.

Equation (7) implies an efficient method of extract-
ing b»% values (thermodynamic values) in Monte Carlo
simulations [19]; the method is significant since mea-
surements on the lattice with L ( ( are already
good enough for extracting accurate b»I& values, whereas

L/( & 6 is required for the traditional direct measure-
ments. The crucial observation for this method is that
q~(z(t)) in Eq. (7) has no explicit temperature depen-
dence so that some set of [z(t'), tIJ (z(t'))] obtained at a
certain temperature t', referred to as a reference temper-
ature, can be used for the extraction of P (t) at another
temperature t. In order to demonstrate that qg(z(P)) in

O.e—
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FIG. l. [z(P), qg(z(P))j for various values of P, using dsts
in Table II. For each P, the data point with the Isrgest value of
x corresponds to I = 20. The reader should not be confused
with the error bars from the symbols of the dsts st P = 2.0;
the actual error bars are almost invisible.
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TABLE I. Bulk correlation length [( (P)) obtained through our method for 2.0& P & 2.7. For
our evaluation of ( (2.0) the reference temperature was P = 1.9, using [x(1.9), qg(z(1.9))] in Table
II with g (1.9) = 122.0(2.7) (see Table III). For our results of f (P) in the range 2.05 & P & 2.4
and 2.5 & P & 2.7, the reference temperature was P = 2.0 and 2.4, respectively, using data set in
Table II. The interpolation eras made in the range of 0.08 ( qg ( 0.16 and 0.07 & qg ( 0.009 for
the reference P = 2.0 and 2.4 respectively. The data marked with an asterisk are from Ref. [5],
and the reference temperature was P = 1.5 using data in Table II. From the direct Monte Carlo
measurement[5] using L = 1024, f (2.0) = 224.3(4.2).

2.0
60

38.29(O.O6)
227.8(3.2)

2.05
34

23.79(0.02)
306(4)

2.05
1024

295.6(5.2) '
315(13)

2.1
100

40.91(0.04)
419(5)

2.15
60

66.76(0.08)
574(8)

2.2
140

92.96(0.03)
766(7)

L
fz,

2.3
180

124.1(0.2)
1402(22)

2.4
260

183.1(0.3)
2499(41)

2.5
60

49.82(0.07)
4696(128)

2.6
100

83.18(0.11)
8022(234)

2.7
160

134.6(0.2)
15209(449)

TABLE II. The values of (z, varying L for 1.5 & P & 2.4, which were used to extract our results
in Table I. Results for P = 1.5 show that fr. reaches its bulk value for approximately L/gz, ) 6.

1.5 20
24
30
34
40
50
60
70
80

(c
8.30(0.02)
9.12(0.03)
9.90(0.06)
10.24(0.04)
10.60(0.06)
10.86(0.05)
11.01(0.04)
11.05 (0.03)
11.04(0.03)

1.8 20
30
40
50
60
90
120
150
200

12.ss(o.o2)
17.71(0.02)
22.43(0.03)
26.86(0.05)
31.01(0.06)
41.33(0.04)
49.08(0.04)
54.83(0.05)
60.26(0.07)

2.0 20
24
30
34
40
50
60

(z,

14.32(0.01)
16.88(0.02)
20.63(0.02)
23.08(0.02)
26.68(0.02)
32.53(0.03)
38.29(0.04)

1.7 20
24
30
40
50
60
70
80
100

11.44(0.02)
13.30(0.03)
15.82(0.03)
19.52(0.03)
22.66(0.02)
25.21(0.04)
27.39(0.05)
29.07(0.03)
31.49(0.08)

1.9 20
30
40
60
100
200

13.47(0.02)
19.31(0.02)
24.79(0.02)
35.06(0.04)
53.06(0.05)
86.48(0.12)

2.4 20
24
30
34
120
260

17.08(0.02)
2o.3o(o.o2)
2s.o2(o.o2)
28.10(0.03)
90.35(0.05)
183.1(0.3)

TABLE III. ( (P) obtained using difFerent interpolating points for P = 1.7, 1.8, and 1.9,
showing that the results are not dependent on the value of interpolations. ( (P) obtained through
direct Monte Carlo measurements [5] are 34.4(.1), 64.6(.5), and 122.1(1.9) for P = 1.7, 1.8, and 1.9,
respectively.

1.7
80

34.3(0.2)

1.7
100

34.5(0.2)

1.8
60

63.5(1.1)

1.8
90

64.2(0.8)

1.8
120

64.8(0.7)

1.8
150

64.6(0.3)

1.8
200

65.0(0.3)

1.9
60

121.8(2.6)

1.9
100

121.8(2.0)

1.9
200

122.5(2.4)
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FIG. 2. 6g(P)—:( /[e S(1 —0.0915/P)/P] for 1.7 & P & 2.7. A constant value of 6g(P) is an indicator of the exact AS
from the three loop perturbative calculation.

Whea ]x] is snfRciently large, (0'o o„) e ~"~/~~ holds,
so we will have

G( )-' = G(0)-'[1+ k'g,'+ O(k')]. (10)

By choosing k = (2m/L, O) and by computiag G(0) and
G(k) through Monte Carlo simulations Q, can be evalu-
ated from Eq. (10) when L is so large that O(k4) can be
igaored.

Using L;„= 20 seems to be good enough for our
definition of the correlation length, and for the complete
elimination of the possible correction in Eq. (7) (see Fig.
1).

and the data necessary to evaluate them (Table II). Our
results at P = 1.7, 1.8, and 1.9 are compared with those
from direct Monte Carlo measurements [5] (Table III),
yielding excellent agreements.

To check AS from the three loop perturbative re-
sult, we introduce b~ = ( /[e (1 + aq/P)/P] with
aq —0.0915, aad the results for P = 1.7 2.7 are
plotted in Fig. 2. Within the statistical error, AS sets
ia from around P 2.3. In Fig. 3, (Ig, ln[( (P)]) are
plotted, showing a remarkable exponential type critical
behavior of ( (P) ia our range of P.

Fitting our data in Table I to, for example, ( (P) =

IV. RESULTS

We present all the Ir thus evaluated from p = 2.0
to P = 2.7 (Table I) by changing P by 0.1 or by 0.05,

4.5

m/h~ 3.5

b00
3.0

I

2.2
I

2.4
I

2.6

1.5
I

1.75 2.25
I

2.5
I

2.75

FIG. 3. ln(( (P)) for our range of P, showing a qualita-
tive exponential behavior of ( (P) in the 2D O(3) model.

FIG. 4 m(P)/AMs far aur range of P, where the dot-
ted line represents the theoretical prediction in Ref. [12], i.e.,
m/AMs = 8/e. This figure, along w'ith Fig. 2, shows that the
prediction in Ref. [12] is incompatible with AS up to at least

P = 2.7. In other words, if m/AMs happened to be 8/e fram,
say, P = 2.7, AS would not set in until P = 2.7. The expected
compatibility seems to start to occur from a p ) 2.7.
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cq exp(2z'p) [1 + c2/p]/p yields cq 0.0026, cz —0.827
with g2/NDp 2.2. On the other hand, fitting our data
to a power-law critical behavior such as ( (t) t
[t—:(P, —P)/P ] yields extremely unstable fitting; Ig,
tends to be extremely large with a very large value of
v, and the value of yz/NDp decreases extremely slowly
with P, where P & 100. Also, it is evident that fitting
our data to a Kosterlitz-Thouless-type critical behavior
is much worse than that to a power-law critical behavior.

To compare with the analytical result [Eq. (3)], we
computed values of m~/AMs for 1.7 & P & 2.7, which
are plotted in Fig. 4. The values of the correlation length
measured in this range of P are uniformly smaller than
those from the analytical prediction. Although the con-
vergence rate is very slow, the values of the bulk correla-
tion length seem to converge to the analytical prediction
as P grows. Also, note that if the analytical prediction
were exact from a P less that 2.7 the AS would set in
from a P larger than our prediction.

V. CONCLUSION AND DISCUSSION

Our numerical result of the bulk correlation length
demonstrates that the perturbative AS holds at least
qualitatively in the region of P considered here, i.e.,
1.7 & P & 2.7. It is very remarkable that the perturba-
tive AS which is supposed to be valid in the limit P ~ oo,
still holds for such small values of P, and we take this as
strong numerical evidence showing that there is no phase
transition separating the weak coupling regime &om the
strong coupling region. It also suggests that a physical
property &om a strong coupling expansion such as the
quark confi~i~g potential between quarks may persist at
least qualitatively to the weak coupling region, i.e., to
the continuum limit of the asymptotic free theories, be-
ing consistent with general expectations. Although it
may be hard to rule out the possibility of a power-law
critical behavior with, say, P = 3000 [y /NDp 4], it
seems to be highly implausible.

As stressed, one of the crucially important assumptions
for our method is that Eq. (7) is valid regardless of the
magnitude of the scaling variable L/f for I & L
We confirmed this numerically for the O(3) model (Table
III), where the bulk values estimated &om difFerent L are
recorded for P = 1.7, 1.8, and 1.9. (Also, see Table II for

P = 2.0 and 2.05.)
For interpolations, we always used a rational

functional-type interpolation scheme (subroutine RATINT

in Ref. [21]) with the degree of interpolation fixed as 4:
Given four data points ((z(t'), qg(z)(t')) at a reference
temperature t', the subroutine finds an optimized ration-
al function. The error from this subroutine results only
f'rom whether the given data tend to fit to a rational func-
tion or not; for data points sn%ciently close to each other
it is always possible to flnd a rational function fit to the
data, so the errors turn out to be very small.

The sources of errors in our interpolations are the sta-
tistical errors in x(t'), q4(x(t')), x(t), and ( (t'). We are
not aware of any interpolation subroutine which takes
account of the errors in both z(t') and qg(z(t')), and it
is very hard to monitor error propagation due to these
errors. Practically, however, one can make the statistical
errors in x(t') very small by choosing values of L usually
not larger than 40. The significant part of error propa-
gations which can be tracked comes from the statistical
error in z(t), and from $ (t'). Usually when L is small,
the most significant error comes &om the error in input
(-(t')
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