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A model of a light Z' boson is constructed and phenomenological bounds are derived. This Z'
boson arises &om a very simple extension to the standard model, and it is constrained to be light
because the vacuum expectation values which generate its mass also break the electroweak gauge
group. It is dan%cult to detect experimentally because it couples exclusively or primarily (depending
on symmetry-breaking details) to second and third generation leptons. However, if the Z' boson is
sufficiently light, then there exists the possibility of the two-body decay v ~ p.Z' occurring. This
will provide a striking signature to test the model.

PACS number(s): 12.60.Cn, 12.15.Mm, 13.35.Dx, 14.TO.Pw

The success of the standard model (SM) has led many
people to believe that it is the correct low-energy theory
for physics below about 100 GeV. Despite this success
there are still many ways in which the SM might be in-
complete. For example, experiments may reveal neutrino
masses. Another possibility is that the gauge sector is in-
complete.

The SM uses the gauge group GsM=SU(3),
SSU(2)1,U(1)y with the fermion transformation laws
being

Qr, (3,2)(1/3), u1t (3, 1)(4/3),
dR (3, 1)(—2/3),

I& - (1,2)(-1) and

ER - (1,1)(—2).

Before the discovery of neutral currents the theoretical
need for the U(l) factor in GsM was recognized since this
was the minimal way to incorporate the U(l) of electro-
magnetism and the SU(2) which contained the charged
current weak interactions [1]. [The U(1) inside the SU(2)
could not be used because it gave the wrong electric
charges. ] While not strictly necessary theoretically, it
might be that there are other gauged U(1) symmetries.
In other words, the gauge symmetry (below some scale)
may effectively be given by GsMU(l)'. In this paper, we
are interested in examining the possibility that nature is
electively described by a gauge theory with gauge group
GsMU(1)' with all gauge boson masses less than about
100 GeV. This is an important question, since it would
mean that low-energy physics is not described by GsM
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but rather by GsMU(1)'.
How are we to choose the spectrum of U(1)' charges?

We impose three constraints: First, we will assume that
the new gauge group GsMU(l)' is anomaly-free under
the condition that the standard quarks and leptons are
the only fermions in the model. To keep the fermion spec-
trum minimal we will in particular exclude right-handed
neutrinos. Second, the nonzero vacunm expectation val-
ues (VEV's) which break U(1)' should also break the elec-
troweak gauge group. This ensures that the symmetry-
breaking scale for U(1)' cannot be made arbitrarily high.
We will also demand that all Higgs multiplets couple to
fermions through Yukawa terms. This serves to connect
the U(l)' charges of the fermions with those of the Higgs
bosons. Third, we would like the Z' coupling constant to
be as large as phenomenology allows. This will maximize
the testability of our model.

The condition of anomaly freedom informs us that the
U(l)' must couple difFerently to the different generations.
This is because U(1)y is the only generation blind sym-
metry that is anomaly-&ee with respect to GsM. By
using this piece of information together with the third
criterion stated above we can narrow down the choices
considerably. Most experiments are done by using the
interactions of the first generation fermions, since these
comprise ordinary matter. Any S' which couples to the
first generation will be more heavily constrained than one
which couples to second and third generation fermions
only. Since we are interested in the possibility of a very
light Z', we thus assume that the U(1)' charges of the first
generation fermions are all zero. Another stringent con-
straint on the Z' interactions arises &om Savor-changing
neutral current (FCNC) processes. If it does not couple
»~iversally to quarks, then in general the interactions
of the Z' will not conserve Savor. This means there will
be no Glashow-Iliopoulos-Maiani (GIM) mechanism, and
experimental bounds on processes such as K-K mixing
will render the Z' coupling constant rather small. We are
thus lead to suppose that our Z' couples only to second
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and third generation leptons.
So, we start by ass»ming the most general U(1)' charge

assignments consistent with the above assumptions:

821, - (1,2)(—1,ai),
E,l, - (1,2)(—1,a, ),

e2~ (1, 1)(—2, bi),
esii (1,1)(—2, b2).

(1,2) (—1, 2a),
Esl, (1,2)(—1, —2a),

e2~ - (1) 1)(—2, 2a))

es~ (1,1)(—2, —2a).

It is interesting to aote that a number of beneGts can be
gained by instituting an exact discrete symmetry under

I ++~SL ezR~e3R B ++B

Anomaly cancellation implies that aq ———az, bq
———bz,

and az ——kb~. The sign ambiguity in the last equation
is of ao consequence since one can be obtained kom the
other by renaming e2 s~ as es 2~., we choose the plus sign.
Note that the fields in Eq. (2) are the weak eigenstates. In
general, the mass eigeastates will be linear combinations
of the weak eigeastates.

There are oaly three choices of weak eigenstates which
have a type of GIM mechanism: (1) 821, = pz„Esl, =
+L e2R = PR esR —7R (2) &2L, = pl ~sl = 'rl, e2R

&R e3R —PR (~) ~2I — (0 + &)I /V 2 ~3L (V'

7)L, /v 2, e2ii = (y, + w)R/+2, esR = (p —7)Jt/+2. (In
this equation we have denoted mass eigenstates by p, and
v.) The first case corresponds to gauged L„—I and has
been discussed previously [2]. Note that since L„—L, is
a symmetry of the standard model, this symmetry is not
broken by fermion masses (assuming the minimal fermion
content of 15 Weyl fields per generation). The second
case [(2) above] corresponds to gauged axial L„—L .
This case has not been discussed previously as far as we
are aware. In this case, since the p and w masses break
axial L„—L, the symmetry breaking of the new U(l) is
related to electroweak symmetry breaking. While this is
an interesting model, we choose not to examine it here.
The last case has a type of GIM mechanism because the
mixing is maximal. Here decays of the 7. such as 7 m @pe
are not induced by tree-level Z' exchange if the states are
mass eigenstates also, although other fiavor-changing de-
cay modes are possible (as we will discuss). In this paper,
it turns out that we will be led to concentrating on the
third possibility, but we will also consider a case near the
end of the paper where the weak and mass eigenstates
are aot related in aay of the above ways.

We now discuss the model in detail. For second and
third generation leptons we have that

so that a type of GIM mechanism ensues (as discussed
above), and (iii) if unbroken it also forbids Z-Z' mixing
to all orders, which simpliGes the pheaomenological anal-
ysis since the important experimental constraints on such
mixing [3] are automatically satisfied. We will at first be
concerned with the version of the model maintaining the
discrete symmetry as exact. %e will then brie8y consider
the case where the discrete symmetry is broken by the
vacuum.

The gauge covariaat derivative for the electrically neu-
tral gauge bosons is

D" = 0" +igzI3W&+i —YB"+ i—Y'Z'",
2 2

where Is = 7s/2, W" is the neutral weak-isospin gauge
boson, and gq z are the two gauge coupling constants.
The coupling constant for U(l)' has been defined to be
equal to that for U(1)y because the free paraineter a in
Eq. (3) can be taken to determine the relative strengths
of these interactions. The parameter that is eliminated
by the discrete symmetry caa be identiGed from an ex-
amination of the kinetic energy Lagrangian for the U(1)
gauge fields. If the discrete symmetry is ignored then
this Lagrangian is givea in general by

~KE=k~F""F„.+k F""F +k F""F'
where F aad F' are the Geld strength tensors for B"aad
Z'", respectively. Note that the off-diagonal term is per-
mitted by gauge invariance because the symmetries are
Abelian [4]. In order to bring this general kinetic en-

ergy Lagrangian iato diagonal and canonically normal-
ized form we must rewrite everything in terms of certain
linear combinations of B" and Z'". If the discrete sym-
metry is imposed then the mixiag term is absent and so
k2 ——0. In this case the redefinition required is just a
straight rescaling of both B" and Z'", and the param-
eters k~ and k3 can be absorbed by g~ and a. If the
discrete symmetry is abseat, thea the kz coefBcieat is an
additional free parameter in the theory (that is, it cannot
be absorbed into gi and a). In the diagonal and conven-
tionally normalized basis for the gauge fields, the freedom
represented by kz caa be incorporated by the substitu-
tion Y' -+ Y'+ kY in the covariant derivative where k is
now the arbitrary parameter.

It is convenient to rewrite the gauge covariant deriva-
tive in terms of the photon Geld A" and the standard Z"
Geld. The rewritten covariant derivative is

D" = 8"+ieQA" +i (Is —sivQ)Z" +i —Z",e . e Y'

8W~W egg 2

and (4)

Z'" ++ —Z'",

where B" and Z'" are the gauge fields for U(1)i and
U(l)', respectively. The benefits are (i) it forces the
number of kee parameters in the gauge covariant deriva-
tive to be reduced by one, as we explain below, (ii) if
unbroken, it ensures that the mass eigenstates will be
maximally mixed combinations of the weak eigenstates

where s~ = sin 8~, c~ = cos 8~, and the weak angle 0~
is defined through tan Hiv = gi/g2. The electromagnetic
coupling constant is given. as usual by e = gz8~ and.
electric charge Q is Q = Is + Y/2. Under the discrete
symmetry,

A" -+ A", Z" —+ Z", and Z'" -+ —Z'".

This means that if the discrete symmetry remains exact
after spontaneous symmetry breaking then there is no
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Z-Z' mixing to all orders. This is very important phe-
nomenologically.

The Yukawa coupling Lagrangian is

Zv„„=A(z„e,~4, + e..e,~4,)
+A'(821, e3~$2 + E3L,e211$3) + H.c.,

(We will without loss of generality take the phase of (p1)
to be 1, while the phases of (p2) and ($3) will be discussed
presently. ) The Z and Z' masses are then given by

mz = -(g1+ g2)(u1+ 2u2)
2 1 2 2 2 2

2

where the Higgs doublet transformation laws are and (i2)

~ -(1,2)(1 o),
(1,2) (1,4a), and P3 (1,2) (1,—4a). (10)

Under the discrete symmetry p1 E+ p1 and p2 ++ $3. (If
the discrete symmetry is not invoked then one need only
introduce the equivalent of one of $2 and $3.)

Let us now look at the phenomenology of the model.
First note that without any analysis there are two poten-
tially very interesting features of this model due to the
hypothesis that the U(1)' breaking is tied to electroweak
breaking. The first is that since the mass of Z' is expected
to be less than or equal to the Z boson mass, then the
Z' boson should have some effect on already measurable
low-energy observables provided its coupling to leptons
is not too weak. Second, if mz~ ( (m —m„) then the
two-body decay 7 -+ pZ' can occur. This will provide
a striking signature since the final state p, (in the r rest
frame) will have a fixed energy in contrast to the contin-
uum p, energy spectri~m from the usual three-body decay
mode. It is known that measurements of the y, energy
spectrum can provide a sensitive probe of the two-body
decay mode. Furthermore, such a signature would easily
distinguish this Z' from that of many other models.

Having foreshadowed what to expect we will now pro-
ceed to analyze the phenomenological implications of the
model. We know that Z-Z' ~ixing is constrained to be
small. Our discrete symmetry affords us the luxury of
having this mixing as precisely zero, as discussed above,
provided it is not spontaneously broken. We thus adopt,
to begin with, that range of parameters in the Higgs
potential (which we will display explicitly below) which
maintains the discrete symmetry as exact, while breaking
both U(1)' and the electroweak gauge group. The VEV
pattern required is

mz ——16a slav(g1 + g2)u2.
2 2 2 2 2 2

As we will soon see, phenomenological bounds force us
to consider the Z' to be much lighter than the Z, in
contrast to most other Z' models. The reason for this
is that in many processes the parameter a cancels out
between the Z'-fermion vertices and the Z' propagator
when the momentum in the propagator can be neglected
relative to the Z' mass. This means that the coupling
strength for the Z' in this high mass limit is completely
specified by previously measured quantities. It just so
happens that this coupling strength is too strong. So,
we will be led to looking at the mz && mz region of
parameter space.

Since the discrete symmetry is exact, all mass eigen-
state fields have to be either even or odd under the trans-
formation (this is true for the neutral gauge bosons dis-
cussed above for instance). This allows us to write down
immediately that the mass eigenstate charged leptons are
given by (e2 + es)/v 2. Substituting this into the Z'-
lepton interaction Lagrangian we obtain that

8a
(PP"r + 77"P)Z„'.

cw

Therefore we see that although the Z' boson mediates
Bavor-changing neutral currents, these processes are al-
ways pu7ely og diagonaL (Diagonal terms are forbidden
because Z' is odd. ) By defining p, and 7 neutrinos as
those fields that are produced with p's and 7 leptons, re-
spectively, in charged current weak interactions we also
see that

[~»"(1 »)~-+ ~ ~"—(1 »)~.]Z.' (1—4)
2cw

(P1)—:u1 (g 0 in general)

l(42) I
= 1&43) I

= u2 X 0

These Lagrangians will allow us to easily identify the in-

teresting phenomenological constraints on Z'-lepton in-

teractions.
The most convenient way to write the Higgs potential

down 1s

V —Al(41~1 u1) + A2(4'24'2 + 4'34'3 2u2) + A3($2) 2 4'34'3) + A4(4'141 + 4'24'2 + 4'34'3 —u1 —2u2)

+As [(~2~2)(4'34'3) (4'2'tt'3) (4'34'2)] + As [4'l4'1(4 24'2 + 4'34'3) (414'2) (424'1) (4 1~3)(4'34'1)]

+A7[4'14'1(42'tt2 + 4'34'3) (41%I 2)(4143) (4241)(4 3~1)]
I

The parameters Aq y must be real kom Hermiticity
(we have also redefined to zero a phase that can a pri-
ori appear in &ont of the last two terms within the Ay

term). The symmetry-breaking pattern we require is ob-

tained by choosing A1 7 ) 0. (Other symmetry-breaking
patterns can, of course, be induced in other regions of
parameter space. ) In the A1 7 ) 0 region of parameter
space, the Higgs potential is the sum of positive-de5nite
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terms. The A1 4 terms are obviously positive deGnite,
while a little algebra shows that

2 2 3 3 2 3 3 2 3 2 2 3

1 2 2 1 2 2 1 2 1 1 2

1 3 3 1 3 3 1 3 1 1 3

and

where the subscripts plus and minus denote even and odd
fields under the discrete symmetry, respectively.

All three H fields are physical. The odd combination
H does not mix with the even fields 81 and H+. The
mass of the former is

4'if'1(4'24'2 + 4's4'3) (4'i4'2) (4'l4's) (~2~i) (~3~i) = SA3G2 + 2AVQ1)
2 2 2

while the mass matrix for the latter two is

(JI ~ )
~ (A +A)"
( 4~2A4uiu2 8(A2 + A4)u2)

(20)

Since the Higgs potential is written as the suin of
positive-definite terms, we know we have a minimum if a
VEV pattern renders each term separately zero. The first
four terms show that l(~i) I

= ui, and l(&2) I
= l(&s) I

=
u2. The A3 term is responsible for forcing the last two
VEV's to be exactly equal. The %56 terms force the
charged Higgs bosons to have zero VEV's. To see this,
first perform an SU(2)L, gauge transformation to define

(Pi ) = 0. Then (Pi) = ui[/ 0 by parameter choice, and
it can be made positive and real by the same SU(2)L,
transformation]. Minimization of the terms in Eq. (16)
forces (Pz s) = 0. The first three terms on the right-hand
side of Eq. (17) are then also zero, while the fourth term
tells us that (Pi)(Pz') = (Pei')(/os). Given that the phase
angle for Pi has been set to 1, this implies that the phase
angles for P2 and gs are equal and opposite. However,
these phase angles can be removed by a U(1)' transfor-
mation and are thus unphysical and will henceforth be
set to zero.

Consider the shifted neutral Higgs fields defined
through

H1 + i@1 H23+ ig23
4i —= ui+

2
and $2 s = u2+

2

(18)

where the H's are CP-even real Higgs bosons and the g's
are CP-odd real Higgs bosons. It is convenient to discuss
the P2 s fields in the discrete symmetry eigenstate basis
given by

There is one physical g field given by

/2u27/i —ui g+
gu', + 2u',

with mass

m„„=2Ap(u, + 2u2). (23)

There are two physical charged Higgs bosons, given by

~2u, pi+ —u, h, ++

and h
Q+ Q+

Qui + 2u2
(24)

where h+ = (Pz + Ps+)/~2. Their masses are

ma = (As+ A7)(ui+2u2)

and m'„+ = (As + Av)ui + 2Asu2. (25)

Note that the odd combination h+ does not mix with
the even combination h+ because of the exact discrete
symmetry.

The Yukawa coupling Lagrangian for the II fields is

&vu~=). ffIIi+ "(«+VI )IIi
2ui 2 2ui

+ " I(« —I I )&++ (F~ —~v)& ](26)-
2 2u2

where f = u, d, c, s, t, b, e, and my is the corresponding
mass. The Lagrangian for the physical g field is

tu2my 2 'll2 F1
fpsfgpi, r. + —(m~+ m„) — (m~ —m„) Vp57 @phys

ui ui + 2u2 2 u2i + 2u22 2tc2

%CD+ —(m~ + mp) + (m~ —mp) esp '@phys.
2 u +2u ui 2tt2

It is interesting to note that the mass eigenstate CP-even Higgs bosons that are superpositions of H1 and H+ have
Savor-diagonal interactions, as does the physical CP-odd Geld g~h„, . The discrete-symmetry-odd mass eigenstate H
is fiavor-changing in the y;7 sector, but it is completely off diagonal just like the Z (and for the same reason of
course

The Lagrangian for fermion coupling to the charged Higgs bosons is



MODEL FOR A LIGHT Z' BOSON

Btg, lit + 2tP2 ttt QQt + 2tP2

+ —(m + m„) — (m —m„) v~1,7B h
1 Qg

2/u + 2u

—(m + mp) + (m —mp) vprpB h+ + "(vpltB —v I pJt)h+ + H.c.,
2 hatt + 2tH ttl 2tt2 2 2tl2

(2S)

where U = (u, c, t), D+ = (d, s, b), and Mg is the undi-
agonalized down-quark mass matrix.

We now have to identify those processes involving sec-
ond and third generation leptons which provide signifi-
cant phenomenological constraints. (Since Z-Z mixing
is absent to all orders, the number of relevant processes
is greatly reduced. ) There are essentially three itnpor-
tant constraints: the anomalous magnetic moment of the
muon, a&, the gauge boson masses (i.e., we have to ensure
that the values of uq and u2 reproduce the measured val-
ues for m~ and mz, and hence mz cannot be arbitrarily
large) and the Z' contribution to 7 decay [5).

The principal contribution to a„ is depicted in Fig. 1.
Note that the discrete-symtnetry-odd field Z' is featured
here, because it couples p to 7 leptons. There are similar
graphs involving the neutral and charged Higgs bosons
which also contribute to a„, but they turn out to be
much smaller since they are suppressed by the factor
(m„/mH) for m„& mB where mB is the mass of the
generic Higgs 6eld. For the analysis that follows we will
assume that all the Higgs bosons in the model are heavier
than 40 GeV so that their contributions to a„and the
decay width of the standard Z boson are negligible.

The 2' contribution to a„ is given by

where

a2 t

+2Mln
~ ~+ h

t'

(mz )
(29)

NC —MB l A+B+gB~ —AC
QB~-AC A+B gB~ ——AC

2 NC —MB tan —1 v AC —B~
AC —B~ A+B

if B2 & AC,

if B2 &AC

In these equations, a, is the fine-structure constant,
and
a:—2(m —m„)/m„,
P:—3 —2(m /m„)

+—[(m /m„)+1] (m —m„) /mz, ,

17= —1 ——(m —m„) /mz, ,
2 2

2

&=mz, B= (m —m„—mz)/2, C=m„,
2B 2B A 2B

M = a — (P — p) and N —= ——(P — p).C C C C
(31)

This expression demonstrates that a large mz~ is phe-
nomenologically disallowed. In the mz~ )& m limit,
Eq. (29) reduces to the simple result that

~ z' n,m la[ 2m„m~ m„m~2

"-2- ". -.. 64--,

(b)

Z'

Gz

which is independent of ~a~ and at best about an order
of magnitude too large given that u2 is constrained by
the weak scale. So, we will be interested in Z' masses
of about a few GeV or less. In any case Eq. (29) can
be evaluated numerically. Figures 2(a) and (b) show the
allowed region of (mz, ~o~) parameter space, given the
experimental constraint [5] ~b, a„~ ( 10, i.e., given by
the region below the dashed curve.

We next consider the constraint coming &om the gauge
boson masses. By using Eqs. (12) and mt' ——gz(ut +
2u2)/2, one finds [6]

4tan8~ m~ 175.33 GeV&
(33)

FIG. l. (a} The one-loop contribution to b,a„, and (b)
the accompanying diagram arith the Goldstone Seld, Gzl, in
the Bq gauge.

The region allowed by this constraint is the area above
the solid curve shown in Figs. 2(a) and (b). In other
words, for a given value of mz~ there exists a minim»m
value for ~a[. When the above two constraints are com-
bined there is a small overlap region remaining. This
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overlap region where the two constraints are satisfied
(roughly mz & 2.5 GeV) divides into regimes; namely,
mz ) (m —m„) and mz & (m —m„). In the for-
mer, the interesting decay mode 7 —+ p,Z' is not allowed
kinematically, whereas in the latter it is. Note that this
result makes numerically precise the qualitative observa-
tion made earlier that the Z' boson cannot be arbitrarily
heavy.

Let us first consider the case where v. m pZ' is not al-
lowed. Although this dramatic two-body decay does not
occur, the oE-shell Z' contributes to the family lepton-
number preserving three-body decay v +-p P„v and
the family lepton-number-violating decay v -+ p, v„v .
We have to check whether or not constraints &om the
observation of the standard decay mode w ~ p, P„v„

+-(' 2(2k+ I)+k12 2k+ 3
4 &+1

—6k(k+ I) ln
1+&

k
(34)

where

close the (m~ —m„) & mz & 2.5 GeV window. For
this mode, the Z' contribution coherently adds with the
standard TV-boson contribution yielding

I (r M 11, v~p )F(™p vga)SM

= I —g 2k(k + I) ———k (2k + 3) ln
5 '1+k
6 k

———gauge boson masses

m2
(35)

(a) Discrete Symmetry
-1

10 Note that the contribution &om the finite width of Z'
has been neglected in this calculation. This contribution
is expected to have its most signi6cant effect near the Z'
threshold. However, in this case, the Z' width is given
by

lal 10'

I

10
0.0 1.0

3-body decay

2.0 3.0
Z' mass (GeY)

4.0

I'z I'(Z' m r„v + v„v ) = '
la! mz,3c~ (36)

where it is suppressed by a factor of !a!2 so that the
zero width approximation should not be a bad one. The
largest contribution comes &om the interference term be-
tween the W and Z' bosons. (The nonstandard decay

-+ p v„P mode will always provide less stringent
constraints than the Z' contribution to the standard de-
cay because the decay rate is given by the direct-Z' pro-
cess only and is thus proportional to !a!4.) The experi-
mental constraint [5]

(b) Discrete Symmetry

—gauge boson masses

!z—I! & o.o4 (37)

10

lal 10~

10

2-body decay

10
0.0

I

0.5
Z mass (GeV)

I

1.0

FIG. 2. (s) snd (b) Constraints on the (rnz, !a!)param-
eter space in the exact discrete sy~~etry model —(i) gauge
boson masses (the allowed region is the area above the solid
line), (ii) b,a„(ares below the dashed line), snd (iii) three-
body decay (sres below the dot-dsshed line), (iv) two body-
decay (sres below the dotted line).

in fact closes the (m —m„) & mz & 2.5 GeV window.
This is shown in Figs. 2(a) and (b) where the region
below the dot-dashed curve is the one allowed by the
three-body decay constraint.

So, we are left to consider the kinematic region which
permits the two-body decay mode 7 m p,Z'. First, no-
tice that the three-body decay constraint allows for win-
dows in the m~ ( 0.2 GeV and 0.8 ( mz & 1.0 GeV
regions. There is also a minute region at mz 1.2
GeV. The second window is caused by the vanishing
of the term proportional to ( in Eq. (34) for values of
mz in this region, while the third window is due to
the cancellation between the ( and ( terms in Eq. (34).
(This cancellation is possible for large enough values of
!a! because the f term becomes as important as the (
term. ) We now check to see what efFect the two-body
decay mode has. The Mark III and ARGUS Collabo-
rations [7] have set limits on two-body decay modes for
r. These experimental groups speci6cally analyzed the
process ~ + p, + Goldstone boson and found that the
ratio
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F(v. -+ pZ') ( 0.033 for mz~ & 0.1 GeV,I (1 M pv~v~
(38)

F(~ -+ p,Z') 96 z z m2w

F(7. w pv„v ) Q2 Gpm4
~'tan'ew ~ l~l'f

where

(m2 —2m2z, ) rn„(m —2mz, )
m.2 mT mrmZ2 2

and

(39)

(4o)

where the Goldstone boson has been replaced by Z'.
(Without going into a detailed reanalysis of the experi-
ment, me expect the above experimental bound to be ap-
proximately valid for our case where the 6nal state boson
has spin 1.) This bound rises up to 0.071 for mz ——0.5
GeV. For the exact discrete symmetry case this ratio is
given by

probe the efFects of our low mass Z' boson. First the
~I ~ ~ ~

7

Z mill contribute a vertex correction at one-loop level
to Z ~ p+p and Z -+ ~+a . An order of magnitude
estimate of this effect yields bF/F&r- a, lal f where
bI' is the change in the Z decay rate to l+E (as given
by Frr). The quantity f is a function of mass ratios and
is at most of order ln(mz/m„) 10. Thus we estimate
that bI'/Fz 3 x 10 lal where I'z is the full width.
For lal ( 10 2 this implies that bF/Fz is about three
orders of magnitude smaller than the experimental un-

certainty of 4 x 10 4 on the full Z width. Second,
the Z boson will have the rare three-body decay mode
Z -+ p+~+Z'. The exact formula for the partial width
of this decay yields I'(Z -+ p+v+Z')/Fz 10 slalz.
This should be compared to the experimental bound
I'(Z ~ y,+v+)/Fz & 4.8 x 10 s. For realistic values
of lal, the three-body partial width is an order of magni-
tude or two smaller than this bound.

We now discuss what happens when the discrete sym-
metry is spontaneously broken by the vacuum. The cal-

(m„+ mz~) 2 (m„—mz~)

T T
10

(a) Broken Discrete Symmetry

G~ is the Fermi constant and m~ is the mass of the
W boson. By using Eqs. (38) and (39), the region of
(mz~, lal) parameter space allowed by the two-body de-

cay can be constructed. This is given by the region below
the dotted curve in Fig. 2(b). From this one can see that
the parameter space for mz ( 0.5 GeV is ruled out
(and hence the window of mz~ ( 0.2 GeV allowed by the
three-body constraint).

So, in summary, when all the constraints have been
combined, much of the parameter space is ruled out.
The remaining allowed regions are for 0.8 & mz & 1.0
GeV (l al varies between about 0.004 and 0.007) and mz
around 1.2 GeV. [One might naively think that there
ought to be another allowed region for sufficiently small

lal, and hence for a sufficiently light Z' boson, since the
Z' decouples as lul -+ 0. However, as lal -+ 0 the local
U(1)' gauge symmetry tends toward becoming merely a
global symmetry, and the longitudinal component of the
Z' turns into its associated Goldstone boson. The two-
body decay process considered above then has this Gold-
stone boson in the final state rather than the Z'. This
can be seen explicitly &om the fact that the right-hand
side Eq. (39) does not go to zero as lal goes to zero. ] It
should be noted that we have taken the two-body con-
straint at face value, i.e., it applies for values of m~ up
to 0.5 GeV. This is the value quoted by the ARGUS Col-
laboration in Ref. [7]. Actually, the ARGUS experiment
is supposed to be able to search for the two-body decay
mode for values of mz up to about 1.53 GeV, given the
experimental cuts and efficiencies. If the current trend of
the two-body constraint continues beyond 0.5 GeV (the
precise bound will obviously vary with the mass of Z'
and becomes several orders of magnitude less severe near
threshold) then the remaining allowed windows will be
closed and the model will be ruled out.

Finally, we will brie8y look at two processes related
to the CERN e+e collider LEP that could in principle
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culations of the constraints are similar to those in the
unbroken discrete sy1n~etry case (see the appendix for
further details). For the gauge boson mass constraint,
the calculation uses the mass relations of Eqs. (A1)—
(A3) in the Appendix. The calculation of the anoma-
lous magnetic moment [8], two-body decay and three-
body decay constraints can be carried over from the ex-
act discrete symmetry case using the substitution ~a~ ~
~a~ cos P sin 281„where P and 8r, are the gauge boson and
p,-r mixing angles, respectively. (Since the gauge boson
mixing is required to be small, we have set P 0.) The
results are given in Figs. 3(a) and (b) which shows that
the broken discrete symmetry case is qualitatively sixnilar
to the exact discrete syInmetry case. So the conclusions
made for the exact discrete symmetry case essentially
also hold for this case. The constraints were expected
to be less stringent, which they are, but not enough to
change anything significantly. For example, there is still
no allowed parameter space for mz ) (m —m„) since
the allowed regions from the gauge boson mass and three-
body constraints never overlap for mz & 1.5 GeV. The
reason for this is due to the fact that sin 28L, cannot be
made arbitrarily small [this is a consequence of the dis-
crete symmetry of the Yukawa Lagrangian of Eq. (9)].
It turns out that sin 28L, cannot be smaller than about
0.46 [see Eq. (A14) in the Appendix]. Therefore, one ob-
vious way to ease the constraints is to abandon the dis-
crete symmetry altogether so that the p,-w mass mixing
remains unconstrained.

In conclusion then, the model for both the exact and
spontaneously broken discrete symmetry cases is ruled
out if mz & 0.5 GeV or mz ) (m —m„). For
0.5 GeV & mz & (m —m„) there exist windows of
allowed parameter space. However, if the trend of the
two-body decay constraint continues in this region, thea
these windows will certainly be closed. This rather strin-
gent bound from the two body dec-ay is, nevertheless, uery
interesting, because it means that the decay v ~ p,Z' is
by far the best quay to test our lo1s-mass Z' modeL One
way to view the significance of our model is therefore
the following: One should as a rnatter of phenomenologi-
cal generality be interested in the possibility that r might
have a rare decay mode into p, plus a spin-1 boson, just as
one is in general interested in two-body final states where
the boson has spin 0. Our model provides a simple model
where this phenomenological possibility is realized. The
interesting thing is that the v ~ pZ' decay is essentially
the oaly important piece of new low-energy physics that
the model predicts, provided that the Higgs bosons are
heavier than a few tens of a GeV.

The results given in the following are the ones used to
calculate the constraints discussed in the text.

The gauge boson and fermion sector: When the Higgs
doublets develop nonzero VEV's, i.e., ~{P;)j = u; for
i = 1, 2, 3, the electroweak and U(1)' symmetries are
broken. This results in a neutral gauge boson mass(-
squared) matrix given by

1 e (u1+ uz + us) —4asw (u2 —us)
s~ 4as~(zL2 —tcs) 16a Bw (a2 + tLs)

(A1)

in the (Z, Z') basis. In terms of mass eigenstates (Z1, Z2),

„=LL,MLR+ H.c., (A4)

where

T
Lr„R = (ur„R rl. ,R) (A5)

ml m2

(ms m1$
(A6)

and ml ——Aul, m2 ——A'u2, and m3 ——A'u3. The matrix
M can be diagonalized by a bi-unitary transformation so
that

Z) =Diag(m„, m ) = UI, MURt, (A7)

(A8)

where the LL, ~ deaotes the mass eigenstates. Ul„~ caa
be parametrized as

( cos8L, R sin81, Rl &e "~ 0 )I,R
q
—sln8L, R co$81, R) q 0 e~2 )

where

(A9)

Z = cos QZ1 + sin QZ2,
Z' = —s1npZ1 + cos /ZAN,

where P is the Z-Z' mixing angle and is given by

8a81V (Q,2
—tcS)

(u21 + u~2+ u2s) —16a2s2~ (u22+ us2)

In the exact discrete symmetry limit (u2 ——us), the
above reduces to that given in Eq. (12). The mass of
the charged W+ boson is m~ ——zgz(u1+ uz + u3).

From the Yukawa Lagrangian of Eq. {9),the p, —r mass
matrix can be written as
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2(m1ms + m1m2)
tan28L, —— = —tan 28~,

8R = (2n+ 1)——8L„
2

(A10)

(A11)
APPENDIX: SPONTANEOUSLY

BROKEN DISCRETE SYMMETRY

In this appendix some details concerning the model
with spontaneously broken discrete symmetry are given.

where n is an integer. In the exact discrete symmetry
limit 81. ——8R =

4 and b = 0. By using the above
relations one can rewrite 81, in terms of the VEV's and
the p, and 7 masses such that
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(u3 u2) u2u3 sill 2b
cos28L, =

(u3 —u2) [u2 + u3 + 2uzu3 cos 2b] m + m + 2m~m„cos b,
(A12)

where

2 2
u2u3 m~ —m~

sin A =
2 2 sin 2b.

u2 —u3 m~mp

Furthermore, one can show that

(A13)

cw

(A16)

ps—cos28L, —sin28L, i

e —,„ l( cos28L, —sin28L, 'll p N
i —sin 281, —cos 281, )

cos28LI ( " ~ l»n28LI ) o 46.
m~+ m~

(A14)

fP„Z"(I3—s~Q)PI, R f~ (A15)

Using the foregoing results, the neutral current gauge
interactions can be written as

where PI, ,R =
2 (1+ps), L = (y, ,r), N = (v„,v ), and

f = L or N. The Z and Z' fields can be written in terms
of their mass eigenstates by using Eq. (A2). Note that
these interactions reduce to the simple form of Eqs. (13)
and (14) in the exact discrete symmetry limit.

The Higgs boson sector: The Higgs potential is given
by

+(Ply 42) 43) Pl(4'l4 1) P2(4242 + 4'34'3) + kl(4'l4'1) + k2 (424'2) + (434'3)

+k12(4'l4'1) (4'24'2) + (4'343) + k12 (~14'2)(42~1) + (4'1A)(~3~1)

+k23(424'2)(tt34'3) + k23(4243)(4'34'2) + k4+ (414'2)(414'3) + k4I (4'l4'2)(4'l4'3) (A17)

The minimization conditions are given by

0 = —pl + 2klul + 2k12 (u2 + us) + k4u2u3i

o = 21 —~2+ 2k2u2+ 2k12ul+ 2k23u31u2+ k4ulu»2

)

p'2 + 2k2u3 + 2k12u1 + 2k23u2 u3 + k4u1u2)2 2

)

together with k4 ——0, where

I 1
k12 = (k12 + k12) and k23 = (k23 + k23) ~

2 2

Equation (A17) reduces to that of Eq. (15) with

(A18)

(A19)

kl A1 + A4 k2 —A2 + A3 + A4

k12 ——2A4+ A6+ Ag, k12
———A6

k23 = 2A2 —2A3 + 2A4 + As) k23 As

k4 ———2A7, k4' ——0. (A20)

(a) The CP-even mass(-squared) matrix, A;z ——A~; in the basis (Hl, H2, H3) is given by

+11 4kl u1 ~ +12 —4k12u1u2 + k4u1u3 ~

+13 —4k12ulu3 + k4ulu2& +22 4k2u2 2k4ul(u3/u2)&

+23 = 4k23u2u3 + 2k4uli +33 —4k2u3 2k4ul( 2/ 3) ~ (A21)

In general, A;~ has no zero eigenvalues. So there are three
real massive physical scalars.

(b) The CP-odd mass(-squared) matrix, B,~ = B~; in
the basis (ql, ll2, ll3) is given by

B11 ———2k4u2u3, B12 ——k4u1u3y

B13 —k4ulu2 i B22 2 k4ul (u3/u2)

B23 ———
2 k4ul, B33 = —

2 k4ul (u2/u3). (A22)
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Gz, —— g2

mz, v 2cw

+u3(sin P + 4GsItl cos P)'g3).

(uI sIII Ptb + u2 (slII P —4GBI4l cos ill)'g2

(A23)

B,-z has tvro zero eigenvalues, and hence there are two
Goldstone bosons and one CP-odd real scalar, gphys The
Goldstone Gelds corresponding to Zq and Z2 are given
respectively by

GQ~ = (uI cos ltlrII + tl2(cos Q + 4G8~ slllltl)'g2
g2

IIIz 2C~

+u3(cos P —4Gsgr 3111P)'g3 j,

+4u2us].
(c) The charged scalar mass(-squared) matrix, C,I.

CI,. in the basis (PI, $2, 4l3 ) is given by

—k12(u2 + u3) —k4u2u3,

l
k] 2uyu2 + k4uyus)

I
k~2uyus + —k4uyu2,

1 u3)-k, u —
~

k + -k4 —[u„3 3 ( 12

It-"~s = k~su~us,

The physical CP-odd 6eld is given by

2u2u3g1 ul u3'g2 ul u2'g3

Qu (u +u )+4uu (A24)

k23u2 ~ k12 + k4
I
u1'

u3)
(A25)

There are toro massive charged scalars and one Goldstone
boson associated with the S'+ boson:

with its mass given by —2k4[uI (u2/u3 + u3/u2)
G+ = (utltlI + u2$2 + u3$3) .

mIv 2
(A26)
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