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Relativistic description of heavy qq bound states
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We study the relativistic description of heavy qq bound states in the context of the relativistic
wave equation. We used some attractive QCD based potentials where the vector part incorporates in
the two loop perturbation QCD effects at short distances while the scalar part approaches the linear
conSning potential at large distances. We calculate the energy levels, leptonic and hadronic decay
widths, as well as the E1 rate transition for cc and bb. Results are compared with their experimental
values.

PACS number(s): 11.10.St, 03.65.Ge, 12.39.Pn

I. INTRODUCTION

Recently the relativistic description of the qq bound
states has received much attention [1-6]. Gara and co-
workers [1, 2) derived the relativistic wave equation by
using the Bethe-Salpeter (BS) formalism [7], dropping
the inhomogeneous interaction terms and following the
standard approximations. They studied the relativis-
tic description of qq in the context of the QCD poten-
tial with scalar confinexnent and an equal mixture of the
scalar and vector confining potential. Later Lucha et
al. [3—5] derived the same relativistic wave equation by
constructing the T matrix and adopting the Born ap-
proximation. They studied qq and qq in the context of
some phenomenological potentials with somewhat Havor-

dependent paraxneters.
In this work we investigate the relativistic description

of qq and the meson couplings by solving the relativis-
tic wave equation with some QCD base potentials. We
solve the nonlocal relativistic wave equation using the
method related to the orthogonal collocation method de-
veloped by Durand and Gara [8]. It approximates the
action of all operators in the Hamiltonian on a set of
basis functions evaluated at certain points. Hence the
nonlocal relativistic wave equation is converted to a sim-
ple matrix eigenvalue problexn for the wave function vec-
tor evaluated at these points, which are very suitable in
the calculations of the meson couplings using a suitable
quadrature with sufBcient accuracy. The form of the vec-
tor kernel is given by the perturbative theory due to the
asymptotic freedom of QCD at short distance. The scalar
kernel is incorporated into the linear confining interaction
as a long-range asymptotic term and a phenomenological
intermediate terxn. We find that the phenomenological
intermediate term fails to account for the intermediate
range interaction correctly. This Saw in the intermediate
interaction term can be traced to the relativistic string
behavior between interquarks [1,2, 9—11].

The organization of this paper is as follows. In Sec.
II we present the relativistic wave equation. In Sec. III
we study the qq states using vector and scalar potentials
proposed basically from the QCD theory. In Sec. IV we

present the calculations and the results. Finally we give
our conclusion in Sec. V.

II. THE RELATIVISTIC %TAVE EQUATION

with the modulus k = p —p'. So the Hamiltonian takes
the form

H = J2+m'+ J2+m'+ V r . (2)

The T-matrix elements for the elastic scattering pro-
cess of fermion-antifermion interaction, namely,

f(p»ri) + f(p2, ~2) ~ f(p~, rs) + f(p2, r4), (3)

read

1 mgm2
u(p~ ~ rs) I';u(pg, rg)2s') s

xv(p2, r, )I';v(p'„r )K; „,

where I';, i = 1,2, . . . represent some Dirac matrices and
K; q is an interaction kernel, while u(p;, r,.) and v(p;, r,).
are Dirac spinors. This relativistic wave equation which
is derived &om T xnatrix leads to the same equation that
is obtained from the reduction of Bethe-Salpeter equation
[1,2]. The spin independent of the bound-state equation
reads [1,3] as

The relativistic wave equation is constructed by con-
sidering the kinetic energies of the constituents and the
efFective potential is constructed by considering the elas-
tic scattering of the particles which build up the bound
states [3,4]. The effective potential reads [12] as

v' = —(2m)' f 1'ke '" r"-'
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1
(M —Ei —E2)g(r) = S,S2[Vs(r) + Vv(r)]+ S,

4EgE2
dVv (r) d 1

dr dr S2

dVv(r) 2 1
+Si [

—Vv(r)«] —+ S2 — ——+ S2 [ V—v(r)V, ]-
S2 dr dr Sg

l

dVv(r) d 1 2 1 dVv(r) d 1 2 1
+Si — ——+ S, I

V—v (r)V,'] —+ S, — ——+ S, I
—Vv(r) «2]—

dr dr Sg Sg dr dr S2 l

dVs(r) d 1 1 dVs(r) d 1 2 1+S, ——+S, LVs( )«] —+S, ——+S, [Vs( )V",]—l

(d2Vs d2Vv l d2

dr2 dr2 dr2

(dvs dvv& (, d d, &(t+1)) 2 2 1
+

I d
+

d I I

«' „+—d
&t'+, I+(vs+vv)&f&i' s sdr dr dr dr rs ) 1 2

SiS2V—v (r)V ( Q(r),
1 2

where E; = g—«~ + m2 is the nonlocal square root op-

erat, or wit, h —Vl ———-„g„,r + ~„+, and S, = &, + m, ,
while V~ and Vg are the vector and scalar parts of the
interaction, respectively.

III. SOME +CD BASE POTENTIALS

tive part contributes the Luscher [13] term as a transverse
zero oscillation for large distance. A linear con6ning in-
teraction between quarks appears naturally as a conse-
quence of the fact that the color electric lux is quantized
on the lattice and it will be taken as the large distance
asymptotic form of the potential.

In the relativistic description case, the two-loop per-
turbative @CD formula is usually taken as the short-
distance asymptotic form of the potential containing AMS
as a parameter where MS denotes the modi6ed mini-
mal subtraction scheme; furthermore, the nonperturba-

A. EfFective potential

The one-gluon-exchange (OGE) interaction including
vacuum polarization corrections is found as [14, 15]

( ) C p(O'Ms) 1 + p(+Ms) (b ln(p r) + A ) y O
I I

p(~MS)

where n, is obtained by iterating [16]

b f apex,—+2—ln
n, bp (1+ '; ~ )

= b() ln
(~M's)

31 2
A, =bppa+ —C„+ T» ) p~+ln(-m, r)

37 3 @=1

+Ei(m re )

potential VOGE can be written as [17]

VOGE = —C» + O(n )
n (&(r)) s (11)r

with scale Q(r) = p, (r) = „-e '~ '. We adopt the effec-
tive four- and five-fiavor theories (ny = 4, 5 respectively)
with m„= mg ——m, = 0, m = 1.5, and mg ——5 GeV
(fixed). Since, in the massless quark limit, the next-to-
leading-order correction factor Ai(r) reduces to

31 5
Ai(r) + bpp@ + —C~ — n(T»)—

37 9
with

11 2
60 ———C~ ——n y T~,

6 3
17 2 5 1

~1 = +~ +An fTp ——+~n
12 6 2

then the complete next-to-leading-order correction factor
Ai(r) in Eq. (8) becomes

31 5 2
Ai(r) = bp&z + —C~ — nP'» + T-»-

37 9 3

Here ny is the number of e6'ective Qavors; Ty ——2, C'y =
3 and C~ ——3 are color factors; p~ is t he Euler constant;
and Eq is the exponential integral. The short-distance

x ) [p@+ln(mar) + Ei(e ~ mqr)], (13)
~q ~c l~b

with nl ——3 the number of massless quarks. The pertur-
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bative running coupling constant a, has the well known
Landau singularity ghost when Q2/AM2s ——1. A simple
regularization is obtained by replacing [1, 15]

Vs(r) = (1 —b)
~

——+ kr
~
(1 —e "")+ Vo

p

+(co + cqr + c2r )(1 —e "")e (16)

Q2

MS

q2 i b2 ~
2bilbo

+IA2 g2bi)
(14)

Herein, b is used as a mixing factor between vector and
scalar parts. Using the two-loop formula, we have found
the derivative

However this transformation removes the Landau singu-
larity to ia6nite quark separation.

We have taken the interaction as a sum of scalar and
vector terms with a fairly Sexible parametrization of the
potentials given by Gara et ul. [1,2], and with the only
dHFerence we have worked in the efFective four- and ave-
Savor theories. We refer to the efFective four-Savor poten-
tial with a"~=4 as potential I and the efFective five-Savor
potential with n"~= as potential II. Hence the potentials
I and II read as

d—~.(~) =
dr '

and [16]
- 2/2S- - 963/14375

(4) (s) flag
MS MS (s)

~MS.

fag
2 ln

(s)
MS-

~MS ~.(&)
( gQ 251 /~0

bp+

I( 251

1 1 d
x —+ ——Ag (r)

bp dr
(17)

(18)

and

3 r

+b
i

——+kr
I (1 —e &"),p

r (15)
Therefore if we take AMs

——0.430 GeV in four-flavor

theory, then it reduces to A 0.310 GeV in five-Savor
theory.

We have used the fitting parameters [1,2]

' l2'AMs, AMs, p, k = 0.430 GeV, 0.310 GeV, —,0.177 GeV

[Vo, t o~ &z, t 2] = —0.366 GeV, 2.45 GeV, —0.074 GeV, 0.343 GeV

[p, p'] = [0.933, 0.740] GeV. (19)

B. Improved @CD-motivated potential

The above potentials have many parameters, so we consider another interesting potential (potential IQ) having
two parameters p and p,'. The potential approaches the two-loop perturbative formula at short distance and linear
confining potential at large distance [18, 19]. The improved OGE interaction reads as [19]

where

16& 1 2p@+ rs 462 ln f(r)
25 «f(r) f(r) 625 f(r) (20)

f(r) =h 1

~MS&
+ 4.62 — 1 —— I

1 AMS

4W~,

1 —exp — 15 3 ass

MS

with AMS
——180 MeV.

To have a smooth transition of V~QE from the vector
part to scalar part, we write the vector and scalar parts
of potential III as

with

Ve —&r. (24)

and

Vy ——VocEe

Vs = Vc + VQGE(l —e ""),

(22)

(23)

Since the exponential damping is not considered as an
ideal partition function such as a Fermi-Dirac function,
it is in general p' g y,. The string tension k is related to
the Regge slope o," by [18,20]
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(25)k= 1

2%0.'

Si(44;) = r J d Pd'(P)

With a rough and reliable approximation Eq. (33) reads

The value of o.' is approximately 1 GeV, so that
0.16 GeV . The value of AMS is AMS ——200+8o

GeV. We have used these values and the following fitting
parameters in our calculations:

[p„p,', k, m, ]

= [0.75 GeV, 1.20 GeV, 0.16 GeV, 1.516 GeV],

Sr(P. ) -(",),', f d"S.(P) = (,')]44(S)l,

(34)

[@br Vg4 I('4 mb]

= [0.74 GeV, 0.80 GeV, 0.16 GeV, 4.884 GeV].

and

S, (d.)-( ')( ')I@'(o)l, (35)

IV. MESON COUPLINGS

for / = 0, 1 respectively. Hence the wave function at the
origin can be modified to

A. The wave function at the origin ils(0) I
: (@')]4)P(S)l (36)

We have found the wave function at the origin by
adopting a smearing procedure based strongly on the
nonrelativistic nature of the problem at large radii. From
the Schrodinger equation with the usual boundary con-
ditions at r = 0 and oo, we get, for l = 0 [21],

and

l&p(0) I
: ( ') ( ') Id'' (o)I

Consequently I'„can be corrected relativistically to

(37)

] Rs(S) ]'= rrrr( ),
and, for l = 1,

(26) ~ee
mi mt

E, '-E.

mr 1 dV{r) 4[E —V(r)])
9 r2 dr rs (27)

(28)

where E = M(qq) —2m~, and V = V~ + V~. We have

estimated ~ by using the virial theorem

C. Hadronic decay widths

The decay rates of heavy quark system via annihilation
to the minimum possible number of gluons forbidden by
the Okubo-Zweig-Iizuka can be written as [24]

I'(n'So ,'hadron(2g)) = —a, I@-o(o)I'

B. Leptonic decay widths

The leptonic decay widths are given for the J = 1
states n Sq.

and

I'(n Po,' hadron(2g)) = 96u,3 2 I&.'i(o) I'
M4,

I'(n P2,' hadron(2g)) = a,
»8 .Iy.', (0) I'

(40)

(41)

4a2e2

M(gq)
(29)

However the relativistic corrections read

'r(~S)
where cd is the fine structure. In the @CD formalism, Eq.
(29) is modified by the second-order radiative corrections
to

IrO(1 ~Sad)

where

and

I (nP)

D. Radiative transition

(43)

ae—(24.26 —0.11nf )3 ?r 1r
(31)

In the spirit of Refs. [22, 23], the weight of the as)ssshila-

tion amplitude can be corrected relativistically by writing

The radiative transitions between heavy quark states
are well defined even if the instantaneous approximation
is adopted. The transition decay El is given by

: S~(W') (32) I';y = eqo{(d S;fE;&(kg—+ 1),
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where E;y = (i]r]f), and S;y is given in terms of the
Wigner 6-j symbol:

S,g
= )' ) max(l;, ly).js1 jf

f S

Thus we have

(45)

(46)

and

,3 42 2 3
Sq) = esca—E y(u .

9
(47)

V. RESULTS AND CONCLUSIONS

Using some realistic interquark potentials, we studied
the relativistic description of qq bound states within the
relativistic wave equation. In the calculations, the or-
thogonal collocation method [8] was applied.

The masses of the lowest 8, P, and D states of self-
conjugate mesons were calculated with the potentials I
and II in the case of scalar confinement (nnmixing vector-
scalar interaction) and an equal mixture of scalar and
vector confining potential (equal mixing vector-scalar in-
teraction) and potential III. Results are presented in Ta-
ble I and compared with experimental values. Although
the efFective four-Bavor theory can give a good descrip-
tion of the short distance for a wide range of interquark
distances r & —,the efFective five-Bavor theory de-
scribes the short distance more accurately. Hence it is
reasonable to expect that potential II should give more
accurate results than potential I. Results obtained with
potential I are in better agreement than the ones ob-
tained with the potential II. The possible explanation of
this is that the phenomenological potential of Eqs. (15)

and (16) and that given in Refs. [1,2] may not refiect the
real intermediate range interaction correctly. Although
the»admixing vector-scalar interaction gives better re-
sults than the mixing one, the mixing vector-scalar in-
teraction still gives acceptable results. These surprising
results, if the long-range interaction including the con-
finement contributes in the vector part, contradict the
/CD predictions. We have tried to avoid the fiaw of the
model by considering potential III. We have considered
the improved /CD-motivated potential as a short range
interaction and we have proposed a somewhat Bavor-
dependent intermediate range interaction. The interme-
diate interaction may be mass dependent, since a more
light Bavor becomes a more relativistic one and has more
active range for the transition from the vector part to
the scalar part. We have probed this proposed interme-
diate interaction as a soft transition &om the vector part
to the scalar part of the interaction. The results of the
xnass spectra of' the potential III are listed in the last col-
»mn of Table I. Our model does not account 1P for cc
exactly and we trace this to the intermediate part of the
interaction.

The leptonic decay widths are calculated in Table II
using the results of Eqs. (26) and (27) and the second-
order radiative corrections given by Eq. ($0). We have
smeared the wave functions at the origin to account for
the relativistic corrections. Our scheme to account for
the relativistic corrections is not exact, but sufficient for
reliable corrections. We have estimated ~ 0.4 and
0.1 for cc and bb, respectively, using the virial theorem.
Hence m;/E; (1 — r) is equal to 0.6 and 0.9 for
cc and bb, respectively. Results of the leptonic decay
widths for charmonium and bottomonium after consid-
ering the above corrections are found acceptable and suf-
ficient to conclude that our short range interaction has a
correct asymptotic behavior since the short range inter-
action is essential for the contribution of the wave func-

TABLE I. The quarkonium spectra for ec and bb by using potentials I and II with unfixing
and equal mixing vector-scalar interaction potentials as well as potential III.

State

cc$m (GeV)
1S
2S
3S
1P
1D
2D

bb(mq (GeV)
18
28
38
48
58
68
1P
2P

Expt. data

3.068
3.663
4.022
3.525
3.770
4.160

9.436
10.017
10.341
10.576
10.861
11.016
9.900
10.261

b=o
1.635
3.079
3.656
4.019
3.516
3.805
4.103

4.966
9.432

10.022
10.353
10.607
10.771
10.996
9.902

10.260

1
2

1.618
3.064
3.668
4.078
3.536
3.876
4.262

4.965
9.422
10.020
10.359
10.616
10.798
11.032
9.903
10.268

b=o
1.663
3.072
3.660
4.039
3.503
3.803
4.122

4.991
9.446

10.020
10.367
10.622
10.781
11.040
9.892

10.259

b=-
1.648
3.060
3.676
4.099
3.524
3.876
4.279

4.990
9.437
10.018
10.371
10.629
10.810
11.075
9.893
10.267

1.516
3.067
3.663
4.026
3.510
3.776
4.096

4.883
9.436
10.020
10.356
10.636
10.896
10.993
9.898
10.259

Here we cite Ref. [16].
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TABLE II. Leptonic decay widths for cc and bb by using potentials I and II with un~axing and
equal mixing vector-scalar interaction as well as potential III. Second-order radiative I'„(1—b, )
(SOR) and relativistic corrections (RC) are included.

Expt. Data
cc (n, = 0.21)

I'„(1S)= 5.36 6 0.35 keV
b=o

1
2

I'„(2S)= 2.14 + 0.21 keV
b=o

bb (a = 0.16)
I'„(1S)= 1.34 6 0.04 keV

8=0
1
2

I'„(2S)= 0.56+ 0.04 keV
b=o
b=-'

I'„(3S)= 0.44 + 0.03 keV
b=o
b=-'

I
I', SOB RC

12.54 9.40 5.64
13.40 10.05 6.03

4.66 3.50 2.10
4.95 3.71 2.23

1.91 1.51 1.36
1.98 1.56 1.40

0.81 0.64 0.58
0.84 0.67 0.60

0.56 0.44 0.40
0.59 0.47 0.42

II
SOR RC

12.27 9.20 5.52
13.07 9.80 5.88

4.93 3.70 2.22
5.21 3.91 2.35

1.80 1.42 1.28
1.87 1.48 1.33

0.84 0.67 0.60
0.88 0.69 0.62

0.61 0.48 0.43
0.65 0.52 0.47

III
r,', SOR RC

9.05 6.79 4.07

3.85 2.88 1.73

1.50 1.18 1.06

0.63 0.50 0.45

0.42 0.33 0.30

tion at the origin. Moreover the results of the hadronic
decay widths listed in Table III confirm the concluding
remark above. The second-order radiative corrections
and the hadronic decay widths depend essentially on the
value of o, The well known scheme to and the value of
a, (p) is to take y, = 2m& and the world-averaged value

A&,
——200 MeV. Therefore the values of the second order

raciative corrections are estimated to be 0.75 and 0.79 for
a, (2m, ) = 0.21 and a, (2mb) = 0.16, respectively.

Results of the rates of the electromagnetic transitions

are listed in Table IV and they are acceptable. However,
the long range interaction is essential for the electromag-
netic transition.

In summary, the short range interaction and the long
range interaction seem to have a correct asymptotic be-
havior. The problem seems to be in the phenomenolog-
ical intermediate interaction, since our intermediate in-

teraction does not account for the relativistic string be-
havior between the interquarks. Although an immense
member of Gtting parameters is used in potentials I and

TABLE III. Hadronic total widths I' for ce and bb by potentials I, II, and III. The relativistic
corrections (RHC) of the hadronic total widths are considered.

r(i 'S.

r(i'P2
I'(2 P

r(i 's.
I'(1 P
I'(2 P

I'(1 So

I'(1 P
I'(2 P

Expt. Data
Potential I

cc (a, = 0.21)
; 2g) = 10.3 's 4 MeV

bb (a, = 0.16)
' 2g) = 144 6 35 keV

2g) = 130 4o keV
Potential II

cc (n, = 0.21)
:2g) = 10.3 s 4 MeV

bb (a = 0.16)
: 2g) = 144+ 35 keV
: 2g) = 130 4o keV

Potential III
cc (n, = 0.21)
: 2g) = 10.3 's 4 MeV

bb (n, = 0.16)
; 2g) = 144 + 35 keV
: 2g) = 130'4o keV

b=o
r RHC

22.2 MeV 13.2 MeV

218 keV 176 keV
192 keV 155 keV

20.0 MeV 12.0 MeV

229 keV 185 keV
146 keV 118 keV

I' RHC
14.9 MeV 8.9 MeV

161 keV 130 keV
167 keV 135 keV

1
2

I' RHC

22.0 MeV 13.2 MeV

245 keV 198 keV
214 keV 173 keV

21.6 MeV 13.0 MeV

248 keV 207 keV
160 keV 129 keV
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II and the Bavor-dependent ass»mption is considered in
potential III, the relativistic wave equation fails to St
the quarkonia exactly. Since the results of the meson
couplings are in good agreement vrith the experimental

ones, me can conclude that the model is not completely
Gamed. Nonetheless, our results co~~~m the ones given in
Ref's. [I,5], that the relativistic wave equation is not an
adequate starting point, at least to account for the inter-

TABLE IV. Radiative transition (all transitions are between triplet states) for cc and bb by
using potentials I, II, and III.

Potential I
CC1' ', 1S1'

1Pp
2S :1'1'

1Pp
bb2S;1'1'

1Pp3S:2'
2'
2Pp

Potential II

Transition state Expt.
(keV)

270
240
92

21.7
24.2
25.9

2.88
2.84
1.85
2.77
2.74
1.31

1.418

2.000

1.387

2.312

r
b = 0 (keV)

230
171
81

19.7
28.8
34.1

1.54
1.56
0.98
2.11
1.93
1.20

1.396

1.980

1.377

2.336

F
b =

2 (keV)

223
165
78

19.3
28.3
33.5

1.52
1.54
0.97
2.16
1.97
1.22

1P2,' 1S1'
1Pp

2S ; 1P21'
1Pp

bb2S:1'1'
1Pp3S:2'
2'
2Pp

Potential III

270
240
92

21.7
24.2
25.9

2.88
2.84
1.85
2.77
2.74
1.31

1.414

1.891

1.360

2.156

229
170
80

17.6
25.8
30.6

1.48
1.50
0.94
1.84
1.68
1.04

1.390

1.871

1.351

2.190

221
164
78

17.2
25.2
29.9

1.46
1.48
0.93
1.90
1.73
1.07

CC

1P2,' 1S1'
1Pp

28 ; 1'1'
1Pp

bb2S;1'1'
1Pp3S;2'
2'
2Pp

Transition state Expt.
(keV)

270
240
92

21.7
24.2
25.9

2.88
2.84
1.85
2.77
2.74
1.31

(keV)

1.831

2.402

1.536

2.496

F
(keV)

384
285
135
28.4
41.6
49.3

1.89
1.91
1.20
2.46
2.24
1.39
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mediate interaction. The intermediate interaction might
be explained by the relativistic string tube. Very recently
Brambilla and Prosperi [25] formulated the semirelativis-
tic potential to account for the retardation corrections,
which agrees with the @CD predictions and Olsson and
Williams [10] formulated a quantized relativistic tube
model.

ACKNGVV'LEDC MENTS

This work was supported in part by the Scientific and
Technical Research of 'An'key under Grant No. TBAG/
CG-1. One of us (I.Z.) would like to thank Professor
Metin Durgut for helpful discussions.

[1] A. Gars, B. Durand, L Du. rand, and L.J. Nickisch, Phys.
Rev. D 40, 843 (1989).

[2] A. Gars, B. Durand, and L. Dursnd, Phy. Rev. D 42,
1651 (1990); 4$, 2447(E) (1991).

[3] W. Lucha, H Ru. pprecht, snd F.F. Schoberl, Phys. Rev
D 44, 242 (1991).

[4] W. Lucha, H. Rupprecht, and F.F. Schoberl, Phys. Rev.
D 45, 385 (1992).

[5] W. Lucha, H Rup. precht, and F F S.ch.oberl, Phys Rev.

D 48, 1088 (1992).
[6] J.-F. Lagae, Phys. Rev. D 45, 305 (1992);45, 317 (1992).
[7] E.E. Salpeter snd H.A. Bethe, Phys. Rev. 84, 1232

(1951);E.E. Salpeter, ibid. 87, 328 (1952).
[8] L. Durand snd A. Gars, J. Math. Phys. 31, 2237 (1990).
[9] C. Olson, M.G. Olsson, and K. Williams, Phys. Rev. D

45, 4307 (1992).
[10] M.G. Olsson and K. Williams, Phys. Rev. D 48, 417

(1993).
[11] N. Brambills and G. Prosperi, Phys. Rev. D 47, 2107

(1993), and references therein.
[12) D. Gromes, Nucl. Phys. B131,80 (1977).
[13) M. Liischer, K. Symanzik, and P. Weisz, Nucl. Phys.

B173, 365 (1980); B180, 317 (1980); J.D. Stack and
M. Stone, Phys. Lett. 100B, 476 (1981).

[14) D J Gros.s .and F. Wilczek, Phys. Rev. Lett. 30, 1343
(1973); G. 't Hooft and M. Veltmsn, Nucl. Phys. B44,

189 (1972); G. 't Hooft, ibid B.81, 455 (1973); S. Wein-

berg, Phys. Lett. 91B, 51 (1980); B. Ovrut and H.J.
Schnitzer, Phys. Rev. D 21, 3369 (1980).

[15] K. Hagiwsra, S. Jacobs, snd M.G. Olsson, Phys. Lett.
1$1B,455 (1983).

[16] Particle Data Group, K. Hikasa et o/. , Phys. Rev. D 45,
Sl (1992).

[17] G. Grunberg, Phys. Lett. 95B, 70 (1980).
[18] W. Buchmiiller, G. Grunberg, and S.-H.H. Tye, Phys.

Rev. Lett. 45, 103 (1980); W. Buchmiiller and S.-H.H.
Tye, Phys. Rev. D 24, 132 (1981);O. Abe, M. Haruysms,
snd A. Kanazaws, ibid. 27, 675 (1983);K. Igi snd S. Ono,
ibid. $$, 3349 (1986); J.L. Richardson, Phys. Lett. 82B,
272 (1979).

[19] Y. -Q. Chen and Y. -P. Kuang, Phys. Rev. D 48, 1165
(1992); K. Igi and S. Ono, ibid. $3, 3349 (1986).

[20] P. Goddard, J. Goldstone, C. Rebbi, and B.Thorn, Nucl.
Phys. B58, 109 (1973).

[21] A. Khare, Nucl. Phys. B152, 533 (1979).
[22] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
[23] W. Lucha, F.F. Schoberl, and D. Gromes, Phys. Rep.

200, 127 (1991).
[24] T. Appelquist, R.M. Barnett, and K. Lane, Annu. Rev.

Nucl. Part. Sci. 28, 387 (1978).
[25] N. Brambills and G.M. Prosperi, Phys. Rev. D 48, 1096

(1992); 48, 2360 (1993).


