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There are two tests for leptonic CP violation in 7. ~ pv decay by inclusion of p polarimetry
observables in the energy correlation function for Z or p' —+ 7 r+ m (p v) (p+P) By CP
invariance the moduli ratio of, and phase difference between, the two helicity amplitudes for v

p v decay should equal those for 7.+ ~ p+v decay. The full angular distribution for the above
process, including the x+ momentum direction versus that of the p+ momentum, can be used to test
for such a non-CKM-type leptonic CP violation in 7 + pv decay. Since this adds on spin-correlation
information from the next stage of decays in the decay sequence, we call such an energy-angular
distribution a stage-two spin-correlation (S2SC) function. Ideal statistical errors for r +pv d-ecay

are calculated for possible application at the Z, at a B factory, or at the 7.-charm threshold. S2SC
functions should be useful for testing for possible non-CKM-type CP violation in top quark and in
W boson decay processes.

PACS number(s): 13.35.Dx, 11.30.Er, 14.60.Fg

I. INTRODUCTION

While in K decay CP and T violations are phe-
nomenologically well-described by the CKM matrix, the
fundamental origin of these symmetry violations is still
unknown [1]. For instance, the well-established and
successful method to formulate fundamental theories
with spontaneous symmetry violations is in terms of a
relativistic Lagrangian operator in local quantum 6eld
theory. So rather paradoxically, although the "CKM
paradigm" does naturally imply a remarkable experimen-
tal future in lepton physics in the long term, assuming
quark-lepton symmetry and massive neutrinos, neverthe-
less the CKM matrix has developed in a quite Keplerian
manner. Its formulation and parameters are indeed very
important to test and measure, but the CKM matrix it-
self probably is not truly basic, mathematically or phys-
ically. Second, most astrophysics studies of electroweak
baryogenesis conclude that additional sources of CP vi-
olation, beyond CKM, in elementary particle physics are
necessary to explain the observed baryon-to-photon ra-
tio. For these two reasons it is important to use new
collider data to systematically search for possible exper-
imental surprises such as for a non-CKM-type leptonic
CP violation in ~ lepton decays.

The idea in this paper [1] is to test for leptonic CP
violation by generalizing the 7 spin-correlation function

I(E~, Es) by including the p polarimetry [2—4] informa-
tion that is available from the p, h —+ x,gm decay distri-
bution [5—8].

Recall that since the p mode has the largest branching
ratio [9], B(r -+ pv) —25'%%uo, ongoing experiments with
unpolarized e e+ collisions do contain many events for
the production-decay sequence

e e + Z, p' m 7 r+ +(p v )(-B+X) (1.1)

and for the CP-conjugate sequence. Here p* denotes an
ofF-mass shell photon, such as that produced in the T
(10 GeV) resonance region at a B factory or near the
~-charm threshold at 4 GeV. The symbol 8 = p, vr, l

and X = v or v v~, with t = p, or e. In the energy
correlation function I(E~, Es), the p's energy in the Z
or p' rest frame is E~ and the B's energy is E~. The
two-variable distribution I(Ez, Es) is useful as a probe
for new physics because the empirical E~ and E~ en-

ergy correlation is a kinematic consequence of the r
and 7.+ spin correlation which depends in turn on the
dynamics of the Z or p* —+ w 7+ amplitude, and of
the ~ ~ p v and ~+ —+ B+X decay amplitudes. It is
found [4—7] that measurement of I(E~,Es) determines
independently the parameters sin 8~, the w Michel pa-
rameters for w —+ /v v~, and the chiral polarization pa-
rameter (chirality parameter)

lgL, I' —
I gR I' 2 «(owa„')
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for r m A v„((~ = +1 for V ~ A coupling). (~
partially characterizes the Lorentz structure of the r —+
A v coupling [7]. In the special case of m = 0 and of
only V and A couplings, it can be physically interpreted
as (twice) the negative of the r neutrino helicity ('~ ——

—(h„), see Eqs. (2.9) and (2.10) below.
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I(E~, E~) has previously been [10,7] generalized, by
including 8, and P, to specify the initial e beam direc-
tion versus the 6nal-state decay momenta. This permits
complete measurement of the p' and Z couplings to the

7+s.ystem, and enables four tests for CP and/or T in
the production process, Z or p -+ w v+.

Both of these techniques are being applied in various
ways in ongoing experiments in r physics and elsewhere
[11,12]. In this paper we study a different kinematic gen-
eralization by proceeding to the next stage in the de-
cay sequence —we add p polarimetry information from

pd, +m,-hz . This information is incorporated by gener-
alizing I(E~, E~) for process (1.1) to include the depen-
dence of the p+ decays on the m+ polar and azimuthal
angles (Hq, gq) and (82, $2) shown in Fig. l. Since this
adds on spin-correlation information from the next stage
of decays in the decay sequence, we will call such a result-
ing energy-angular distribution I(E~, E~, 8q, Pq, 82, P2) a
stage-two spin-correlation (S2SC) function.

In analysis of S2SC functions, we often concentrate on
the CP-symmetric decay sequence

S or p'-+~ r+m(p v)(p+v)
followed by both p+ ~ z+~ because this sequence ap-
pears particularly promising experimentally to avoid a p
versus p+ bias [12]. As a simple consequence of adding
in several more momenta variables, any prototype S2SC
function depends on several additional variables and ac-
cordingly is more complex. The limited goal of this paper

p rest

is to cast a big enough net to see what new physics infor-
mation could be obtained, and how well, from applying
such S2SC functions in 7 physics [13].

In a sentence, the principal conclusion of this paper
is: By inclusion of p polarimetry observables, ongoing
experiments with unpolarized e e+ collisions enable two
distinct tests for non-CKM-type leptonic CP violation in
7 -+ pv decay by generalization of the energy correlation
function for Z, or p' ~ ~ r+ ~ (p v)(p+v).

It is simple to see why two CP tests are, in principle,
possible kinematically: By Lorentz invariance, the decay

~ p v depends on two independent helicity ampli-
tudes, assuming a left-handed v, and the CP-conjugate
decay 7+ -+ p+v also depends on two independent he-
licity amplitudes, assuming a right-handed v

(i) By CP invariance, the phase difference between the
two amplitudes for w -+ p v decay should equal the
phase difference between the two amplitudes for 7+ +-
p+v decay. To be precise, by CP invariance

P=Po —A=0 (1 4)

where

Po—= 4 g
—4o (1.5a)

since the p has helicity A~ = —1 or 0, and

Pb = 4g —40 (1.5b)

T+ T$ ] )

since p+ has helicity Az
——1 or 0. Rotational invariance

forbids the other p and p+ helicities; so that is why
there are two, and not three, amplitudes for r ~ p v.

(ii) By CP invariance, the ratio of the moduli of the
two amplitudes for v -+ p v should equal that for
7+ -+ p+v That is, b. y CP invariance

where for r +p v the -moduli ratio is

p+ rest frame

dk p

I&(-1,-1/2)
I

(0, -1/2)l

and for 7-+ ~ p+v it is

(1.7a)

Z' rest frame l&(1 1/2) I

I&(0, 1/2) I

(1.7b)

&2

z2

Notice that, respectively, the neutrino and antineutrino
helicity is denoted by the second entry in the helicity
amplitudes A(A~, A„) and B(A~, A„-). In the standard
lepton model, P = 0 and

+2m' +2m,
T~ Ep+ qp m~

0.613
FIG. 1. The spherical angles 8&, pz specify the m momen-

tum in pq m m m decay in the pq rest kame vrhen the
boost is directly from the 2 or 7 rest frame. Similarly,
Hs, Ps specify the s'+ momenta in the ps+ -+ s+s . The
p p+ production half-plane speciSes the position x~ and zq
axes.

for m„~ 0 and m = 1.777 GeV. (Ordinary CKM-type
mixing in the lepton sector will not change P or r ).

Sections II—IV of this paper contain the derivations of
the full S2SC function I(Eq, E2, P; 8, P; Hs, Ps), and of
the simpler I(Eq, E2, Hq, 82), for the decay sequence
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Z orp'~r w+-+(p v )(B+X) . (1 9)

r-r'= r+r
which is a simple, but quite difFerent, test for CP viola-
tion. For instance, in w ~ pv decay

(1.10)

I' = I'(™p ) = IA(-1 -1/2) I'+ iA(0 -1/2) I'

(1.1la)

The full S2SC, indeed, depends on seven variables and
the latter depends on four variables when applied to
the (p p+) mode [three variables for the (p a+) and

(p I+) modes].
Section V is for the reader who is only interested in the

"analyzing power" of the two CP tests for the r m pv
decay. There, the ideal statistical errors are tabulated in
three tables. Neglecting completely the efficiency and/or
acceptance depletion factors, we 6nd that with 107 Zo

events the 7 ~ pv decay amplitudes' moduli ratio r
of Eq. (1.7) can be determined to about 1% by sum-
ming over the B = p, m, I decay channels. %e 6nd that
from only the (p+p ) mode but by using the full seven-

variable distribution, the amplitudes phase difference P
of Eq. (1.4) can be measured to about 2' (i.e. , two de-

grees). With 10~ p' -+ 7 7+ events at either 10 or 4
GeV, we find that r can be determined to about 0.1%
and P to better than 1'.

Of course, the sensitivity of these two CP violation
tests for w ~ pv should be compared with that of the
partial width asymmetry of CP-conjugate reactions or
processes

empirical matters are discussed in Sec. V.
It may prove fortunate empirically that there are tests

for non-CKM-type leptonic CP violation in an age of ac-
tive theoretical and/or experimental research on grand-
uni6ed theories and on supersymmetry theories which
incorporate the known lepton-quark symmetry viola-
tions via multi-Higgs mechanisms [15]. In the context
of other less exnpirically established theoretical formula-
tions, kinematic tests for discrete syxnmetry violations in
the lepton sector are probably even of greater interest, in
that the tests are not dynamically dependent. Examples
of latter theoretical formulations which come to mind
are superstring theories which incorporate supersymme-
try violation and tt condensate mechanisms, or even less
precise compositeness ideas.

An advantage of working out the present tests in the
helicity formalism is that the model independence and
amplitude signi6cance of the results is manifest. This
is complementary to the greater dynamical information
that can be obtained through other approaches, such as
from studies of CP-violation efFects based on higher-
order diagrammatic calculations in multi-Higgs exten-
sions of the standard model. Such increased dynami-
cal information is obtained, of course, at the price of a
greater model dependence which is one thing the tests in
this paper are designed to avoid.

EI. HELICITV AMPLITUDES
FOR a,h m p hv -+ (w,hwo)v

In the ~q rest frame, the matrix element for the decay
m p v is defined by [16]

I' = I'(v+ —i p+ ) =
~
B(1,1/2) ~' +

~

B(0, 1/2)
~

' .

(1.11b)

For w two-body decay modes the denominator, I'+ I',
is known to about 1—4'%%uo according to the Particle Data
Group (1994). So Ar is considerably less sensitive than
the two tests proposed in this paper. This is mainly
because it is a test de6ned at the decay rate level.

The phenomenological signi6cance of the signature
Ar g 0 of Eq. (1.10) is also quite difFerent: It tests for
possible leptonic CKM-type CP violations, as well as for
r /rs g l. It is not sensitive to P = P —Ps g 0. On the
other hand, the CP violation observables P—:P —Ps and
r /rs for r ~ pv test for types of CP violation other than
that due to a leptonic xnatrix, such as that due to multi-
Higgs mechanisms. This is because any overall leptonic
CKM-type phases will equally affect [14] the A( —1, —2)
and A(0, —2) amplitudes, and so will cancel out in P
and in r, and similarly in the 7.+ ~ p+v amplitudes'
Ps and rs.

Measurement of a nonvanishing P = P —Ps g 0, or
of r /rs g 1, would imply a violation of CP invariance.
Measurement of P P 0 or of Ps g 0 implies a violation
of T invariance when 6nal-state interactions are absent.
Such 6nal-state eGects are negligible for these S2SC func-
tions in the case of process (1.9). This and a few other

(8i, gi, Ap, A„~l/2, Ai) = Dq „(Qi,8i, 0)A(Ap, A„),

(2.1)

where the A's denote the respective helicities, p, = A~ —A„.
The final p momentum is in the Hi, Pi direction, see
Fig. 2(a). In Fig. 2(a), we have set Pi = 0 for ease in
illustration.

An important, but elementary, technical point is that
we have set the third Euler angle equal to zero in the

rest frame

x2

Pl

po

Y2

+

z2

t2+ rest frame

(a) (b)

FIG. 2. The three angles 8q, 8z, and p describe the se-

quential decay Z or p' —+ v~ 7q+ w'ith 7~ -+ pq v aud
r2+ -+ pz+v. From (a) a boost along the negative zq axis
transforms the kinematics kom the 7q rest kame to the
Z /p* rest frame and, if boosted further, to the vz+ rest frame
shown in (b).
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big D function in Eq. (2.1). We could have instead
taken it to be a nonzero value such as the often used [17]
value of —Pi . But a nonzero value of the third Euler
angle implies an associated rotation about the final p
moment»~ direction. Such an induced nonzero rotation
would then have to be compensated for in defining the x
coordinate axis in the p rest kame in Fig. 3 for p
vr so decay (see [17]). This technical point is important
in this paper because in the spin-correlation we exploit
the azimuthal angular dependence of the second stage in
the decay sequence v,~ ~ p,qv -+ (n,h~o) v.

Similarly in the p rest frame, the matrix element for

P M 7f7i 1S

x+
Zb eb

Z2

P

t
x2

t rest frame

p+ rest frame

t
&2

(8,$ IA ) = D„'(ttt, 8, 0) (2.2)

where the final z momentum is in the 8,P direction
as shown in Fig. 3. Here c is a constant factor that is in-
dependent of A~. Note that these angles 8 and ttt spec-
ify the z in the p rest frame when the Lorentz boost
(along the p momentum) is from the r rest frame.
These angles are for the (z,y, z ) coordinate system in
which the positive z axis lies in the 7. half-plane as
shown in Fig. 3. In Eq. (2.2), the value of the third Eu-
ler angle can be chosen in any convention for it cancels
out, at the observable's level, since we stop at the sec-
ond stage in the decay sequence. %e have set it equal
to zero, and so are using the same convention here as we
are using in Eq. (2.1).

For the CP-conjugate process r2 ~ p v~ -+
(z'+z'o) v the associated matrix element for rz+ ~ p+v
1S

with p, = A~ —A„-. Figure 2 shows the relationship be-
tween the w and 7+ decay planes. The important az-
imuthal angle between these decay planes is defined by

4'—= 4i +42 (2.4)

p rest fram

Za

(8z, 4tz, Ap, A„-ll/2, A2) = D„,„(Pz,82, 0)B(Ap, A„-)

(2.3)

FIG. 4. Similar to Fig. 3, the spherical angles gt„rttt, specify
the xq+ momentum in the p2+ rest kame when the boost is
&om the rq+ rest frame. A Wigner rotation by ~q about the
implicit yt, axis carries this (xgygzt, ) coordinate system into
the system (z2yzz2) of Fig. 1.

Since in Fig. 2(a) we set 4ti ——0 for ease in illustration,
in Fig. 2 we have P = Pz

For p+ ~ m++0, the matrix element is

A(-1, --', ) = IA(-1 --.') I"'-'

A(o, --,') = IA(o, --,') le':
(2.6)

We neglect righthanded v amplitudes since for a pure
V-A coupling [7] they are of order A(1, z)/A( —1, zi)

m„m /[(m )2 — (m~)z] and A(0, z)/A(0, —2)
m„(m~)z/(m [(m ) —(m~) ]). Likewise assuming a
righthanded v, 7+ ~ p+v depends on

(2 7)

(8s, gsIAp) = D„'($,8,-0)c, (2.5)

where the final n+ momentum is in the 8s,butts direction
as shown in Fig. 4. c is another constant factor. These
angles 8s, Ps specify the 7r+ in the p+ rest frame when the
Lorentz boost is from the 7+ rest kame. These angles
are for the (x&, ys, zs) coordinate system with the positive
zg axis in the 7 half-plane.

Assuming a lefthanded v, ~ ~ p v depends only
on

By rotation invariance, A(1, —
&) = B(—1, z) = 0. By

CP invariance

B(Ap, A„-) = A( —Ap, —A„-) . (2.8)

+

rest frame

Although we neglect the right-handed v amplitudes
in this paper, for completeness we note that in the case
of both (V ~ A) couplings and possibly m„g 0, the

—+ p v amplitudes for A„= —
2 are

FIG. 3. The spherical angles 8, 4r specify the s'i mo-
mentum in the pq rest frame when the boost is from the

rest &arne. The angular parameter cuq, see text, speciSes
the necessary Wigner rotation about the implicit y axis to
reach the p rest frame system (ziyt, zi) of Fig. 1.

A(0, ——) =gL,
I I

m (E„+q~)
m~

PEp —qp&—g~
I I

m (E„—qp),
mp )

(2.9a)
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A( —1, —f) = grg, m (E +qp) —g g/gm (E„—q ) .

(2.9b)

For A =
2 they are

PAqA'q;AgA' (r ~ P V) = ) D„~ „'(p, , 8, , o)
A„=~g/2

xDA ($1,8~, 0)A(gp, P )

XA'(A', A„), (3.2)

A( —1, —,') =o, (2.1oa) where p = Ap A p —Ap A and with

A(0, , ) = g, I I
m. (E„—qp)

(g q

mp

E, +'qp')
+gR I

' '
I

m (E +qp)
mp j (2.10b)

PA A (P m m ~ ) = DA' o($, 8, 0)DA' o(q 8 0) .

(3.3)

The overall IcI2 factor has been omitted. Similarly, for
r+ m p+v m (z+vro)v

A(1, -') = gi. /gm —(E —q~) + gg 2~ (g + q~) .

(2.10c)

III. JOINT DECA% DISTRIBUTION FUNCTIONS
FOR Tch M pehv M (Kq.heal' )v

A. Composite decay density matrices

In Section II, the necessary helicity amplitudes have
been defined. The associated composite decay density
matrix for r -+ p v ~ (z z )v is

RA, A;(8i, 4i', 8, 4 ) = ) PA, A;;A, A (& ~ P v)
Ap, A'

xpAA (p -+m vr) (3.1)

with

Note that gL, and gR, respectively, denote the chirality
(V p A) of the r ~ p v coupling whereas A„= p z

de-
notes the handedness of the (massive) r neutrino. Thus,
when m„= 0, gL, (gR), respectively, only appears in
the A„= —

2 (+2) amplitudes so the appropriately nor-
malized, averaged neutrino helicity (h„) = —(„. The
r+ m p+v amplitudes follow by CP invariance, Eq.
(2.8).

RAgA'g (82 q 4'2 q 8sq()t's) = ) PA A' A A' (r + P v)
Ap, Ap'

xpA, A (p+ -+ z+x ), (3.4)

PA. A, ;AgA, (r+ -+ P+v) = ) DA, '„'(A, 82-, o)
Ap ——+1/2

x DA, „,($2, 82, 0)B(Ap, A„-)

x B'(A'p, A„-), (3.5)

R++
q e '&' r + R

The diagonal elements are

(3.7)

P A, A, (P' ~ ~'~') = DA', ,0(&s 8b 0)DA, O(&s 8s o) ~

(3.6)
where in Eq. (3.5) p = Ap —&-, p,

' = &p
—&- » Eq.

(3.6), the Ic[2 factor is also omitted.
In this paper we assume a left-handed v in ~ m p v

decay and a right-handed v in ~+ —+ p+v . This as-
sumption is discussed in Sec. II. It is straightforward to
generalize [18] the following formulas to the case when
pure vL, and vR couplings are not assumed, so as to in-
clude possible effects from A(A~, 2) amplitudes, cf. Eq.
(2.10).

It follows from Eq. (3.1) that the composite density
matrix describing r m p v -+ (vr vr )v for a left-
handed v is

R~~ = n [1 + f cos8q ] p (1~2) sin8q sin28 cos(P —P~)IA(0, —2)IIA( —1, —2)I (3.8)

and the oK-diagonal elements depend on

r = (r )'
= n f sin8q + (1/v2) sin28 [cos8q cos(p —p ) + i sin(p —p~)]IA(0, —2)IIA( —1, —2)I . (3.9)

Note that only the moduli of the r ~ p v decay helicity amplitudes A.(0, ——) and A( —1, —2) appear in the terms

independent of the 4) azimuthal angle since

I

= cos'8-IA(0, ——,')I' + 2»n'8-IA(-1 --', )I' .
(nqg ap

(3.1o)

In R~~ and r~+ the terms sensitive to P do depend on P . In Eq. (3.18) below, this P dependence can be
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probed by the 81 dependence of Fig. 1 because of the nonzero Wigner rotation by wI [see following Eq. (3.20)]. The
quantities in Eq. (3.10) depend on the longitudinal FL, and transverse I'g widths of r ~ pI, T v; whereas the p terms
in Eq. (3.9) depend on the interference of the L and T amplitudes.

For the conjugate process r+ -+ p+v -+ (n.+, no)v, . for a right-handed v it follows from Eq. (3.4) that

with

%~A~ ge r+
e*4'*'r+

R (3.11)

Ry~ = ns[l y fscos82 ] + (1/~2) sin82 sin 28' cos(gs+ Ps)!B(0,z)!!B(1,2)!,
r+- = (r-+)'

= —nsfssin82 —(1/y2) sin28s[cos82 cos(Ps+Ps) +i sin(fs+Ps)]!B(0 2)IIB(1 2)l

(3.12)

(3.13)

and

!
= cos Hb!B(0, z)! 6 2 sin Hs!B(1,2)!

ALIIS S j
(3.14)

dN
=R++(81 8 &o)

d cos8i dO~
(3.15)

where dA~ = d(cos 8 )dp . For r1 with negative helicity
the two-stage angular distribution is

The diagonal elements in Rg, pi (R~,~l ) give the an-

gular distributions for polarized rI ~ p v ~ (z zo)v
decay [r2+ m p+v ~ (Ir+Ir )v]. Specifically, for rI with
positive helicity the two-stage, or joint, angular distribu-
tion is

B. dlV/d(cosHI )d(cos8I) joint distribution
for r -+ p v -+ (w ss)v

Another two-stage angular distribution is particularly
important for it has many possible polarimetry appli-
cations. We first list the distribution and then give its
derivation which introduces the Wigner rotation angu-
lar parameter uq. It is the joint distribution for 7

p v 1 (Ir Ir )v in terms of the variables cos81 and
cos8q. Recall that Hq is the polar angle of pq in the

rest frame, see Fig. 2(a). Similarly 81 is the polar
angle of the n'I in the p1 rest frame when the boost
is directly from the Zo rest frame (or p' rest frame),
see Fig. 1. This joint distribution for 7.

q with helicity
AI = h/2 is given by

dN =R (HI, H, Q ) .
d cos8q dQp

(3.16) dN = pM (HI 81),
d(cos 81 )d(cos81)

(3.17)

[To rewrite these formulas for r2+ decay, the "barred"
diagonal elements of Eq. (3.12) appear on the right-hand
side and 81 m Hz, 8 -+ Hs, p m ps on both sides of
Eqs. (3.15) and (3.16).]

where the composite decay density matrix elements is
given by [for off-diagonal counterparts see Eqs. (4.16)—
(4.18) below]

p11 = (1+h cos81 )[cos uI cos 81+ z sin uIsin 81]+ (r /2)(1 —h cos81 )[sin uI cos 81+ 2(l+ cos2uI) sin281]

+h(r~/9 2) cos p~ s11181 sin 2ldI [cos 81 —
2 sill 81) (3.18)

Here uI is the Wigner rotation angular parameter [see
Eq. (3.20) below]. Alternatively, p1,1, can be written in
the factorized form

G(HI ) = sin (dI(1 + h cos81 )

+(r /2) (1 + cos uI) (1 —h cos 81 )
—h(r j~2) cos P sin 2uI sin 81 (3.19c)

pI,s(HI, HI) = cos HIE(HI ) + 2 sin HIG(HI ), (3.19a)

where

Equation (3.19a) is a simple generalization of
W+(cos 81,cos 81) given in Rouge's Orsay paper [3,19].

E(HI ) = cos uI(1+ h cos81 )
+(r /2) sin urI(l —h cos81 )
+h(r /v 2) cosp sin2urI sin81 (3.19b)

C. Derivation of dN'/d(cos8q )d(cos8&)
joint distribution

Equation (3.18) is very easily derived. The (x,y, z )
coordinate system of Fig. 3 is transformed into the
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(2:I,y2, z2) coordinate system of Fig. 1 upon [19]a Wigner
rotation by ~~ about the implicit y axis of Fig. 3. The
angular parameter ~~ is given by

Arcs on Unit Sohere "radius" 0~

sinu&i ——m~Pp sin81 /pi,

M(m —mp + [m + mp ]P cos81 )cos (dy

(3.20)

where M = E, = the Z /p' mass, m = the 71 mass,
m~ = p mass, pq ——the magnitude of the p momentum
in the Z /p* rest frame, and p, P describe the relativistic
boost to the ri rest kame [p = M/(2m)]. Note that the
p variables p~, E~-, and 8& are equivalent variables,
see Eqs. (3.24)—(3.26) below.

The Wigner-rotation equations for transforming

(3.21)

are explicitly

cos 8 = cosa&i cos 81+ sinui sin 81 costi ', (3.22a)(~)

sin8 cosP = —sinu&i cos81+ cosidi s11181cosgi(')

sin8 sing = sin81singi '~ ~ ~ ~ (i)

(3.22b)

(3.22c)

in the present paper's notation. So, here, we only list
the expressions needed to determine the Z, or p', rest

where the i superscript denotes that this Wigner rota-
tion is "initialized" versus the 7 momentum direction
in the Zo (or p') rest kame. [The form of Eqs. (3.22),
and of Eqs. (3.31) below, does not depend on whether
it is the i = B axis or the i = A axis that the ~ trav-
els along. See Fig, 5, its caption, and the discussion in
the next paragraph for the definition of these two axes.
Also, the final result of the present derivation, i.e., Eq.
(3.18), does not depend on which axis it is since QI( l

is integrated out. However, the physical significance of
the Wigner rotation versus the p p+ half-plane does de-
pend on which axis it is. For example, in Sec. IV in the
discussion following the full S2SC function of Eq. (4.9),
the experimentalist's observable event variables are ex-
pressed in terms of the p p+ half-plane. Consequently,
we introduce this terminology here. ]

The first paper in Ref. [10] explains in detail the kine-
matics of the process

e e+ + ~ r+ -+ (p v)(p+v)

"radius" (~ - ()p)

frame angles 81, Hq, and cosP. The angle between the
two w decay planes is P, see Fig. 2. The direction of the

momentum can be determined [20] up to an ambigu-
ity as to whether to use a B or an A axis. This twofold
ambiguity (due to the missing v and v momenta) is illus-
trated in the present paper in Fig. 5. The three variables
Ep E$ p~ = pq, and Hq are equivalent:

C-M(m'+ ~ ') + 4EI~'l
Oq ——arccos

i (m' —m ')11M' —4m'
~

0&8, &~, (3.24)

where El is the p energy in the Z rest &arne. So
the angle Oq of pq in the Z rest &arne is determined
uniquely from cos Ol and sin 0& of

pl cos 81 = 7(pl cos 81 + PEI ) (3.25a)

Py sin Ol = Pl- sin Ol (3.25b)

with pq the pq momentum in the Z rest &arne. Here

pl and El are, respectively, the momentum and energy
of p] in the 7l rest &arne:

m2 —m 2»™m' E. = [-,'+ (».)']"' (3 26)
2m

Since 81 and 82 are known, cos P can be expressed explic-
itly in terms of the cosine of the opening angle g between
the pq and p2+ momenta in the Z rest &arne:

Z' rest frame

FIG. 5. Note that the remaining series of 6gures are all
in the Z or p' rest frame. Arcs on unit sphere about the

p and p+ momenta specify the ~ momentum direction up
to a twofold "A-axis" versus "8-axis" ambiguity. Note that
P~+ Pn = 2s', and so cos P~ = cos Ps, but sin P~ = —sin Ps.
Therefore, cosg is measurable but the sign of sing is not,
because of the missing v and v momentum.

4m' t' (ME, —I' —m, 2)(ME, —~' —~,') &
sin81 sin82 cosp =

~

pip2cosg+m' m'' M —4m
(3.27)

To complete the derivation of Eq. (3.18), the azimuthal
angle PI('& is integrated over (kom zero to 27r).

d% = paw(8~, 82)
d(cos 82 )d(cos 82)

D. dlV/d(cos Hs )d(cos Hs) joint distribution for
v + -+ p+ v m (m+ s o)r

Similarly for r2+ with helicity A2 ——6/2 the joint dis-
tribution is given by

where

ph, , i, = p g h, (subscripts 1 m 2, a -+ 6) (3.29)

Equation (3.29) follows since w+ ~ p+v ~ (1r+z' )v is
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the CP-conjugate process and p&b is even in P . This is
a special case of the CP substitution rule shown below
in Eq. (4.18).

The Wigner-rotation equations for transforming

f 8, & ( 8,-
(;) (3.30)

b)
are

cos Hb = cos u2 cos 82 + sin u2 sin 82 cos p2 ~'l,

(3.3la)
A ~

sin Hbcospb = —slllld2 cos 82+ cos(d2 S11182cos $2
(3.31b)

sin Hb sin Pb = sin 82 sin/2&'&, (3.31c)

where i denotes that this Wigner rotation is initialized
versus the x+ momentum direction in the Zo (or p')
rest kame. The angular parameter w2 is obtained as in
Eq. (3.20) where now ui ~ u2 with the right-hand-side
subscripts 1 + 2. This Wigner rotation by ug is about
the implicit yg axis of Fig. 4.

The Wigner rotations in Eq. (3.22) [(3.31)] depend,
respectively, on the 7 (r+) momentum direction. So
when a spin correlation between 7 and 7+ is being an-

IV. DERIVATION GF STAGE-TWO v.

SPIN-CORRELATION FUNCTIONS

A. The full S2SC function

In this section we derive the full stage-two spin-
correlation function for the decay sequence

Z or p' m ~I ~2+ m (pi v)(p2+v)
m (z I z I v) (z 2+m 2~b ) . (4.1)

We start as for a beam-referenced spin-correlation func-
tion (see Sec. IV of first paper in Ref. [10])and consider
the production-decay sequence

-+ ~ or+ +71 72
0 + (4.2)

where the ellipsis indicates the remaining decays of Eq.
(4.1). The general angular distribution is

alyzed, e.g., in I(EI,E2, . . .) of Eq. (4.10) in the next
section, one must choose the same i value in Eqs. (3.22)
and (3.31).

I(OB ~B 81 4'I 8o 4'o 82 42 Hb 4'b) — ) Pi g ), ;1' (e e ~ ri +2 )
A1AgA~Aq

xRb g~(ri w p p M )Rbzg&(r2 w p v w ''') (4.3)

where the composite decay density matrix for 7 -+ p v ~ is given by Eq. (3.1), and that for 7.+ -+ p+v m
is given by Eq. (3.4). For initially unpolarized particles in the e e+ collision, the 71 r2+ production density matrix
[10] is

(4.4)

where A = Ag —A2, A' = Ag' —A2', and 8 = sg —82.
Equation (4.4) is for the center-of-mass frame of the e e+
collision. The final v direction specifies the z axis of the
Z, or p', polarization. In this reference system, 8~ and
4B specify the e (beam) momentum's direction. In Eq.
(4.4), the e e+ ~ Zo, or p', production amplitude is

T(si, s2) and Dzg~ is the Z, or p', propagator factor.
With Eq. (4.3) there is an associated difFerential counting
rate

tion density matrix, i e , in the T.(s.i, s2) amplitudes for
e e+ -+ Zo or p', in Eq. (4.4) the bracket factor

() ~ 1/4[IT'(+-) I' di(ieB)di i(o-B)

+I&( +)I'db, I(eB)d—i i(o-B-)] . (4 6)

4 =41 +42 (4.7)

Each term in Eq. (4.3) can depend on the angle between
the two 7 decay planes

dÃ = I(OB, 4 b, . . .)d(cos OB)d@B d(cos 81 )dpi
xd(cos 8~)d+~d(cos 82 )dcj&2 d(cos Hb)d@b, (4.5)

and on the angular difFerence

@'B = C'B —41 (4.8)

where, for full phase space, the cosine of each polar angle
ranges kom —1 to 1, and each azimuthal angle ranges
&om 0 to 2m.

From the general expression in Eq. (4.3), the full S2SC
function follows directly: Neglecting O(m, /E, ) cor-
rections due to the 6nite electron mass in the produc-

Holding P and 4B fixed, the angle PI can be integrated
out [21]. Next we integrate out the 4B and OB angles.
Consequently, the Zo/p' production intensity factors are
common for each term, i.e., there is an overall factor
[IT(+—)I2+ IT(—+)I2] times IDzy~I 2. We suppress it.
The resulting full S2SC function is relatively simple:
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I(EI,E2, +;8,+;Hg„@s) = ) [T(hI, II2)['Rp„,p„Rp„,p„+e' T(++)T ( ——)r+ r+ +e ' T( ——)T (++)

where the composite decay density matrix elements are
given in Eqs. (3.7) and (3.11). The Z, or p* —+ r ~+
amplitudes T(hl, h2) are given in Ref. [10]. Note that
on the left-hand side of Eq. (4.9), we have replaced the
Hq angular dependence by the center-of-mass system p
energy Ei [per Eq (.3.24)] and similarly Hq by the p+
energy E2.

B. Wigner rotations and summation over ~ ~+
production axis

Due to the missing v and v momenta, it is necessary
to sum the Eq. (4.9) distribution over the B-axis—A-axis
ambiguity to obtain the distribution to be compared with
experimental data. It is straightforward to do this while
also performing the associated Wigner rotations. We
parametrize the difFerence between the A axis and the
B axis by the two internal angles nq and o.2 shown in
Fig. 6 for the case 0 & aq & x, and shown in Fig. 7 for
the case Ir & o.l & 2Ir. nl and n2 can be expressed [22]
in terms of the observable variables cos P, 81, and 82.

tan(1/4[O. I —u2]) =cot(P/2), (4.10a)
cos(1/2[Hi + 82))
cos 1 2 81 —82

where

dQ[(;) = dgd(cos HI )d(cos 82 )dgl d(cos81)

xd$2d(cos 82), i = A, B . (4.lib)

In Eq. (4.11a), I(EI,E2, . . .) is given by Eq. (4.9).
The first term in Eq. (4.11a) is the B-axis term. We

express it in terms of the observable (experimentalist's)
event variables. The B transformation equations are

4'I 4'I + cII/2 + Ir i

——pg —a2/2 .
(4.12)

cos Pi ' = —cos PI cos cll/2 + slIl f1 siI1 o!I/2

S1I1$1 ' = —SII1$1 COS O.'I/O + Cos QI Slii &XI/2,

(4.13a)

The upper (lower) sign in the first equation is for the case
0 ( al & Ir (Ir ( a.l & 2Ir). Thus, in I(EI, E2, . . .) of Eq.
(4.9), to make the B transformation we use (upper signs
for B-axis case)

tan(1/4[o'I + o'2]) = —cot(p/2)
sin(l/2[81 + Hq])

sin 1 2 81 —82

(4.10b)

cos Q2
' —cos fg cos clg/2 + slI1 fg sin o'2/2

sin/2 ' ——sin/2 cos(12/2 + cosfg slllcl2/2,B,A
(4.13b)

where cot($/2) = g(l+ cosg)/(1 —cosg).
VVe choose an experimental convention that the ob-

servable angle P between I' and 7+ decay planes which
describes the "empirical event" lies in the range [0, Ir].
The corresponding full S2SC distribution is

in Eqs. (3.22) and (3.31) to replace explicitly 8,$
81,41 and HSAS —1 82,42

The second term in Eq. (4.lla) is the A.-axis term. It
has pA = p+ Ir in the analytic range pA g [n. , 2Ir]. The
A-transformation equations, compare Fig. 7, are

d+ —I(@1 @2 . ) d[fB1+ I(@1 @2 ~ ~ )dfl[A (4 11a)
= PI —ul/2+ m,

(4.14)

42" = 42 + ~2/2 .

Thus, in I(EI,Eq, . . .) to Inake the A transformation we

A

Z' rest frame

FIG. 6. Since cosg, 81, and Hq are measurable, the angles
n~ and cxq are known &om elementary spherical trigonometry
(see text). So, one can calculate the eS'ect on the full stage-two
spin-correlation function, Eq. (4.9), of not knowing the A axis
versus the B axis. This Sgure is for the case 0 & o.q & m.

Z rest frame

FIG. 7. Same as Fig. 6 except for case m & nq & 2x.
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use Eqs. (4.13a) and (4.13b) (lower signs for A-axis case)
in Eqs. (3.22) and (3.31). [Since the v momentum
direction has been chosen in Fig. 5, Eqs. (4.12) and
(4.14) are not symmetric. )

Equation (4.9) is therefore a parametric distribution,
i.e., it is described explicitly in terms of 8 and P and
parametrically in terms of Hq and Pq, etc. This para-
metric formulation has occurred because of the necessary
Wigner rotations [Eqs. (3.22)] and (3.31)j and because of
the A-axis —B-axis summation [Eqs. (4.12) plus P~ ——P
and Eqs. (4.14) plus P~ = P+ x]. For many purposes,
a simple parametric description is as useful as an ex-
plicit analytic distribution. In this manner, we obtain
the results listed in Table III in the next section. [If the

momentum direction were known, e.g. , via a silicon
vertex detector, one could use Eq. (4.9) directly, with
greater sensitivity, and without these additional para-
metric transformations [18].]

C. Two simpler S2SC functions

The idea in this subsection is to integrate out some
of the variables to obtain simple nonparametric distribu-
tions which still contain signi6cant stage-two spin corre-
lations.

In Eq. (4.9), the p composite density matrix elements

(RI„y„,r+, r +) depend on Hq, 8,P . By the Wigner
rotation about the 7 direction, Eq. (3.22), they depend
on Hq, Hq, Pq~'i. Similarly, the p+ composite density ma-
trix elements (R~, p„,r+, r +) depend on 82, 8s, gs.
So by the signer rotation about the r+ direction, Eq.
(3.31), they depend on 82, 8q, g2

' . Since the v and v
momenta directions are unknown, we integrate out the
'two aximuthal angles Pq s~'& and sum over the twofold
A-axis —B-axis ambiguity. This gives a Gve-variab}e S2SC
function

I(Eq, Es, g;Hq, 82) = ) IT(hq, h2)I pg, g, pg, g, +2 cosPRe{T(++)T'(——)p+ p+ }.
hghg

(4.15)

If the A-axis —B-axis summation is not done because the v momentum direction is known, then there is an extra
term (—2 sin/1m{ })where { }is as in Eq. (4.15). This extra term would' only vanish if both CP invariance
holds in (r ~+) production and P = Ps = 0 in 7 + decays.

The integrated, diagonal composite density matrix elements

2'
pg, I, —= (1/2m) dPx' R&, p„/IA(0, —2)l

0

2'
r~.1. —= (1/2~) d&'2'R~. ~./I&(0 2) I'

0

were already listed in Eqs. (3.18) and (3.29). The off-diagonal counterparts are

2%

p = (1/27r) dy~ ir+ /IA(0, —1/2) I

0

(4.16)

and

2'
= (P +)' —= [(1/2&)-d&1' ' +/IA(0 —1/-2)I']'

0

= sinHq [cos uqcos Hq+ 1/2sin uqsin Hq] —(r /2) sinHq [sin uqcos Hq+ 1/2(1+ cos u~) sin Hqj

—{r /(~2)}(cosP cosHq —ising )sin2urq[cos Hq —1/2sin Hq] (4.17)

2K

P+ =—(1/2~) d-4»'r+ /I&(0, —,')I'-
21r

= (~-+)' =—K1/2~) d4.'*' +r/I&(0* —,') I']'
0

= —p+ (subscripts 1 ~ 2, a ~ 5, P -+ —Ps),
which shows a useful CP substitution rule. These can also be written in the factorized forms

(4.18)

where

p~ (81 ~ Hy) = cos 81E+ (81 ) + ~ S1I1 81G+ (81 )

p+ (82, 82) = cos 82I"+ (82 ) + 2 sin 82G+ (82 ),
(4.19a)

F+ (Hq ) = [cos uq —(r~ /2) sin wq]sinHq —{r /(V2)}(cosP cosHq —i sinP ) sin2uq, (4.19b)
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Gi (Hi ) = [sin ~i —(r /2)(1+ cos ~i)]sinHi + (r~/(v 2)j(cosP cosHi —i sinP ) sin2~i . (4.19c)

Here, I"+ (82 ) and G+ (82 ) follow respectively from F+ and G+ by the transformation of Eq. (4.18), including
of course the overall minus sign.

By integrating out the angle between the r and r decay planes (f& dP), a simple four-variable S2SC function is
obtained

1(E11E2&81& 82) ) iT(~1~2)i VhghgPhghg

h142

(4.20)

Using both the simpler four variable and the full S2SC
functions of Sec. IV, we have calculated the associated
"ideal statistical errors" for a least-squares measurement
[23] of the CP violation parameters P = P —Ph and
r /rh Our r.esults are shown in Tables I—III. For sim-
plicity in this paper we do not investigate correlations
among the errors.

In Tables I and II, for the (p, p+ j sequen-
tial decay mode the four-variable S2SC function
I(E~ , E~+, Hp--, H~+) of Eq. (4.20) was used. In or-
der to sum over the modes, we consider usage of this
S2SC from a (p p+j data set to measure r and I9 with
rz and Ph at standard model values, Eq. (1.8). Then
it could be used. &om the same data set to measure ~b

and Pb, with r and P with SM values. If CP invari-
ance holds, the values should agree within errors. Since
phh of Eq. (3.18) depends only on cosP and P = 0
in the standard lepton model, the error is listed in the
square of P~. To calculate the error in measurement of
r and P, the SM values were assumed. In the case of
the (p 7r+ j and {p t+j decay sequences, the analogous

TABLE I. At R . . = Mz, ideal statistical errors for two
tests for CP violation in 7- ~ pv by the simpler S2SC func-
tion I(Ei, E2, 8&, 8q), see Eq. (4.20), for the sequential decay
Z —+r r+ wzthr ~ p v ~ (vr vr)vandr+ ~ p+v,
7I+v, or /+tv . We use 10 Z events.

E. . =M
Mode

(c c+)
(p s+)
{» 1+}
Sum of above
modes

Number of
events

20 302
9 847
29 074

59 223

Ideal statistical errors
~(r-) ~(P-')

0.006 5 (12')
0.009 1 (12')'
0.005 6 (15')

0.0039 [0.6%) (10 )

In the second line, we have assumed T(++) = T(——)
which follows if one assumes CP invariance for the pro-
duction process Z (or p') -+ r

Note that the composite density matrices pgg and phh
of Eqs. (3.18) and (3.29) depend respectively on both
r, P and rh, Ph so the simpler S2SC given in Eq. (4.20)
can be used to test for CP violation in w m pv. In
the next section, the ideal statistical errors for o(r ) and'

0'(P ) associated with I(E~ , E~+, H-i, 82) are listed for
the fp, p+ j sequential decay mode.

V. IDEAL STATISTICAL ERRORS

three-variable S2SC functions I(E~ , E~,.-8~- ) were used
(B = vr, I). The well-known decay density matrices [7,11]
for r -+ Bv just need to be inserted into Eq. (4.20). Note
that by inclusion of the w+ ~ x+v and v+ m l+viv
modes, there is an improvement by a factor of 2 in 0(r ), '

but only slight improvement in 0(P ).
For Table III, the full S2SC function I(Ei, E2, P;

8,p; Hh, ph), see Eq. (4.9), for the (p, p+j sequential
decay mode was used [see Eqs. (4.10)—(4.14)]. There is an
improvement by a factor of 6 to 13 in a'(P ) from the full

S2SC versus the simpler four-variable I(E~ , E~+, Hi, 8-2)

of Eq. (4.20). For the full S2SC function we do not list
the values for 0 (r ) because there is only a 10—15'%%uo im-
provement in the errors in the measurement of the moduli
ratio r for 7 ~ p v.

In the tables notice that measurement of the phase
difFerences P, . . . at p' energies rather than at the Z
does not improve as much as expected, 6, through the
increase of statistics. This happens because in using p po-
larimetry a signer rotation connects the center-of-mass-
&ame's p observables to the respective w-rest-&arne's p
observables. For example, the P dependence of phh in
Eq. (3.18) disappears right at the 7 r threshold. For this
reason a measurement of P, . . . is more powerful at 10
GeV than at 4 GeV.

In an eH'ective Hamiltonian &amework, measurement
of P g 0 or P' g 0 implies a violation of T invariance
when. a 6rst-order perturbation in a Hermitian Hamil-
tonian is reliable. Final state electroweak interactions
can [10] simulate T violation effects for the production-
decay sequence of Eq. (1.1) but such effects are neg-
ligible for these S2SC functions: In the case of these
S2SG functions, the direction of the initial e beam has
been integrated out so there is no contribution from the
Im[T(+ —)T'(—+)] term which is afFected by p' —Z in-
terference, by the one-loop Z m ~ 7.+ vertex correction,
and by the interference of the m 's &om the p and p+.
Unlike in K~3 decays, since v is only weakly interacting
there is no simple electromagnetic rescattering of the v
and p

The experimental background to the v —+ p v mode
from the v. —+ ai v~ mode where ai —+ 7t. 2m could
be included in a combined S2SC based on p and ai po-
larimetry as has been recently done for other ~ spin-
correlation tests [4]. This does require a smearing over
the S2SC distributions. Smearing is also required to in-
clude the finite p width, see Thurn and Kolanoski in [7],
and the usual e e+ /ED radiative corrections. How-
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TABLE II. At E, = 10 and 4 GeV, respectively, ideal statistical errors for two tests for CP
violation in v. m pv by the simpler 82SC function, Eq. (4.20), for the decay of an otf-mass-shell
photon p m vr.+ with r -+ p v m (s s )v, aud r+ -+ p+v, w+v, or 1+v~v .We use 10

W r r+ events.

Mode

(p s+)

Sum of above
xxlo des

Nuxnber of
events

605 127
293 527
866 658

1 765 312

o(r )
0.001 2

0.001 7
0.001 0

0.000 7
[0.1%]

10 GeV
o(po )

(5.5')'
(5 9 )'
(7 5 )'

(4.7 )' 0.000 7
[0.1%]

(7.8')'

E, =4 GeV
o(r-) o(p-')

0.001 1 (8.8')
0.001 8 (9.1')
0.001 0 (11.5')

E,
Mz
10 GeV
4 GeV

Number of
(p p+)
events

20 302
605 127
605 127

Ideal statistical errors
o(p) o(p') n(p-)
(deg) (deg) (deg)

1.88 3.15 1.84
0.43 0.74 0.42
0.86 1.13 0.71

ever, such improvements of the analysis also do not give
rescattering between the v and (z xo).

VI. CONCLUSIONS
In the context of spin-correlation data analyses in tau

r-physics, the purpose of this paper is to point out that
p polarimetry gives a fundamental measurement of the
non-CKM-type CP violation observables P = P —Ps
and r /rs for 7 -+ pv decay Noti.ce in regard to measure
ment of P that at p' energies it is necessary to include r
spin correlations because if one integrates out E~+ and 82
in Eq. (4.20), there remains no dependence on P since
T(+ )= T( —+) for p—' -+ r r+ At p.

' energies, p
cannot be measured by only analyzing the decay of an
unpolarized 7 via r ~ p v ~ (z no)v. Analogously
at the S, without r spin correlations the dependence
goes as a~ cosP where

a~ 2a v /(v —+ a ) = (P ) —0.138 .
Notice that the measurement of P by a simpler four-

variable S2SC function is possible only because of the
existence of the Wigner rotation. In pp, p„see Eq.
(3.18), cosP appear as "cosP sin2uq. " This observa-
tion is consistent with the listings in Tables I—III which
show smaller statistical errors o'(P ) at higher energies,
whereas in the tables the statistical errors o (r ) go as the
square root of the total number of events.

Assuming a V p A coupling for ~ -+ p v (7+
p+v), it is important to ask: Since by CP invariance
B(Ap, A„-) = A( —Ap, —A„-), can we measure more am-
plitude ratios or phase difFerences Rom e e+ -+
Z -+ 7 7+ ~ (p v) (p+v) + by some other an-
gular distribution? The answer is no. One cannot mea-
sure ~A(0, —2)] versus ]B(0, 2)] because they each appear
squared in the overall normalization factor of any I( .).
One similarly cannot measure 4O versus /os because
A'A appears in any I( .) and so the net r -+ p v
phase is kP, or zero, likewise from B'B

TABLE III. Ideal statistical errors for CP and/or T viola-
tion tests based on the full S2SC function of Eq. (4.9) for the
(p p+) sequential decay mode. Note that P = P —P& aud
P' —= Po+P~.

It is very important to notice that the kinematic com-
plications (see Sec. IVB) in the measurement of P and
r arise because of the two-fold ambiguity as to the v
moxnentum direction. For a large sample of events, this
ambiguity may in practice be absent when silicon vertex
detectors are operational in p', Z -+ 7 r+ ~ exper-
iments. However, in the present paper, we have assumed
that the r momentum direction is unknown.

The prototype S2SC functions in this paper need
to be simplified and optimized. Kinematic syxnmetry
methods could be investigated which describe the same
production-decay sequence, but in variables more con-
venient in practice than those which naturally occur in
the helicity formalism. Clearly generalizations of triple-
product correlations, and of the related final-state mo-
xnentum tensor techniques of Bernreuther and Nacht-
mann, and others, might be useful [8,12] if generalized to
S2SC. It probably would be helpful to incorporate the op-
timal variable(s) and techniques for 7 polarization, which
are being developed by Rouge and others associated with
the ALEPH collaboration [3].

As in the case of ordinary spin correlations, S2SC func-
tions are independent of the polarization state of the de-

caying particle [24] here the Zo or off-mass-shell photon
p'. Consequently, there exists good factorization [7] from
initial-state effects such as from initial-state /ED radia-
tion.

This spin-correlation technique for searching for CP
violation is of course also relevant to other production-
decay sequences. For example, (a) S2SC functions can
be derived [18] for r ~ aqv decay, (b) W polarimetry
information from W + lv can be used to test for possible
CP violation in top quark decay t -+ Wb arising f'rom a tt
Production process, and (c) w polarimetry information in
a S2SC could be used to test for possible non-CKM-type
CP violation in W -+ rv decay arising &om a W+W
production process.
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