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The conservation of entropy and baryon number in the deconfinement phase transition is studied
in the framework of the bag model. In the standard construction of the equilibrium phase transition
from a quark-gluon plasma into a hadron gas a subsequent dilution and reheating of the system on the
phase boundary is necessary to preserve the entropy and baryon number conservation. We propose
modifying the bag pressure to depend explicitly on temperature and baryon chemical potential.
It is shown that this modification is sufficient to construct a model in agreement with the Gibbs
equilibrium criteria for a phase transition, while simultaneously assuring entropy and baryon number
conservation on the phase boundary. Within this model the quark-gluon plasma hadronizes at a

fixed temperature and chemical potential.

PACS number(s): 12.38.Mh, 11.30.Fs, 12.39.Ba

I. INTRODUCTION

Statistical QCD predicts that strongly interacting mat-
ter exists in two different states [1-3]. Lattice gauge the-
ory has shown that at low energy density it behaves as
a gas of individual hadrons, whereas in the asymptotic
limit of high density it is composed of quarks and gluons.
The lattice approach is very successful in the descrip-
tion of thermodynamical properties of strongly interact-
ing matter in the baryon-free environment [4]. The criti-
cal behavior of hadronic matter with finite baryon chem-
ical potential, however, can at present only be studied in
the framework of phenomenological models [5-8]. Here,
a phase transition between the hadron gas and quark-
gluon plasma is obtained by construction via the Gibbs
criteria for a phase equilibrium. Within the framework
of such models, the specific entropy per baryon S/B is
discontinuous across the phase transition [7-11]. In the
ideal gas approximation, the ratio S/B is almost always
larger in a quark-gluon plasma than in a hadron reso-
nance gas, if we compare them at the same temperature
and chemical potential—mostly because of the large en-
tropy content in the gluonic sector. The S/B ratio is an
observable measured in heavy ion collisions [10,11]. Thus,
the behavior of S/B across a phase transition is of impor-
tance when verifying experimental signals of quark-gluon
plasma formation in heavy ion collisions, in this partic-
ularly, strangeness production. We will show, however,
that this behavior can crucially depend on the hadronic
equation of state.

In any thermodynamic system, the change of state is
only possible at increasing or constant entropy. In the
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standard, bag model equation of state [7-11], the appear-
ance of a discontinuity in the ratio S/B makes the phase
transition at fixed temperature T and fixed chemical po-
tential p irreversible. In the transition from a quark-
gluon plasma into a hadron gas, the values of T and pu
have to be changed during the hadronization while still
observing the Gibbs criteria for the phase equilibrium.
The conservation of total entropy and baryon number
adjusts the ratio of the plasma to hadronic volume along
the critical curve where the values of T' and pu are deter-
mined by the pressure equality. In the case of vanishing
baryon number a deconfinement phase transition appears
at a fixed critical transition temperature. The evolution
of the system is thus qualitatively different at zero and
fimte baryon density.

In this work we propose a phenomenological model for
deconfinement phase transition which allows this tran-
sition to occur at a common temperature and chemical
potential and consequently implies the S/B ratio to be
continuous across the critical curve. As a basis we use a
bag model equation of state for the plasma with 7- and
p-dependent bag constant. The hadronic phase is treated
as a pion-nucleon gas with hard core repulsion between
nucleons.

The paper is organized as follows. In Sec. II we in-
vestigate first a simplified model of massless particles.
In Sec. III the model of isentropic deconfinement phase
transition is constructed and discussed. In Sec. IV we
present a discussion of our numerical results.

II. ENTROPY PER BARYON AND
DECONFINEMENT

In order to illustrate the behavior of the entropy per
baryon S/B across the phase transition, we discuss first
a simplified model of deconfinement. The hadron phase
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is considered as a gas of noninteracting massless nucleons
and pions. Here, the partition function in terms of the
baryonic chemical potential u and the temperature T has
the following form:

24 22 4
T + u°T + o
9 3 672

glnzh(u,T) = (2.1)

For the quark-gluon plasma we have the partition func-
tion of massless u and d quarks and gluons, with a phe-
nomenological bag constant By,

37n2T4
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1
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The analysis of S/B across the critical curve, p. =
te(Te), obtained from the Gibbs criteria for the phase
equilibrium of hadronic matter and the quark-gluon
plasma,

Ph(llfc’T:) = Pq(/"gng) with pc = 3/1'3;Tch =T =T,
(2.3)

requires in general a numerical investigation. However,
in the above model, the appearance of a discontinuous
structure of S/B at (pc,Tc) can be illustrated in the limit
of uo = 0. From Egs. (2.1) and (2.2) one finds that
independently of temperature

Lim[(5/B)q/(5/B)n] = 222/20. (2.4)
Thus, S/B shows a discontinuity at the critical temper-
ature and is larger in the plasma than in the hadron gas
phase.

In order to construct a transition at fixed g and T
preserving S/B we propose to modify the quark-gluon
plasma equation of state by assuming the bag pres-
sure By in (2.2) to be dependent on temperature and
baryon chemical potential. In this case the requirement
of (S/B)n = (S/B), along the critical curve (2.3) leads
to the following differential equation:

e T +2(5)°T - BT BT+ 4T

= . (2.5)
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The bag parameter B(u,T) is in general considered
to describe the difference between the perturbative and
physical vacuum pressure. Thus B(u,T) should exhibit
similar symmetry properties as the pressure. In partic-
ular, it should be an even function of i and T, that is,
B(p,T) = B(—p,—T). Because of this symmetry, the
partial derivatives of B(u,T) are of different order in pu.
In leading order in u, 8B(u,T) /0T is proportional to u2,
whereas B(u,T)/Op is linear in u. Thus, in the limit of
pu — 0, the derivative dB(p,T) /9T in (2.5) gives a sub-
leading contribution and can be neglected as compared
with the other terms. For a small u, the continuity con-
dition (2.5) thus leads to the solution

101
B(l"‘a T)u—vO =~ BO - _#2T2,

= (2.6)

where By is the integration constant. In the limit of low

temperature, the derivative 8B(u,T)/0u is subleading
in T, as it gives contributions of O(T?) order in (2.5).
Thus, keeping only the lowest order in T terms in Eq.
(2.5), one finds

B, T)rs0 = Bo+ oo T (27)
the two limiting solutions of the bag pressure, Egs. (2.6)
and (2.7), can be used then in Eq. (2.3) to calculate the
critical curve in the corresponding T' and p regions. By
construction, the modified equation of state guarantees
the continuity of the entropy per baryon ratio across the
critical curve. Thus, the phase transition between quark-
gluon plasma and nucleon gas is reversible and appears at
the same value of the critical temperature and chemical
potential. In particular, in the limit g, — 0, the ratio in
Eq. (2.4) becomes unity with the new equation of state.

II1. ISENTROPIC EQUILIBRIUM TRANSITION
IN A MASSIVE PION-NUCLEON GAS

In the preceding section, we have shown in terms of a
simplified model that a modification of the bag pressure
in the quark-gluon plasma equation of state is sufficient
to obtain an isentropic deconfinement transition at fixed
p and T. In the following, it will be shown that this
is also possible when a more realistic equation of state
is considered. We assume here the hadronic phase to be
composed of massless pions and massive nucleons of mass
m. The partition function (2.1) then becomes

T
Van(Tﬁl)
274 Am2T?2 & (_1)k+1 ku m
- Pk, (£
30 T az kz_l k! COSh(T) :(7)
(3.1)

where the sum takes into account quantum statistics.

In order to implement baryon interactions in the
hadronic phase in a semiclassical way, one considers the
nucleon as an extended object and includes a hard core
nucleon-nucleon repulsion [5]. The resulting excluded
volume corrections to the noninteracting gas approxima-
tion are effectively taken into account by dividing any
thermodynamical quantity for pointlike particles by the
factor [1+vona (T, p)]; here vo = (4w R3/3), with Ry ~ 0.8
fm, is the volume of nucleon, and nx(u,T) = 0lnZ/du
the baryon number density calculated from the partition
function (3.1). The finite-volume repulsive corrections to
the hadronic equation of state are essential here because
in the ideal gas approximation alone there is no unique
phase transition for systems with large baryon number
[5]-

The phase transition between hadron gas and quark-
gluon plasma described by the partition function (2.2)
and (3.1) is by construction of first order. In this case,
the energy, entropy, and baryon number densities are dis-
continuous across the phase transition curve p. = pc(Tc)
defined by the Gibbs criterion (2.3). The actual critical
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FIG. 1. The critical curve (dashed) and the constant en-
tropy/baryon curve (dotted) obtained in the bag model with
constant bag pressure B;/ * = 0.235 GeV. Also shown in the
path of constant (S/B) ~ 50 (dashed-dotted).

curve in the (g, T) plane is determined by the value of
the phenomenological bag constant By in Eq. (2.2). In

Fig. 1, we show the critical curve for Bé/‘l = 0.235 GeV.

Comparing the entropy per baryon ratio below and
above the phase transition curve one immediately no-
tices its discontinuous behavior. In Fig. 1, the path of
constant (S/B) ~ 50 in the (u,T) plane is shown, indi-
cating the different temperatures and chemical potentials
in a quark-gluon plasma and a hadron gas in the vicinity
of the deconfinement phase transition. For a given point
(#teyTc) on the critical curve, the entropy per baryon
of the plasma phase is considerably larger than in the
hadronic phase. As also shown in Fig. 1, the condition
of equal entropy per baryon in plasma and hadron gas,
(S/B)q = (S/B)n, leads to a (u,T) curve which is in-
compatible with the critical curve for a phase transition
at fixed p and T. Thus, the results of Fig. 1 show that
it is in general not possible to fulfill the Gibbs criteria of
phase equilibrium with further constraint of a continuous
entropy per baryon at the same value of 4 and T. A pos-
sible way out would be to drop the equilibrium condition
[12]. However, if we want to retain an equilibrium phase
transition, we have to modify the equation of state in or-
der to fulfill the continuity of entropy per baryon across
the critical curve. Within a bag model, the conservation
of the entropy per baryon across the phase transition can
be achieved by modification of the bag pressure,

8B(u,T
S¢ — T ~ _ Sh

T = o (3.2)
q Em

Equation (3.2) corresponds to Eq. (2.5) for the case of
massive nucleons; it can be solved analytically in two
asymptotic limits of 4 — 0 and T' — 0.

A. Matter at low baryon density

In a hot gas at low baryon density we can use classi-
cal statistics for nucleons, i.e., we take into account only
the first term in the series expansion (3.1). The require-
ment of a conserved entropy per baryon across the phase
boundary leads to the following partial differential equa-
tion for the bag pressure B(u,T),

. 2
R T B < L
- 2 .
TP T 2~ 58 SETK, (7) sinh ()

. (3.3)

Here s,, refers to the nucleon entropy density and K is
the modified Hankel function of the second kind. First we
solve this equation in leading order of p/T. The deriva-
tive 8B /0T can be neglected in the first approximation,
similar to the case of massless nucleons, and Eq. (3.3)
reduces to

0B 2 4.-37 m
— ~ T? — 2K (= 3.4
o9 P 3™ 2(T)"’ (3.4)
with the solution
~ 1,22 74 T) 2
B(u,T) ~ By + 9T B =g am K, (T ué. (3.5)

Substituting B /0T from Eq. (3.5) into Eq. (3.3) leads
to the next order approximation for the bag pressure after
integration. This iteration method can then be continued
to still higher orders. Noticing that

‘trlzsz (%) (cosh—;—, - 1) =P, — Po(p=0)

one obtains

0B 2

oT — 9
where P, is the pressure and s, the entropy density of
nucleons and antinucleons. The main contribution from
the nucleon entropy density cancels out in Eq. (3.3), and
the remainder is negligible when compared with the other
terms. The final expression for the T- and p-dependent
bag pressure from Egs. (3.3) and (3.6) thus becomes

BT~ Slon = sn(n=0)), (3.6)

~ 12,2 4
B(u,T) = Bo + ST + 1o
148 5 . m "
= m E 1), @7
37r2mTK2(T) (coshT ) (3.7)

it can be used to construct the phase boundary between
quark-gluon plasma and hadron gas at low baryon den-
sities.

B. Matter at high baryon density

Quantum statistics play an important role in cold and
baryon-dense matter, leading to a fully degenerate Fermi
gas at zero temperature. For temperatures low compared
to (# — m) one can write the thermodynamical quanti-
ties as sums of zero temperature contributions and finite
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temperature corrections:
P, ~ P + PIT? + PPT?,
np ~ny +niT? + niT?,
sp =~ spT + s2T3. (3.8)

The zero temperature terms are

3 +6
0 _ 2 _ 2 9.4 [t
P} = o2 uo(0° — 3m*/2) + 5™ ln( - )} , (3.9)
2
0 _ 3
ng = 37r29 , (3.10)
where 6 = (u? — m?)1/2, The finite temperature correc-

tions are obtained by using a power expansion around
T =0 [13]:
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27?2
+—

= (3.13)

m2
1- 2
In the low temperature limit, 8B/3T dominates over
OB/du. Keeping only the leading terms the equality of
entropy per baryon across the phase boundary yields
ST — 57 _ siT

0’

= (3.14)
Th

2_ .3
ginz M
resulting in the first approximation of the bag pressure,

1 1 pt

B~ By + —p*T? — —— 3.15
ot gH 81 62 (3.15)

For higher order corrections we insert 0B /0y from Eq.

(3.15) into Eq. (3.2),

1 B, 2 w2 m? 2
Pa=3% =954 (1 - 'é?) T G wUT ST -5 _ ST +ST o
=0 172 :
S+ gy b ( %L:) m T
1 u? 7?2 m*
r=cl0+=); ni=—r—, 3.12
"h T3 ( + 0 ) T 60 65 ( ) to obtain by integration
J
1 1 u? T* [ 2u8 stnl 455} s 1 p?
B ,T B 2T4 = TZ_____TZ___—* Baladil 2 _ °h''n h 1—- -2
(7) = Bo+ &0 90"~ Tt 162 and (8122 \°h T g )t TRie 2 62
37 1 1 pt w2 7p 26m2p,
=B ol L, LA (% ) 3) T 3.17
ot 50" 9 81 62 s0.81\8) \6o " " (317)

with the parameters defined as in Eqgs. (3.10)-(3.13).

IV. NUMERICAL RESULTS AND DISCUSSION

In the last section we have constructed a phenomeno-
logical equation of state which preserves continuity of the
entropy per baryon at a fixed (¢, T.) in an isentropic and
equilibrium phase transition from a quark-gluon plasma
to a hadron gas. In the limit of small chemical potential,
the partition function in the deconfined phase is defined
by Eq. (2.2) and the effective bag pressure (3.7). In the
opposite limit of low temperature and large chemical po-
tential, the bag pressure is replaced by Eq. (3.17). In
both we have considered the hadron phase as a gas of pi-
ons and nucleons with the partition function (3.1). The
contribution of further particle species in a hadron gas
would increase the values of all thermodynamical quanti-
ties for a given temperature and chemical potential. The
entropy per baryon, however, is rather weakly affected
by the number of particles included, so that a more com-
plete particle input in Eq. (3.1) will not significantly
change our results. The entropy per baryon ratio is also
quite insensitive to interactions. If one boosts the entropy
density in the mesonic and baryonic sector by mean field
terms in order to take into account particle interactions,
then the hadronic S/B ratio is left essentially unchanged
[14].

The modification of an ideal gas equation of state for
the quark-gluon plasma by a bag pressure accounts for its

nonperturbative nature close to the deconfinement tran-
sition. In the asymptotic limit of high temperature at
fixed p one should, however, recover the Boltzmann limit
for noninteracting gas of quarks and gluons. It is straight-
forward to see that with the modified bag parameter (3.7)
and the partition function (2.2) the Boltzmann limit is
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FIG. 2. The energy density as a function of temperature,
as given in our model for (S/B) ~ 50 (dashed line). Also
shown is the result for the energy density in the plasma phase
in the model of constant bag pressure (dashed-dotted line),
where the same T¢ leads to (S/B) ~ 100.
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FIG. 3. As in Fig. 2, but for entropy density.

indeed recovered.

The quantitative behavior of the model close to the
deconfinement phase transition is presented in Figs. 2—
5. The energy, entropy, and baryon number density in
the region of small p are shown in Figs. 2-4. All ther-

modynamical quantities are calculated for Btl,/ 4 =0.235
GeV and given as function of temperature for a fixed
value of the entropy per baryon. For each value of
the temperature, the chemical potential in the hadron
and in the quark-gluon plasma phase was calculated to
keep (S/B) = (5/B)(u,,1.)- For the critical temperature
T. ~ 0.18 GeV, the entropy per baryon in a hadron gas
is (§/B) ~ 50. Also shown in Figs. 2-4 are the corre-
sponding results for the model with constant bag pres-
sure (Btl,/ * = 0.235 GeV) at the same 7. In this case, the
entropy per baryon in the plasma becomes (S/B) ~ 100,
so that S/B increases by a factor 2 between hadronic
phase and plasma, while in our model S/B is continu-
ous across the transition. In Figs. 2 and 3 we see that

7
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FIG. 4. As in Fig. 2, but for baryon number density.
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FIG. 5. Critical curve calculated as given by the model
defined by Egs. (3.1), (3.7), and (2.17), for two different
values of By. Also shown is the curve (dashed line) of constant
entropy per baryon, (S/B) ~ 50, in the region of the phase
transition.

both energy and entropy density are essentially the same
in the two cases. The main effect of making the bag
pressure dependent on T and u is a substantial increase
in the baryon density, as shown in Fig. 4. The critical
curve in the (u,T) plane is shown in Fig. 5, in the limit
of low temperature and small chemical potential. The
actual position of the critical curve in the (u,T) plane is
determined mainly by the value of the bag constant By.
Therefore, both the standard and modified models lead
to a very similar critical curve; of course, the behavior
of S/B in these models is very different. In Fig. 5, the
path corresponding to (S/B) ~ 50 in the (x/T') plane is
included in order to show explicitly the continuity across
the phase transition.

V. CONCLUSIONS

Within a phenomenological model based on an ex-
tended bag model, we have analyzed the behavior of
the entropy per baryon number in a plasma and in a
hadron gas in the vicinity of the phase equilibrium. For
a constant bag pressure, the Gibbs construction of the
phase transition implies a discontinuous structure in a
specific entropy per baryon across the critical curve. We
have shown that a temperature and chemical potential
dependent bag pressure in the equation of state for the
quark-gluon plasma is sufficient to retain the continu-
ity of the entropy per baryon in an isentropic and equi-
librium phase transition from a quark-gluon plasma to
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a hadron gas. In such a model, the plasma can thus
hadronize at a common temperature and chemical po-
tential.
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