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Improved treatment of bosonized QED around a large-Z nucleus
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In this paper we improve the semiclassical treatment of bosonized QED around a large-Z nucleus.
In particular, the ground state of the system is approximated by means of a variational method based
on a wider class of coherent trial states. These are defined in terms of excitations for a vacuum
appropriate to a free boson theory with a space-dependent mass x/r, where r is the distance from
the nucleus and « is a dimensionless constant. Our key issue consists in treating x as a further
variational parameter. The expectation value of the Hamiltonian is computed via a normal-ordering
technique analogous to that used by Coleman in a similar context. The reliability of the improved
treatment is suggested by our satisfactory prediction for Z.., the critical value of the nuclear charge

corresponding to the instability of the conventional neutral vacuum.

PACS number(s): 12.20.Ds, 11.15.Kc

I. INTRODUCTION

It is well known that the normal ground state of QED
becomes unstable when the charge of a hypothetical nu-
cleus exceeds the critical value Z., ~ 170. Stability is
achieved via the emission of positrons and the associ-
ated formation of the so-called charged vacuum. This
phenomenon has been extensively discussed by Greiner,
Miiller, Rafelski, and collaborators in Refs. [1-3] which
are based on the one-particle point of view, where the
electromagnetic field is considered as an external classical
object and the fermion-fermion interaction is therefore
neglected. Some years ago, Hirata and Minakata [4-6]
proposed a different approach which naturally takes into
account the quantum field aspect of the problem. Their
formalism relies on the bosonization technique [7,8] and
it could represent a useful framework for the nonpertur-
bative treatment of QED in very strong fields. The great
advantage of the new approach is to render feasible a
semiclassical analysis of the problem. Unfortunately, in
addition to some difficulties of “technical” origin [9], the
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The symbol N, means that the Hamiltonian density is
normal ordered at the mass u, which is the small but
arbitrary mass of the Bose fields. The degrees of freedom
®,,, and Q,, are boson fields living in a (¢, 7) universe with
r > 0 and obeying the boundary condition

Bp(r =0,t) + Qm(r =0,¢) =0, (1b)
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theory gives an unsatisfactory result for Z.,. As we shall
discuss in Sec. III, the error in this fundamental quan-
tity is rather large and it is then legitimate to doubt the
validity of the semiclassical approximation in the boson
theory. The purpose of our work is to elucidate this point
by suggesting a simple but significant improvement of the
bosonized formalism developed in Refs. [4-6]. In par-
ticular, we refine the variational method used in those
papers by introducing a wider family of coherent trial
states. Moreover, the expectation value of the bosonized
Hamiltonian on these trial configurations is computed by
fully exploiting a normal-ordering technique suggested by
Coleman in [8,10]. As we shall see in Sec. III, this proce-
dure will result in a more realistic value for Z., thereby
providing strong evidence in favor of our improved semi-
classical approximation.

For the sake of completeness, we close this introduction
by recalling the main results of Ref. [4], which are the
starting point for the following two sections. For details
the reader should consult the original work.

The bosonized lowest-partial-wave QED is described
by the Hamiltonian density
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while II,,, and P,, denote their canonical momenta. The
index m(= £1/2) represents the z component of the an-
gular momentum, §(= =%1) corresponds to the chirality
and 6(r) is the external charge contained in a sphere of ra-
dius 7. In Eq. (1a) the second and third summations cor-
respond to the centrifugal and mass terms, respectively,
and c is a numerical constant (related to Euler’s con-
stant) whose value is irrelevant in what follows. Finally,
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the last two entries of Eq. (1a) describe the coupling with
the external source 6(r) and the fermion-fermion interac-
tion [9]. Since our aim is simply to ascertain the validity
of the bosonized semiclassical approximation, we shall
hereafter neglect this last interaction term. As stressed
in [9], such a truncation will enable us to compare the
predictions of the bosonized theory with those obtained
by more conventional tools, i.e., the one-particle Dirac
equation. It is also worthwhile to remark that we shall
work in the symmetrical ansatz ®,,(r,t) = Qm(r,t) in
strict analogy with Refs. [4-6).

II. THE RENORMAL ORDERING OF THE
BOSONIZED HAMILTONIAN

In this section we shall introduce a different normal-
ordering point for the bosonized Hamiltonian. This is
an essential step in view of the forthcoming semiclassi-
cal treatment. As stressed in Refs. [4-6], at large radii
compared with 1/m. the theory reduces to two decou-
pled sine-Gordon theories, the centrifugal barrier and
the Coulomb interaction being negligible; it is then quite
natural to choose the renormal-ordering point in such
a way that the theory reproduces the observed electron
mass. By this prescription the coefficient of the mass
term is renormalized as cumo/m — 7/4m? [5,6]. Things
are more difficult for small radii, 7 « 1/m.. In such a
region the tree-level boson mass seems to be radius de-
pendent and equal to x/r, with K = /2 as obtained by
expanding the r~2Xcosine term of Eq. (la). This ob-
servation naturally leads [5] to consider the vacuum of
a free bosons theory with a space-dependent mass given
by /2/r. Starting from this vacuum |0,x = 4/2), the
authors of Refs. [4-6] constructed a family of coherent
]
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states |,k = /2) which were used as trial configura-
tion in a variational estimate of the ground-state energy.
The normal-ordering point was then fixed at the tree-
level boson mass /2/r. This choice, without affecting
the bozonized Hamiltonian H makes it easy to calculate
the relevant expectation values. In the following we shall
deviate from this approximated treatment by enlarging
the family of coherent trial states |¢,«). The simplest
way to generate a wider class of trial configurations is to
release the condition x = /2, by treating x as a further
variational parameter. Correspondingly, it turns out to
be extremely convenient to use x/r as a variable normal-
ordering point. A similar method has been used by Cole-
man in [8,10] (see p. 237 of [10] in particular).

As a first step, let us now consider the effect of
the normal-ordering operation on the kinetic part of a
bosonized Hamiltonian density:

Hiin = 3(7° + ¢"%) (2)

where, for the sake of simplicity, we have considered a
single boson field ¢ and its canonical conjugate m. Obvi-
ously, the following relation holds:
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where A, is the fundamental commutator:
Ag(rt;r',t") = [~ (r,8), 07 (', 1")] . (4)

Different normal-orderings are then connected by
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Since our renormal-ordering points are radius dependent,
the fundamental commutators A, . involve the Legendre
function of second kind [6]:
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with v = ,/k? + 1 — 1. The expansion of Q, (z) for z ~ 1
reads

Q.(2) = —% l:l + M(z - 1):| In(z-1)+R(z-1),

2
(7)
where the remainder R(z — 1) does not contribute to the
derivatives appearing in Eq. (5). From Egs. (5)-(7), a
simple algebra gives the fundamental relation

1 1 1
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[since u is an arbitrary small parameter, it suffices to set
k' = 0 in Eq. (5)]. As far as the centrifugal term is

[
concerned, its renormal ordering has been discussed in
Ref. [6]. The relevant equation is

N, cos(v/2my) = exp [w} N, /. cos(v/2my) ,

2
(9)

where (v + 1) is the digamma function. Using Egs.
(8) and (9) we are in a position to express the Hamil-
tonian density of the system in terms of operators nor-
mal ordered with respect to x/r. We stress the essential
point that we are not changing or correcting the oper-
ator H appearing in Eq. (1a). In fact, we are simply
rewriting it by means of field functions with a different
ordering point. Therefore, our prescription does not in-
troduce any additional or spurious r dependence in the
Hamiltonian density. Keeping this in mind, we can read-
ily calculate the expectation value of the Hamiltonian
on coherent states obtained from the vacuum |0, x), i.e.,
the vacuum appropriate for a free bosons theory with a
radius-dependent mass «/r. In particular, recalling that
®,.(r = 0) = Qm(r = 0) = 0 [4], we obtain an expression
for the energy density in the vicinity of the origin:
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where |¢, k) is a coherent state with vanishing momenta
and specified by the expectation value ¢(r) of the bo-
son fields [®,,(7) + Qm(r)]/v2. The integration of the
RHS in a small region around the origin gives a divergent
contribution to the energy of the vacuum or, better, to
its coherent state approximation. As a consequence, the
best value of k is that which minimizes the coeflicient
A(r) of the 1/r% term. We call the reader’s attention to
the fact that no r? term is present in the measure of ra-
dial integration since a 1/r2 factor was introduced in the
partial wave expansion of the original fermion fields, see
Ref. [4] for details. In Fig. 1 A(k) is plotted as a func-
tion of k. The unique minimum is found at K, = 1.84,
which is quite different from the value Kk = V2 used in
Refs. [5,6]. With this new value of k, the centrifugal term
is renormalized as

Nu;gCOS(\/TmP) — %’;in)COS(\/%@ (11a)
with
C(K'min) = €xXp [W&;—Uﬂ =~ 1.85 R (11b)

which should be compared with the smaller value C =
Je(e =2.718...) obtained in Refs. [5,6]. From Fig. 1 we
see that the coefficient A(k) is negative for all the reason-
able values of its argument « (the tree-level value k = V2
included). As a consequence, the divergent piece of the
energy tends to minus infinity. However, this divergence
can be removed by subtracting a field independent energy
density, as required for any sensible field theory. Within
our variational approach, the most natural subtraction is
H — H' = H — A(Kmin)/r?. This regularization will be
used in the numerical computations of the next section.

III. THE CRITICAL VALUE OF THE NUCLEAR
CHARGE

In this section we show that the new coeflicient
C(Kmin) of Eq. (11b) determines a more realistic value
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FIG. 1. The coefficient of the 1/r? term in the energy den-

sity at the origin as a function of the variational parameter «
[see Eq. (10)].
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for Z., the critical value of the nuclear charge. In order
to avoid misunderstanding about this crucial point, we
find it appropriate to remark some relations between the
Bose fields and the quantum numbers of the system we
are considering. In Ref. [4] the following relations were
obtained: .

€

Qem = ‘ﬁ ;[@m + Qm}i ,

0
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where Qem and Js are the electromagnetic charge and the
third component of the angular momentum, respectively.
Since, for technical reasons [4], we work in the symmet-
rical ansatz ®,,(r) = Q. (r), some constraints are im-
posed on the quantum numbers of the states we actually
take into account. In particular, we cannot consider the
state with Qem = —2e(e > 0) and J3 = 0 (correspond-
ing to a 15/, occupied level); as a consequence, we are
only able to compare the energy of the neutral vacuum
(Qem = 0,J3 = 0) with the four positron emission state
(Qem = —4e,J3 = 0). The latter represents the charged
vacuum which is realized when both the 15, /, level and
the 2P;; level join the positron continuum. If the ra-
dius R of the nuclear charge is R =~ 10 fm, the transition
to the vacuum with Qem = —4e takes place at Z ~ 185
[1-3]. This value is obtained by solving the Dirac equa-
tion in the presence of an extended nucleus and looking
for the condition E3p, ,(Z) = —me, E2p,,,(Z) being the
eigenvalue for the 2P;/, state as a function of Z. As
stressed in the Introduction, the bosonized framework of
Refs. [5,6] seems to give a quite lower value Z. = 170,
under the same assumptions about the nuclear charge
distribution. Possible numerical errors are well below the
effects we are dealing with. Actually, the above discrep-
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FIG. 2. The energies of the normal (open square) and the
supercritical (solid square) vacua are plotted as functions of
the nuclear charge Z. The external source is a uniformly
charged sphere of radius R = 10 fm.



50 IMPROVED TREATMENT OF BOSONIZED QED AROUND A . ..

ancy is cured by the new criterion we have employed to
identify the best normal-ordering point. In fact, we have
already noted that our coefficient C(kmin) is larger with
respect to that used in Refs. [5,6]; consequently the height
of the centrifugal barrier is enhanced and a larger value
of the nuclear charge is required in order to reach the
critical conditions. The precise determination of Z., has
been obtained in close analogy with Refs. [4-6], looking
for the classical minimum of our effective Hamiltonian.
As expected two local minima are found, corresponding
to the neutral vacuum and to the charged supercritical
one. The energies of these vacua are plotted in Fig. 2
as a function of the nuclear charge Z. The two curves
intersect at Z., =~ 180 which is rather close to Z., ~ 185
as obtained by the more conventional treatment based
on the one-particle Dirac equation.

IV. SUMMARY

In this paper we have improved the bosonized treat-
ment of QED around a large-Z nucleus. Our procedure
can be summarized as follows. From Ref. [4] we have
taken the bosonized Hamiltonian describing the lowest
partial wave of QED in the presence of a spherically
symmetric charge distribution. The operators appear-
ing in the Hamiltonian, which is normal ordered with
respect to the vanishingly small mass u, have been ex-
pressed in terms of operators normal ordered at the
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radius-dependent mass k/r, with x arbitrary. Then, we
have considered the expectation value of the Hamilto-
nian on coherent states obtained from the vacuum of a
free bosons theory with a radius-dependent mass x/r. As
a result we have obtained an equation for k;,, defined
as the value of k which minimizes the expectation value
of the Hamiltonian. Finally, a numerical estimate of ki,
has been introduced in the classical equations of motion
we have solved in order to find the best coherent state
approximation to the vacuum. The calculation has been
repeated for several values of Z (the nuclear charge) and,
for Z = Z. = 180, we have verified that the so-called
charged vacuum with Qem = —4e is favored with respect
to the conventional neutral vacuum. The critical value
obtained within the bosonized formalism of Refs. [4-6]
was Z., = 170, so that our prediction is much closer to
the expected value Z.. ~ 185 [1-3]. Needless to say the
agreement is not perfect. Nevertheless, we think that the
improvement is significant and, above all, we believe that
it has been obtained in a consistent and very natural way.
So long as the ground state is concerned, our result sug-
gests that the semiclassical treatment of bosonized QED
should be trusted. However, we have to mention that its
application to the excited states is not straightforward.
In fact, we have already noted [9] that there is no se-
rious justification for a small fluctuation approximation
around the vacuum. We hope to return to this important
point in the future.

[1] W. Greiner, B. Miiller, and J. Rafelski, Z. Phys. 257, 62
(1972).

[2] B. Miiller, H. Peitz, J. Rafelski, and W. Greiner, Phys.
Rev. Lett. 28, 1235 (1972).

[3] W. Greiner, B. Miiller, and J. Rafelski, Quantum Electro-
dynamics of Strong Fields (Springer, Berlin, 1985), Chap.
6.

[4] Y. S. Hirata and H. Minakata, Phys. Rev. D 34, 2493
(1986).

[5] Y. S. Hirata and H. Minakata, Phys. Rev. D 39, 2813
(1989).

(6] Y. S. Hirata and H. Minakata, Z. Phys. C 46, 45 (1990).

[7] S. Mandelstam, Phys. Rev. D 11, 3026 (1975).

(8] S. Coleman, Phys. Rev. D 11, 2088 (1975).

(9] R. Ragazzon, Phys. Rev. D 47, 4162 (1993).

[10] S. Coleman, Aspects of Symmetry (Cambridge University

Press, Cambridge, England, 1985), Chap. 4.



