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Natural parity states of SU(6) X O(3) in baryon spectra: Evidence for (56,odd ) via 6 states
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The possibility of some natural odd parity 5 states in the latest PDG tables belonging to (56, odd )

members of SU{6)XO(3) which start with (X=3) is explored dynamically, by employing a new complex
harmonic oscillator {HO) representation which provides a compact S3-symmetric description and is also
realizable as a solution of a 3D dynamical equation (BSE) based on a vectorlike harmonic confinement.
The complex representation permits the identification of an additional quantum number (X, ) over and
above those already realizable in the standard (real) HO basis, and also facilitates the solution of the
above BSE in terms of the Casimir terms of several distinct SO(2, 1) algebras deducible from the former.
The model is precalibrated to a fairly representative cross section of the known (N, h) spectra so as to
provide the needed mandate for extrapolation. Fair agreement with expected mass locations for several
new 5 resonances is found in terms of appropriate {56,odd ) quantum numbers which are not only
unique in cases such as G» and I3», but also compete very favorably with parallel (70 ) assignments in

several others. More vigorous searches are therefore recommended for such 6 states which are much
less contaminated by mixing than are the corresponding X states.

PACS number(s): 14.20.Gk, 12.40.Yx

I. INTRODUCTION

One of the most successful classifications in baryon
spectroscopy is based on SU(6)XO(3) whose continued
confirmation by Particle Data Group (PDG) tables [1]
since Berkeley XIII [2] is generally regarded as a bedrock
for the harmonic-oscillator (HO) framework that under-
lies this classification. The full HO classification consists
of several types of towers labeled by the total quantum
number E, the orbital quantum number L (where
I.= 1,2+ li in obvious notation}, the quark spin S ( = —,

' or
—', ), the J and the S& syinmetry types (s, m, a) going with

56, 70, 20 states, respectively [3]. The more important
among these are the natural parity states [4]

(56,even+ ), (70,odd ), (70,even ), (56,odd ) .

To these may be added a second set of towers consisting
of unnatural parity states:

(20,odd+ ), (70,even ), (70,odd+ ), (20,even ) .

(1.2)

The internal structure of any one of these towers may be
augmented by including radial excitations within each
species, as well as certain other (specialized) types of sca
lar excitations. Note that 56 and 20 go only with
natural- and unnatural-parity states, respectively, while
70 goes with both.

The first two members of (1.1), which may be regarded
as the "main sequence" terms since they start with N =0
and 1, respectively, received the earliest confirmation [2],
and for several years were thought to be the only states
realized in nature [4]. The third member of the series
which starts with N=2 found some early signatures in

P»(1710) and satisfied a theoretical demand for strong
SU(6) breaking [5] of the nucleon wave function through
mixing with (70,0+). A search for the last member of
the natural-parity series (1.1), which starts with IV =3,
was initiated by Cutkosky et al. [6] in the context of
D»(1930) as a member of (56, 1 ), but they found its
mass too low (by 200 MeV) for such an N =3 assignment
[7].

In contrast, a direct experimental signature for the
unnatural-parity series (1.2), whose prototype is (20, 1+ )

with N =2, continues to be practically nil, after almost
three decades of the quark model. A possible reason [8]
could be that its a-type symmetry deviates so strongly
from the standard s symmetry of the nucleon that its pro-
duction mechanism through the normal m-N channel [9]
is severely strained due to the need for a big "symmetry
transfer" (ESi =2). This means that while the produc-
tion of a 70 (m type) of natural parity requires a standard
one unit of symmetry transfer (hS~ =1}from s type to m

type, in accordance with the spirit of the additive quark
model [10], the production of a 20 (a type) through a
similar mechanism requires two successive stages of sym-
metry transfers with AS& =1 each, giving rise to a total of
553 2. This results in a considerable suppression of its
production compared with AS& = 1 processes through the
standard production channels (nN) and (yN) (.see Sec. V
for a further discussion). Similar remarks apply to other
members of the series (1.2) each of which involves the
generic antisymmetric vector g=gXsl (L =1+), where
(g', q) form a two-component m representation of S3 sym-
metry [3].

No such inhibiting selection rule operates against the
production of (56, odd ) states, the only outstanding
natural-parity member of the series (1.1), so that it should
be of considerable interest to look afresh for their signa-
tures in the context of the 1990s [1], many years after
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they were first suggested [6,7]. The latest PDG tables [1]
do seem to indicate several new P = —1 candidates in the
2—2.5 GeV regime, and the search for {56 ) members
among them can be considerably narrowed down by con-
centrating attention on the b, states (S=—,') of the
highest seniority (N =L) and the highest J value
(J=L+—,'), since these are much less contaminated by
the background of neighboring 70 -type 6's than are
their nucleonic (S=—,') counterparts. For example, the
simplest assignments for 639(2400} and I3 $3(2750) are
I. =3 and 5, and respectively, each with S =

—,', thus
naturally qualifying them as 6 members (J=L + —,') of
(56,3 ) and (56,5 ), respectively. A few other b, candi-
dates of lower seniority, and hence, not free from mixing
with 70 states, are 6~7(2200) and of course D»(1930)
[6]. The interested reader is also referred to some recent
reviews on the subject [11].

In this paper we shall examine the status of these 5
states with a view to exploring their (56, odd ) assign-
ments on dynamical grounds of their energy levels While.

we are aware of the low-star status of these resonances, it
is precisely this fact that probably makes such an exercise
worthwhile, since a dynamical input could provide a
valuable complementary tool to the general methods [9]
of partial-wave analysis (with high inelasticity factor}
which may not be discriminatory enough. This is apart
from the general problem of "mass shifts" associated
with strong couplings to inelastic channels [9] (see Sec. V
again}. In this respect the locations of well-established
(four-star) resonances should prove particularly useful for
calibration of the dynamical method itself through a
sufficiently illustrative comparison.

For greater confidence in the spin-parity assignments
of these resonances it is also necessary to probe the struc-
ture of their respective wave functions whose simplest
manifestations would come about in terms of their princi-
pal channels of production and decay (n N, y N, hm ). This
had indeed been the practice [12,8] since the Feynman-
Kislinger-Ravndal (FKR} days [13] of the early 1970s
and was resumed with renewed vigor in the 1980s [14],
within the respective dynamical models of the authors
concerned. In this respect, ideally speaking, a proper test
of a full-fledged dynamical model lies in a simultaneous
comparison of both mass spectra and decay width predic-
tions with data, but it is good to remember that the latter
in general are more difficult to evaluate than the former,
and the gap increases rapidly with the degree of sophisti-
cation envisaged for the model. For example, in an
efl'ectively three-dimensional (3D) approach, the overlap
integrals for a two-body decay are relatively simple
[12—14] and come under the general description of, say,
the quark-pair-creation model [15] which uses the over-
lap of the corresponding 3D wave functions of the parti-
cles participating in the decay process together with such
unifying principles such as partial symmetry [16,8]; and
indeed the width calculations noted above [12—14] are by
and large based on a similar philosophy. If, on the other
hand, the dynamical model is more involved, such as a
4D Bethe-Salpeter equation (BSE), the calculational gap
between spectroscopy and decay widths can be quite sub-

stantial. For while a 3D reduction of the BSE usually
proves adequate for the spectroscopy [17], a fully recon-
structed 4D wave function must be employed for the
evaluation of the transition amplitudes via quark loops
[18] (involving 4D overlap integrals), in order that the de-
tailed implications of such a dynamical approach may be
properly addressed. This is already hard enough for
mesonic transitions [19], but the complexity increases
quite rapidly for baryonic transitions [20].

In this paper, which is based on a 4D model, we shall
address only the baryon spectroscopy sector (through a
3D reduction of the BSE), and relegate the evaluation of
the transition amplitudes to a later communication (so as
to keep the length of this paper within reasonable
bounds). Nevertheless, we shall offer a general perspec-
tive, based on semianalytical considerations, as to which
channels (production as well as decay) may be profitably
checked for possible identification of 56 states by analo-

gy with the more familiar 70 states (see Sec. V}. For a
further check on our conclusions, we shall use a prior
calibration of the BS model through a comparison with a
good cross section of baryonic data for the well-
established states, so as to provide a meaningful mandate
for extrapolation to less familiar cases.

The paper is organized as follows. Section II gives a
panoramic view of the main steps leading to the 3D form,
Eq. (2.18), of the BSE for a qqq system, for a logically
self-contained presentation of the basic dynamics, but
omitting inessential details which may be found in the
published literature. In Sec. III, we outline a practical
method of reduction of Eq. (2.18},in terms of the two in-
dependent 3D variables (g', vi } [3],leading to Eq. (3.16), so
as to make it amenable to further analytical treatment.
To that end, Sec. IV outlines a new classification scheme
in a complex HO basis {model independent) which not
only provides a transparent S&-symmetric description of
the various qqq states involved (including the 56 states
under study), through the identification of an additional
quantum number N, (over and above those accessible
through the standard (g', vi} basis [3]},but also greatly fa-
cilitates the solution of Eq. (3.15) in terms of the Casimirs
of several distinct SO(2, 1) algebras deducible from the
complex basis. Section V presents first the numerical re-
sults on a good cross section of the known baryonic
states, including the efFect of mixing among them caused
by the diferent pieces of the one-gluon-exchange (OGE)
term, Eq. (3.13},evaluated in the complex HO basis. The
prior calibration thus provided on the working of the
model is then followed by listing the actual predictions of
the model in respect of the 6 states of 56 odd, together
with a brief discussion of the patterns to be expected on
their couplings to standard (n.N) channels vis-a-vis those
already known from the corresponding couplings of 70
states. The method of normalization for the spatial wave
functions in the complex HO basis is summarized in Ap-
pendix A, while some essential calculational details in-
cluding the specification of the basic constants, as well as
the treatment of the OGE term, Eq. (3.13}, in terms of
the wave functions in the complex basis, are outlined in
Appendix B.
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II. DYNAMICAL BASIS FAR qqq SYSTEM: 3D REDUCTION QF THE BSE

Our starting point for qqq dynamics is a Bethe-Salpeter equation whose pairwise interaction kernel K has a 3D but
Lorentz-covariant support [21]:

(2lr) q (p ]pzp3 ) —~ g S~ (p, )SF (pz )Id g ~zK (g~z qQ ~z )% (p gl zp3 )
123

K(q, q')=iy„'"iy„'IV(q, q') ,'A, —, ,'gz—.

(2.1)

(2.2)

The kernel (2.2) is vector-exchange-like, with the scalar
function V being a sum of one-gluon exchange Vo&E and
a confining term V„„[17,22]. This is closely analogous
to contemporary studies [23] which generally seek to in-
terpret such structures as infrared modifications to the
gluon propagator, but has one important point of
difference, viz. , the function V is effectively 3D in content,
ulike the 4D structures envisaged in the latter [23]. The
30 support to the BS kernel has had a long history since
the 1960s [24], a logical perspective on which, vis-a-vis
the spectroscopic data [1] is summarized elsewhere [25].
A 3D support strongly demanded by the data [1] which
are O(3)-like is an essential ingredient of the present ap-
proach and has been aimed at an explicitly Lorentz-
covariant formulation. This last was achieved in stages,
beginning with the instantaneous approximation [17,18]
which got upgraded to the null-plane ansatz (NPA) obey-

ing limited covariance [19,22,26]. The latter NPA was to
serve as a springboard for a full-Hedged Lorentz covari-
ance symbolized by the covariant-instantaneity ansatz
(CIA) [21] which represents the content of Eq. (2.1).
Now, for a two-body qq system, the spectroscopic predic-
tions of the 3D BSEbased on CIA [21] are identical with
those of NPA [22,27] and therefore did not have to be re-
peated. For qqq systems, on the other hand, one expects
some small variations from the NPA predictions [26] be-
cause of two-body off-shell effects, and therefore the CIA
predictions for such systems requires a fresh calibration
to the well-established (N, b, } states before the same can
be taken seriously enough for the less known (56 ) ones
under the present study.

The other aspect of our ansatz is a "Gordon reduced
form" of the 4D BSE which, in the notation of Ref. [21],
reads as

i (2m) 0 (p,pzpz) —P Jd ri&zV„'"V„' 'V(Oiz~f iz)c'(p Zzp3
123 1 2

where [17,21]

5;=Plq+P; (2.4)

quantities, while V„'" is expressible as [21]

V„"=2v, P„+(P,.„+P„}+io„'„'(P;—P,')„,
and the intermediate quantity 4 is related to the actual
wave function 4' by [21]

%(p;)= gS '( —p;)@(p;), (2.5)
1

while the four-vectors Vz are [17,21]

V„"=(p;„+p „}+io„"(p,—p,'}„, i =1,2, 3 . (2.6)

The transverse components p;„of the four-momenta p;„
are defined as [21]

p,„=p;„—v; P„, v; =P -p; /P (2.7)

where P„ is the four-momentum of the baryon (mass M)
and v, is the longitudinal component ofp,„:

v1 +v2+v3 1$ p 1 +p2p +p3I 0 (2 8)

so that only two of each set are independent. In terms of
these quantities, the relative momenta q, z for (12) pair in
(2.3) are merely 2g, z„=P,„—Pz„and are effectively 3D

i =1,2, 3

The requirement of 3D support for the entire kernel in
(2.3) is now made explicit by demanding for each pair
V"' V' ' its "on-shell" value and this amounts to the re-
placement v; ~co; /M in (2.9), where

COi
=Plq +Pi (2.10)

At this stage a comment is in order regarding the BS
status of (2.3): Because of the Gordon reduction on the
y„matrices in (2.2), the pairwise kernels in (2.3) agree
with the corresponding ones in (2.1} only on the respec-
tive mass shells of the quarks involved, but since (2.3) is
now intended for the off-shell extensions of these quarks,
this form of BS dynamics [17—22,26] represents a con-
scious departure [21] from the standard BSE (2.1). Such
modifications of the BSE are, however, not unknown in
the literature [28], where the motivating factor has gen-
erally been a desire to achieve better control on its alge-
braic structure. Indeed the NPA formulation [26] of the
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g(p, pzp )=fds;dt, 4(p,pzp ),
where

(2.11)

BSE, with emphasis on Gordon reduction from the outset
[17],has all along been motivated by a similar concern, in
view of the semiempirical status of the BS kernel (2.2}.
The CIA formalism [21] presently used is merely a
reiteration of the same theme in a Lorentz covariant
manner. Next we make a 3D reduction of Eq. (2.3}in or-
der to make contact with baryon spectroscopy. This has
been worked out fully in Ref. [21],but the main steps are
summarized for ready reference. Define the 3D wave
function f as

d q', z =d q', zMds3v'3/2

to give, on its RHS,

f ds', dt, C (P iPzP, ) =i'(P'iPzP, )

(2.13)

while the ds3 integration on the RHS is expressed by the
result [21]

(v 3/2) fMdszb, i 'hz '=2miDiz' . (2.14)

D,z is the 3D denominator function for the (12) pair and
is given by the triangle function (A, ):

Diz ( z }+12~(~1&~2&M (1 v3} )/M (1 v3}

&3s3 =vi vz, 3tz = 2v3+ vi+ vz (2.12) (2.15)

together with two similar sets (s, t, ) and (sztz) obtained
from (2.11) by cyclic permutation. Note that ds, dt; is S3
invariant, so that the definition (2.10}can be taken over
for all three terms on the right-hand side (RHS) of (2.3)
with appropriate indexing. The rest of the procedure is
now straightforward and follows closely the pattern al-
ready laid out for the original formulations [17,26]. One
integrates both sides of (2.3}with respect to dszdtz, mak-

ing use of (2.11) as well as the measure [21]

2+12 &121 +P'212

Piz.zi =(1—v&)/2+(coi —coz)/2M (1—v&),

(2.16)

(2.17)

where v3 has its on-shell value c0&/M in Eqs.
(2.14)-(2.17), befitting the spectator status of quark No. 3
in the first term of (2.3). Identical results hold for the
other two terms of (2.3}, so that its resultant 3D reduc-
tion takes the form (cf. Refs. [17,26])

A i
(2~}'y(P,Py, }=y ' ' fd'KzV"'V'ziV(eiz, Kz W(P~~z}.

123 12

(2.18)

III. REDUCTION OF EQ. (2.18} V~„(q, cl') = ( ,' )(2'�)coqq —[V
q
+Co /c00]5 (cl—g' ) . (3.3)

—5:—co +co +co —M1 2 3 (3.1)

compared to co; and/or M. This gives from (2.15)—(2.17),
the crucial result

D,z
= 45co,coz+0—(5 ) (3.2)

which ensures from (2.18) that all the three terms on its
RHS have a common denominator 5 ', so that the quan-
tity 5, when transferred to the LHS, serves as a natural
energy denominator function for the entire qqq system
while avoiding any "wrong" analytic behavior in the re-
sulting 3D equation. [Since the terms of O(5 ) in (3.2)
are fully calculable, any effect of their omission can be es-
timated perturbatively if necessary. ] Next we recall the
structure of V(Q, Q') whose confining part for light (ud)
quarks may be considered harmonic, cf. [26,27] with
AO=O

We now outline the main steps for the reduction of
(2.18) in a manner closely analogous to a previous NPA
treatment [26], but with several refinements in the pro-
cedure so as (i) to incorporate the effect of the relativistic
reduced mass of the two interacting quarks [27] in the
presence of a spectator and (ii) to avoid "correction
terms" with "bad" analytic behavior (such as the term
D, hH in Eq. (3.16) of Ref. [26]) irrespective of their
(expected) smallness. Our new procedure is based on the
expected smallness of the S3-invariant quantity

The spring constant co
q

for the pairwise interaction has
the form

coq q =4M12P1421cooa, (Miz) . (3.4)

3Cp=Piil, Pzp~ 3qip= 2p3I +Pip+Pzp ~ (3.5)

in a notation which emphasizes their 3D character and
the corresponding angular momenta

Lg.= igX Vt, —L„= i AX V„— (3.6)

To explain this formula, we have used the definition [27]
of a "relativistic reduced mass" p,2=Mm, m2 of the two
constituents of fractional four-momenta m, z (in the
manner of Wightman and Garding) forming a composite
of mass M, but generalized it to include the presence of a
spectator of fractional four-momentum v3. Here the two
fractional four-momenta are m, z =P,z,Pz, . of (2.17},
while the composite mass of the pair is M=M12. For
equal mass kinematics, the approximation P, z =Pz,
=(1—v3)/2 is adequate, while Miz =M —coz since 5, in
(3.1), is small.

The rest of the procedure is closely analogous to Ref.
[26] and amounts to collecting the different pieces con-
tained in (3.1)—(3.4) and (2.9) into the master equation
(2.18) and simplifying. This is achieved in terms of a
basis set g', qi defined by [26]
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with a resultant L=L&+L„representing the total orbital
momentum of the qqq system. To take full advantage of
the HO form (3.3), it is useful to recast the (small) energy
denominator 5 in the alternative form

—2M5=(co1+co2+co3) —M ~ 3(co, +co2+co3)—M—:b,

where the (Schwartz) inequality is, in fact, quite close to
"equality" for equal mass kinematics (m, =m, =m,
=—m~ ) and b, becomes

6=9m —M + —,'(g' +g ) . (3.8)

The resultant Master equation (2.18) may now be written
in obvious pairwise notation as

b,g= W~,~f+ WooEP ~ (3.9)

W„„=(2M)(coo/2) g (1—v3) a', 2M, 2
123

2 Co
X (V12+Co/No)+ Q12/4 2 L12 (al+a2)+ p3XV12 (al a2 a1 a2

CO ~CO~ ~o 2
I

(3.10)

L12=q12X V]2 V12 Vp Vp 2q, 2
——2/12 =P,„P2„,—

Q12 4'q12V12+ 8'q12 V12+ 6

and the OGE term is expressed in a mixed (r, p) representation as

(3.11)

(3.12)

WooE = (4M/3 ) g a12
123 ~12

1 1 q 1+ 0128 012+
N~N2 r ~2 CO] 602

n5 (r, 2 ) 1 ——', o
1

o 2 ) +noncentral effects (3.13)

The OGE term will be calculated perturbatively in a 6D HO basis provided by the main (confining) term (3.10). This is
analytically facilitated with sufficient accuracy through an (iterative) averaging procedure which amounts to the re-
placements

;,-&, ), M„-M —
& &. . .-( )'.

The resulting structure of (3.9}without the OGE term becomes

bf= W„„g

(3.14)

=Mano(l —(v) ) (a, )(M —(co) } 2(V&+V'„)+
2

(M —3m~+5)+ (Qs —8J S+18)/4
co 2coo QP

+0(s', (~; —& ~ & ) ), (3.15)

where the operators Qs and J.S are defined as in Eqs.
(3.8)—(3.11)of Ref. [26].

VZP-'a, =a, —ia„, &ZP-'a, .=a, +i~„. (4.3)

IV. COMPI.KX HO BASIS FOR qqq STATES

Our aim is first to express the confining part (3.15) in a
complex HO basis characterized by a scale parameter
which may be read from this equation as

The angular momentum operators in the complex basis
are

L~= iZXVz L—z=iZ" XVz'' .

Then the total angular momentum is

P'=4Mcooa, (1—( v) ) (M —(ru) )/9, L=Lz+ L~ =L~+Lq, (4.5)

a, = 1/[1/a, —2COM ( 1 —( v) ) /(M —( co ) ) ] .

(4.1) which is adequate for handling the J S term in (3.15}.
However, for the OGE term, (3.13), we shall also need
the "mixed" angular momentum operators [30]

To that end we define the three-vector complex quantities
(dimensionless) [29] L, = i Z* X Vg, L,' =i —Z X V'z . (4.6)

i/2'; =g, +i ri, , i/2@2; =g; i q, —

and their derivative forms

(4.2) To handle the main HO terms as well as the operator Qs
in (3.15), define two sets of complex operators (tensor no-
tation}:
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~2a, =Z;+8&, &2a =Z,*+Bz
t

v 2a,.'=Z; —a~, v'2a, '=Z, —az,
l

(4.7)

parameters u, u, =u,' as u(u+1}; u, (u, +1}[31] where
[22,26,30]:

u = ,'—(N—even}, —2(N odd),
which satisfy the commutation relations

[a;,a,t]= [a;*,a,'t] =5;,
with all other pairs commuting. Next define

N =a~a N =a'~a*c i i~ c i i

(4.8)

(4.9)

which can be simultaneously diagonalized and now play
the roles of operators N&, Nv in the (g', iI) basis [26]. On
the other hand, the pair (N„N,') exhibits better S~-
symmetry properties than (N&, N„) which shows up
through the appearance of an additional quantum num-
ber N, =N, —N,' over and above the total quantum num-
ber N=N, +N,'=N&+N„. Indeed while N is diagonal
in both real and complex bases, N, exists only in the
complex basis and has no counterpart in the (g, g) basis.
[The situation is analogous to the diagonality of the
charge operator for a scalar field when expressed in the
complex (P,P') basis but not in the real (P„P2) basis,
while the energy remains diagonal in both. ] Thus, in the
complex basis we have identified a new quantum number
N, which being fully rooted in S3 symmetry should hope-
fully provide a sharper classification of baryonic states for
purposes of "mixing" wherever possible than in the stan-
dard (g', il) picture (see Sec. V for discussion}. Next we
define the nondiagonal number operators in association
with the diagonal ones:

N =a;a;, N =N'=a; a;, (4.10}

Qs = —8u, (u, +1)—8u,'(u,'+1)—4u (u +1)
2N(N—+2)+2(N, +—', ) +2(N,'+ —', )

+2N, —(N+3) —18 (4.17)

after leaving out some nondiagonal terms which connect
states differing by b,N =4 [26]. This already suffices for
the solution of (3.15) [except for some small correction
terms of 0(5 ), etc.] which comprises the HO part of the
interaction. To obtain the full solution, one must add the
OGE term, Eq. (3.13), calculated perturbatively and in-
serted in (3.9). The final result may then be expressed as
(cf. Ref. [26])

F(M, N) =F„„(M,N—)+FGGE(M, N) =N+ 3, (4.18)

where

Me@ca, (1—(v) )
9PF „=M —9m +

(4.16)
u, =(u,')= —,'(—N, even}, —

—,'(N, odd),

while the Casimiar term of (N, N, N, /2) is simply
(N/2)(N/2+ 1).

In terms of operators (4.7)—(4.9), the principal HO
terms in (3.16) may be checked to be proportional to
(N + 3 },after taking account of the scale factor P of (4.1).
Further, the operator Qs defined by Eqs. (3.8}—(3.11) of
Ref. [26] is now expressible in terms of the above Casimir
terms as

N=N, +N, , N, =N, —N, (4.11}

It is also necessary to define three sets of two step (bo-th

up and down) ladders:
X Qa

—8J S+18

3 =2a a' 3 ~=2ata. '~i i i i

C =a;a;, C~=a;~a;~,

C' =a 'a.* C'~ =a 'ta.'~
i i ~ i i

(4.12)

(4.13)

(4.14)
FOGE ( ~OGE ) / i

+ (M2 —3m )
C0

q
0

(4.19)

(4.20)

in which ( A, A t} are S& symmetric and (C, Ct),
(C', C't) transform according to a [2,1] representation
of Si. It has been shown elsewhere [30] that the three
sets

(A, A,N+3), (C, C,N, +—'), (C~, C~t, N~+ 3
)

(4.15)

satisfy as many SO(2, 1) algebras, each with spectra
bounded from below [31],while the trio (N, N, N /2)
satisfy a regular SO(3) algebra with N&N, N. These—
algebras in the complex basis are similar to those already
encountered in the real basis [26], but now they have
better S3-symmetry properties which show up among
other things through the appearance of an additional
SO(3} algebra, that of (N, N, N, /2). The SO(2, 1)
Casimir terms of (4.15) may be expressed in terms of two

I56)'=&X'e', I56)"=W(X,e;+X.'V, )«2,
I 70)'=X'(p, f,*+/,'p, )/v 2,

(4.21)

(4.22)

The relation of WpGz to 8'pGE is explained in Appendix
82.

The calculation of I'pop requires the knowledge of the
3D wave function P as solutions of the HO equation
(3.15) for the difFerent states under study. To this end we
first need the entire wave function in all the degrees of
freedom (DF's) in the complex basis, after factoring out
the color-singlet part of the wave function E~r/v'6 [20]
which is already antisymmetric. The active part of the
wave function must then be symmetric in the orbital (g),
spin (y), and isospin (P) DF's taken together. This con-
struction is described elsewhere [30] in some detail, but
the resultant structure for difFerent states is summarized
in the standard notation
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I70&"=(g,Z, 4, +y,'y,*y,*)x&2 (3.8),
I20&'=g.X'P. , l20)'=g. (X,P,* X—,*P, )/&2

(4.23)

(4.24)

as solutions of (3.15), where l =0, 1,2, 3, . . . ; go=e
is the ground-state wave function (N =0). The L value
of these respective states are

L =21,(2l +1),(2l +2)+„(21+3) (4.26)

The two lowest orbital states of X=L in the 56 se-
quence are

l56, 3 ) =Z+Qo, 156,5 ) =(2Z+Z+)Z+Qo, (4.27)

while the corresponding %=3 state of lower seniority
(L =N —2) is

i56, 1 ) =2Z Z+fo

(or 2Z' Z+1(o for the c.c. state) . (4.28)

In contrast, a radially excited (70, 1 ) state of N =3 is

i70, 1 )g =(2Z 2' —4).(Z+)$0 . (4.29)

This last is a particular case of the general result that a
single radial excitation of each of the species listed in
(4.25) gives rise to a multiplicative factor
(2Z.Z' —2l —3 n) to the —corresponding wave func-
tion, with n =0, 1,2, 3, respectively. For completeness a
(70,0+ ) state can be read off from (4.28) by omitting the
factor Z+, while still another type of (56,0+ ) state mak-
ing its first debut at N =4 has the form Z Z' $0. (These
scalar excitations must be distinguished from convention-
al radial excitations. ) Finally the basic building block for
the unnatural-parity states (1.2) is g= iZ XZ' which is a
fully antisymmetric S3 singlet. The corresponding struc-
ture of such states of highest seniority are

~20+;70;70+;20 ) =/+[1;Z+;Z+;Z+]go . (4.30)

The superscripts q and d on the SU(6) states stand for
quartet (S =—', ) and doublet (S =

—,') spin states; for each
subspace, the scripts s (a) denote symmetric (antisym-
inetric) functions (both real), while the script c denotes
complex functions of [2,1] symmetry. The resultant wave
functions (4.21)—(4.24) have definite S3-symmetry proper-
ties, being either wholly real (Si symmetric) or wholly
imaginary (Si antisymmetric}. The construction of the
orbital function (g, g„P,*) having correct S3-symmetry
properties is greatly facilitated by considering states of
highest seniority (N =L) which are simulated through
appropriate powers of Z+ and Z+ [30], and noting that
Z Z', Z+Z+, and Z+ are all S3 invariant, while
(Z+, Z+ ) transform like ( Z+, Z+ ). The angular mo-
menta carried by these basic units are in conformity with
the definition (4.4) of angular momenta in the complex
basis. The natura/-parity states (1.1) of maximal seniority
may now be written as

156',70;70+ '56

= (2Z+Z+ )'[1;Z+; Z+', Z+ ]1(o (4.25)

However, these states will not be considered in this pa-
per.

The 3I3 normalizations for the natural-parity states
(4.25) are compactly expressed by [30]

=~'I (l +1)I (l +n + 1)/2", 44.31)

where n =0, 1,2, 3 for the four listed cases, respectively.
The derivation is outlined in Appendix A. This com-
pletes the essential ingredients for the evaluation of
FoGE, Eq. (4.20), in the complex basis which is described
in Appendix 8 2.

For purposes of (N, N, ) assignments, it is useful to note
that the orbital structures (4.25) for N=L states carry
direct information about their N, = (N, —N,' ) status
since each factor Z+ carries one unit of N, and a factor
Z+ carries one unit of N,". Further N, =1 or 2 are asso-
ciated with ~70) states of either parity, while N, =0,3 are
associated with

~
56 ) states of parity (+) or (

—), respec-
tively. These considerations (modulo 2 units) apply au-
tomatically to the X, assignments for lower seniority
(N )L) states as well.

V. NUMERICAL RESULTS AND DISCUSSION

Equations (4.18)—(4.20) describe our net result for the
mass (M) determination through an inversion of the non-
linear function F(M, N) for given N [26]. Alternatively,
this function which may be regarded as a sort of "figure
of merit" for the model has the following signi6cance: If
the experimental masses are employed to calculate
F(M, N), its comparison with the expected value N+3
gives a direct measure of the agreement or otherwise of
the model with the data. Therefore, before o8'ering the
predictions of the model in respect of 56 states (Table
II), it is necessary first to provide a reasonable calibration
of its "tool," as outlined in Secs. II-IV, through a corn-
parison with a fairly representative cross section of well-
established resonances as given in Table I. In this respect
a crucial role is played by the quantum number N, which
did not have any counterpart in our earlier formulation
in terms of the real (g, g) basis [26] nor in other investiga-
tions of baryon spectroscopy so far [3,6, 14]. Indeed this
quantum number provides a good index of the extent to
which the huge HO degeneracy gets lifted due to the
various momentum and spin-dependent terms in the BS
kernel: see, e.g. , the structure of Qz, Eq. (3.12). More
importantly, the general effect of X, is strongly rejected
in the expectation values of the FoGE term, Eq. (4.20), for
the difFerent states involved. Further removal of degen-
eracy depends on the mixing of "allowed" states brought
about by the full OGE package, Eq. (3.13), an exercise in
which the X, dependence, especially of the lower seniori-
ty states (L &N), again plays a very useful role for
identi6cation of the appropriate candidates for mixing.
More specifically the X, quantum number brings out
very directly even the Coulomb term in (3.13}which has
hitherto been regarded as playing a rather passive role in
bringing about mixing among anything but radially excit-
ed baryonic states diff'ering by b,N=2 (unlike for exam-
ple, the more active roles of the Fermi-Breit and tensor
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TABLE I. Comparison of BS model [21,22] with data [1] for
main sequence resonances of highest seniority (N =L). For the
meaning of F(M, N), see text. F (M, N) is the value of F(M, N)
after taking account of mixing among appropriate SU(6) XO(3)
states, and indicates the expected improvement in M(th)
through a comparison with its unmixed value F(M, N) vis-a-vis
N+3.

State SU(6) (N, N, ) F(M, N) (N+3) M(th) F (M, N)

N(938)
5(1232)
D i 3(1520)
S3i (1620)
D»(1675)
F»(1680)
D33(1700)
S3$( 1900)
D33(1940)
F37(1950)
F, (1990)
F»(2000)
Gi7(2190)
6 ]9 (2250 )
H i9(2220)
H39 ( 2300)
H3 )i(2420)
Ii ii(2600)
K3»(2950)

(56,0+ )

(56,0+ )

(70, 1 )

(70, 1 )

(70, 1 )

(56,2+ )

(70, 1 )

(70, 1 )g'
(70, 1 )g
(56,2+ )

(70,2+ )

(70,2+ )
(70', 3-)
(70,3 )

(56,4+ )

(56,4+)
(56,4+ )

(70,5 )

(56,6+ )

0,0 2.9936
0,0 3.0370
1,1 4.0368
1,1 4.5546
1,1 4.0012
2,0 4.6909
1,1 4.6489
3,1 5.5991
3,1 5.6093
2,0 5.1090
2,2 5.1954
2,2 5.6832
3,1 6.1401
3,1 5.8668
4,0 6.8674
4,0 6.9519
4,0 7.0773
5, 1 8.0124
6,0 8.9084

941
1222
1509
1759 4.2311
1675
1764 4.7815
1805 4.3095
2015 5.9226
2050 5.9487
1922
1937
2096 5.6056
2150
2286
2256
2314
2400
2597
2974

'The subscript R stands for first radial excitation.

terms [32] which connect the states of the same N), now
comes to the forefront by connecting several states of the
same N, but with diferent N, values.

Table I summarizes our results for a good cross section
of the known N, h states. Both the F(M, N) values for
the experimental masses, as well as the predicted masses
obtained by direct inversion of Eq. (4.18) are shown. The
whole range of agreement is rather good, all the way up
to N =6, when the allowed variations in the M values are
taken into account. The effects of mixing via the
Coulomb term are illustrated for two pairs:

D33( 1700) vs D33( 1940)

S»(1620) vs S,",(1900)

through a simple prescription in which the two lower
states retain their standard (N= 1) assignments, while
the two higher states are their respective radial excita-
tions (N =3) [33). (This is an example of the active role
of the Coulomb term noted above. ) On the other hand,
the mass prediction of F,5(56,2+} is moderately im-
proved by mixing with its (70,2+} counterpart via the
(more conventional) Fermi-Breit term of Eq. (3.13). A
more detailed list of comparison of theory with data may
be found in [34] (whose methodology has been summa-
rized in Appendix B), but the overall calibration provided
by Table I should sufBce to lend some credibility to this
formalism before extrapolation to the less familiar 56
states.

Table II represents our findings in the same format in

TABLE II. Predictions of (56, odd ) assignments for 6
states, vis-a-vis (70 ) assignments where applicable. Two sam-

ple cases of nucleon states are included for comparison.

State SU(6) (N, N, ) F(M, N) (N +3) M(th)

D &3 (2080)
D„(2O80)
S„(2090)
S„(2090)

(70, 1 )~'
(56, 1 )

(70, 1 )~
(56, 1 )

3, 1

33
3,1

33

5.9735
6.2208
6.1249
6.3694

2088
2012
2054
1975

D35 (1930)
D35 ( 1930)
D3q (1930)
D35 (1930)
S3i (2150)
S3i (2150)
G37(2200)
637(2200)
G 39 (2400 )

I3 &3(2750)

(70,3 )

(70 2 )

(56,3 )

(56, 1 )

(56, 1 )

(70, 1 )q
(56,3 )

(70,3 )

(56,3 )

(56, 5 )

31
3, 1

33
33
33
3,1

33
3,1

33
5,3

5.5125
5.1694
5.4296
5.2954
6.3718
6.4607
6.0563
6.1753
6.4485
8.1406

2074
2164
2105
2128
2037
2016
2184
2151
2274
2712

'The subscript R stands for first radial excitation.
Unnatural-parity assignment for this case is considered only for

illustrative purposes.

respect of the b, states under study. Before discussing
these results, a general feature about the spectra is in or-
der: A (56, odd ) state tends to yield a higher mass than
the corresponding (70, odd ) state, when the excitation
quantum No. N is the same for both. (For even+ states, a
similar statement is true with the roles of 56 and 70 inter-
changed. ) Next we remark that certain states such as 639
and I3 &3, for which the neighboring (70, odd ) assign-
ments are simply not available, seem to measure up fairly
well to (56, odd ) assignments with N =3 and 5, respec-
tively, taking account of the uncertainties in the masses
determined from partial-wave analysis [9]. The case of
637 suggests a better proximity to ( 56, 3 ) than to
(70, 3 ), with mass ordering governed by the rule just
stated. A precision fit is also possible with a mixture of
these SU(6) multiplets brought out by the tensor term of
the OGE [32], were it not for the low-star status of this
state which makes such an exercise rather premature,
pending a better understanding of its production mecha-
nism.

Table II also shows the corresponding status of yet
another b,-resonance S3,(2150) which seems to fit a
(56, 1 ) assignment somewhat better than a (70, 1 )z as-
signment, Eq. (4.29}. Since mixing cannot be ruled out
here, we have for completeness also included two sample
nucleonic candidates D»(2080) and S»(2090) in this
analysis, and this brings out a comparable performance of
(56, 1 ) and (70, 1 }a assignments. As regards the
famous D35(1930) state [6,7] our analysis suggests that a
(56, 1 } pushes its mass up to 2128 MeV, compared to
(56, 3 ) which gives 2105 MeV, and (70,3 ) which gives
the nearest value of 2074 MeV (still above the mark by
= 140 MeV}.

So far we have relied only on the predicted mass posi-
tions of the 56 states, together with their most likely
SU(6)XO(3) status to determine the J assignments of
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the observed states. This is not to rule out the possibili-
ties of mixing among competing 70 states, some of which
are already illustrated in Table II. Further uncertainties
in the masses are caused by "mass shifts" due to strong
couplings to inelastic channels, as emphasized by Cutko-
sky and Hoehler in their respective discussions on the
partial-wave analysis [9]. Therefore, additional support
for SU(6) XO(3) assignments must come from other an-
gles such as decay rates [13]to preferred channels, as well
as production (or formation) amplitudes from accessible
channels. As already noted in Sec. I, however, a corn-
plete numerical assessment on these lines involves consid-
erable algebraic investtnent (without commensurate re-
turns}, the more so with more elaborate models. In par-
ticular, within the present BS formalism which provides
mass positions with considerable accuracy (without free
parameters}, a complete evaluation of decay amplitudes
requires 4D overlap integrals involving quark triangle
loops [19],and cannot be compressed within the scope of
the present paper (which is already long). A more realis-
tic alternative in terms of 3D overlap integrals which is
available in the existing literature [14] is unfortunately
not relevant for the 56 states under study, since these
papers [14]have been mostly concerned about calibration

of their respective models with respect to data on the
more prominent resonances (among which the 56 states
have not figured).

"Direct" Us "Recoil" Terms in Single Q-uark Transi
ttons. Nevertheless, it is possible to make some general
statements about the coupling status of 56 resonances
to the principal production (Nm, Ny } and decay(¹r,Nrt, Np, irk) channels, vis-a-vis those of the more
prominent ones (56+,70 ), in a semianalytic fashion,
through a comparison of the relative strengths with
which their respective wave functions, Eq. (4.25), couple
to these channels. Indeed„ ignoring the internal structure
of the pion, the operator for the Galilean invariant pseu-
doscalar interaction of quark No. 3 is [3S,8]

cr '(k p3Nk mq ), (5.1)

where the second term represents the quark recoil effect
[35]. A very similar structure also holds [8] for the em
interaction in the manner of FKR [13]. If we now con-
sider the (mN) production channel, the orbital matrix ele-
ment for transition to a state gt, as adapted to the com-
plex basis, is of the form [8]

Jd Zd Z'QL(Z, Z')tr [k+icok(Z —Z')/m &2]$0(Z ik/&2—, Z*+ik/&2) „ (5.2)

which is expressible in terms of a tensor 8 ~;] of rank L in
the general form [8]

[o"kFD(k )k; +FR(k )o, ]k, k, 8;, . . . , (5.3)

representing the direct (D) and recoil (R) form factors
FD z, respectively. Here the final-state wave function PL
is any one of the types (4.25) corresponding to the respec-
tive L values given by Eq. (4.26). Therefore, an analytical
comparison of the relative strengths of the transition am-
plitudes for the production of, say, the (70,L ) reso-
nances with I. =2l+1, versus the corresponding 56
states of natural parity under study (L =21 +3), is avail-
able from a comparison of their respective wave functions
which, from Eq. (4.25), differ essentially by a factor Z~+

(Z+ ) or its suitably stepped down counterpart. Such a
factor, in turn, does not produce any extra suppression in
the matrix elements for 56 production over and above
the normal centrifugal (k) effects already "budgeted" for
the corresponding 70 production in which the direct
(D) and recoil (R) terms differ by two units of k factors.
This is in sharp contrast to the corresponding mechanism
of transition to unnatural parity (20 -) states which in-
volve an additional factor g=iZXZ', Eq. (4.30), and
therefore do not couple to the (Nor) channel via the pseu-
doscalar operator in this lowest order involving single
quark transitions [10,3S]. In other words, a strong angu
lar selection rule is operative against transitions to
unnatural-parity (20+' states, a feature which was re-
ferred to as an S3-symmetry selection rule AS3 =2 in Sec.
I [8].

%e have thus demonstrated analytically that the pro-
duction of 56 states through the Nnchannel is n. o more
inhibited than that of the 70 states which obey the
"normal" selection rules [10,35,8]. A similar FKR-type
[13]mechanism [8] is easily seen to hold for their relative
production strengths through the Ny channel. As re-
gards the decay channel, an additional facility is available
from the recoil term in Eq. (5.3) which predicts enhanced
L —1 wave decays [3S] to the Nrt channel by virtue of the
appearance of the factor to„ in Eq. (5.1) due to Galilean
invariance. This means that the decay channel Xq can
provide an additional sensitivity for the possible detection
of S6 states on lines similar to the enhanced Ng mode
for the famous S»(1535}state [35], over and above the
more or less standard [14] channel preferences, such as
stronger coupling to Am than to Nm, which can again be
attributed to a parallel role of the recoil term, viz. , to
overcome the centrifugal (k) barrier effects to the extent
of two units as compared to the direct term [8].

To summarize, this limited exercise has been intended
for a search for the locations of (56, odd } states as the
only surviving members of the natural-parity series (1.1)
still begging experimental support [1]. The search which
has been confined to b, states to avoid uncomfortable
mixing effects, has been carried out within a complex HO
basis which not only provides a very compact representa-
tion of S3 symmetry, but is also realizable as solution of a
dynamical equation (BSE}based on a vectorlike harmonic
confinement [17—22]. The numerical predictions of the
mass locations (Table II) are preceded by a prior contact
with a representative cross section of known (N, b, ) reso-
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nances (Table I), thus serving as a precalibration of the
dynamical model [21] employed for the purpose. The re-
sults suggest a rather natural place for several new 6
resonances in terms of appropriate (56, odd } quantum
numbers which are fairly unique in some cases like 639
and I3,3, and compete very favorably with parallel (70,
odd ) assignments where the latter cannot be ruled out.
It is hoped that this kind of dynamical analysis which
supplements the traditional partial-wave techniques [9]
will stimulate more vigorous searches for these outstand-
ing members of the natural-parity family (1.1}. Further
calculational details, including effects of smaller correc-
tions such as 0(5 /M ), the nondiagonal terms of the

Q~ operator, Eq. (3.13), etc. , may be found in [34].

ACKNOWLEDGMENTS

This work was supported in part through a grant from
the Department of Science and Technology.

APPENDIX A

Here we outline a method of integration for the nor-
malization of the spatial wave functions (4.25) and
(4.28)-(4.30) in the six-dimensional (Z, Z') space. The
volume measure in the 6D (Z, Z') space may be ex-
pressed in the spherical basis as

d'~=d'Zd'Z'

=(dz~dz' )(dZ dZ+)(dZ3dZ3)

where the six elements on the RHS have been rearranged
into three sets of real 2D volumes since
(dZ+dZ' ), (dZ dZ+) and (dZ3dZf) each form
complex conjugate pairs. Now put

~2(Z+;Z' )=R,e

~2(z;Z+ ) =Aze

v 2(Z„Z3 }=%,e

and the obvious limits

0(%(~, 0(8(n./2, P(n. /2 (A8)

by virtue of the positivity of each %;.
We now express the natural-parity sequence (4.25) of

maximal seniority in compact notation as

Q=Nt„(2Z+2+)'Z+ exp( —Z.Z'), (A9)

where n =0, 1,2, 3 correspond to i56, 2l+ ), i70, 21 +1 ),
i70, 21+2+), and i56, 21+3 ) states, respectively, and
the normalizer N&„ is defined as

~—2 f 16&[~2cq2]l (+2 /2)n e (A10)

Using the measure (A6), the integrals are elementary and
the result is compactly expressed as

N,„=w31(i+1)I(l +n +1}/2" . (Al 1)

Denoting the corresponding normalizers by N«, we have
(again with n =0, 1,2, 3 }

I'(l +1)l (1 +n +1}«2n 12

X [(l +n +1)(n+2)+(1+1)(l+4)] . (A13)

Finally we list a few other cases of immediate interest.
One radial (R) excitation of the natural-parity sequence
gives an extra multiplicative factor (A2 —21 n —3) in-
the integrand of (A10}. So the corresponding normalizer

X«z can be expressed as

SI„z=n(2l+n +. 4)l (i+1)l (I+n +1)/2" . (A14)

These results agree with those given in Ref. [26] for the
real (g', ri) representations of the corresponding states.

For the unnatural-parity sequence (4.30), there is an
extra multiplicative factor (g+P } as a part of the in-

tegrand of (A10), which is expressible as

(A12}

Then the volume element (Al) becomes

d 'r=AidA, d8, %21J82182 %. 31%3183 (A3)

A similar procedure can be used to calculate the normal-
izers of some lower seniority states as we11. Some cases of
immediate interest are

where

and

0 Ri23 ~, 0 8 23 2n (A4)

N [i56, 1 ) =2Z+Z 1(0]=5m.

N[i70, 0+) =Z $0]=3m /2 .

(A15}

(A16)

%f+Rzz+%3=2Z Z'=—A (S3 invariant) . (A5)

Since the phase angles 8&,82,83 (not quite Euler angles)
will not appear in the squared moduli of the wave func-
tions, these can be integrated out to give Z, ~g,:iBz~, Z—,*~/;. —:iB~ (A17)

The reciprocity between momentum and coordinate
spaces that is implied in a HO description allows the en-
tire derivation given above to be reinterpreted in coordi-
nate space terms via the correspondence

d r=m 1% 1% 1% (A6)
where [see Eq. (4.3}]

Further integration may be sometimes facilitated by the
spherical polar transformation [see Eq. (A5)]

A, =% sin8cosP, %2=% sin8sinP, %3=%cos8

(A7)

and

v 2g, =u,. +iv;, &2g,*=u, iu, , —

gl =if'( U E pB~

(A18)

(A19}
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We shall make use of the correspondence (A17) in Ap-
pendix B in connection with the evaluation of the expec-
tation values of the OGE term for different states, which
are more easily facilitated in coordinate space.

where the S3-invariant quantity & g +q & in turn may be
replaced by P (N +3) for the state under study, while the
other two terms have zero expectation from symmetry.
Thus,

APPENDIX 8
& co, i &

=m +P ( N +3 ) /2:= & co & (83)

The broad procedure for the evaluation of mass (M)
spectra through an inversion of Eq. (4.18), on the lines of
a similar investigation [26] under the null-plane ansatz
has already been described in Sec. IV of the text for the
present treatment under the covariant instantaneity an-
satz. In this appendix we merely summarize some quan-
titative steps designed to fill in some gaps in the said pro
cedure so as to enable the interested reader to "see
through" the calculations somewhat more closely
without much effort. To keep the description within
reasonable bounds, no attempt is made to provide any de-
tailed justification [34] for the steps involved, but the na-
ture and sources of the approximations employed are
adequately indicated. As already explained in the text,
the spectral predictions of NPA and CIA are identical in
respect of the two-body (qq) states but are expected to
differ slightly for three-body (qqq) states. Since this com-
parison is parameter dependent we specify at the outset
that the basic constants (coo, Co, m~ ) now being employed
for the qqq spectra under CIA are the same as those used
for the qq spectra [27] under NPA (equivalent to a CIA
treatment for two-body states), so as to emphasize the
unified nature of the investigation, viz. ,

ma=158 MeV, CO=0. 270, m =265 MeV . (81)

The quantity P is therefore fully specified via Eq. (4.1)
apart from its (implicit) dependence on the mass M of the
states involved.

1. Calculation of E, , by "reference
spectrum"-like method

The central task of this investigation is the inversion of
Eq. (4.18), viz. , F(M, N)=N+3, for an explicit deter-
mination of the mass (M) corresponding to a given state
(N). F(M, N) in turn consists of two pieces F„„,Eqs.
(3.15) and (4.19), and FooE, Eqs. (3.13) and (4.20), of
which only the latter requires an explicit knowledge of
the wave function, while the former already contains the
eigenvalues explicitly, except for quantities like &co; &

which first need to be properly defined. For the evalua-
tion of E, „we therefore use a method somewhat analo-
gous (but not quite identical) to the "reference spectrum
method" of Bethe and co-workers [36] in the context of
the nuclear many-body problem. In the present context
the position of the "reference point" employed for & co; &

may be illustrated with respect to the No. (12}subsystem
with No. 3 as a spectator. Indeed from the various
definitions given in Secs. II—IV of the text, we have, in
the (12;3)basis,

&co, 2&=& m +(g +g )/2+(g —i) )/4+v'32/ g/4&,

(82)

(Note that P is itself M dependent as well as & co & depen-
dent, so that a considerable degree of self-consistency is
involved in the final determination of M. )

%e must also keep in mind the smallness ansatz for
5/M (see text), where 5=M —co, —co2

—
co3 which has

been used as the basis of the structure of the master equa-
tion (3.15). This ansatz has been numerically checked to
give 1 —2% contributions from effects of O(5 /M ) in
typical cases [34], and gives rise to the useful equation

&~& 2& =(M —&~& )/2, (84)

which has been anticipated for effecting some
simplification leading to Eqs. (4.1), (4.19), and (4.20) of
the text. %e also note the result

(85)

The difference between (83) and (86) is quite small for
X ~4 states but less trivial for the lower N states. The
implication ofPi =0 on (85) is now

&v3&=m /M .

The difference between (85) and (87), on the one hand,
and between (83) and (86) on the other, gives a rough in-
dication of the shift in the reference point (on a sliding
scale) as one goes from N =0 to N ~ 4. Using these con-
siderations, the "reference" value for the common factor
(1—&v3&) which is involved in all the basic quantities,
viz. , P2, a„Eq. (4.1), and F„„,Eq. (4.19), takes the forms

N=2 3: (1—&v3&) =(1—m /M)(1 —&co&/M), (88)

4: (1—&v, &)'=(1—&co&/M)'.

The value of & co & may be taken as in (86) for the sake of
uniformity, since for % ~4 states the difference between
(83) and (86) is anyway small. These expressions ensure

This "reference spectrum" basis works rather well for
high excitations (N 4), in as much as correction terms
like co; —& co & produce quite rapid convergence. Howev-
er, for N & 4, one encounters some problems of numerical
accuracy (i.e., larger corrections from co; —&co& terms}
necessitating a slightly different form of strategy, viz. , a
shift in the position of the reference point & co &, based on
a somewhat slower motion of the spectator. For the
lowest state N =0, one may consider the extreme limit of
instantaneous rest (P3 =0) for the spectator (3) when the
(12) pair is in mutual interaction. In this limit the
equivalent of (82) becomes

& co', , & =m,'+3& g'& /4

m +3P (N+3)/8:—&co&
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(A=200 MeV), (89)

where the value of (co) is taken again as in (86) except
only for the nucleon, where a marginal change [—', —+ —,', in
the RHS of Eq. (86)] is necessary to ensure stability of
the inversion process for such a low mass state. For the
actual results given in Tables I and II we have of course
added the corrections due to deviations from the above
reference points upto O(co; —(c0) ) and O(5 ) and found
quite rapid convergence. This completes the specification
of the F„„part of Eq. (4.18).

2. Calculation of FQGQ in complex HO basis

We now outline the calculation, in the complex HO
basis, of the second comPonent Fooz of F(M, N), Eq.
(4.18), before the full expression can be inverted to obtain
an explicit solution for M. To that end we first recall Eq.
(3.13) for the full OGE term 8'GGE as it appears as an ad-
ditive contribution to the RHS of the basic dynamical Eq.
(3.19), thus specifying its relative normalization with
respect to W„,. Note, however, the presence of a 5 term
in Eq. (3.15) for W„„: When transferred to the I.HS,
there arises a resolvent

[1—2C&a,M(1 —(v) ) /(M —(co) }]

whose effect has already been included in the definition of
a, in terms of a„Eq. (4.1), where the quantity a, is seen
as a multiplicative factor in the definition of W;,„, Eq.
(3.11). The same resolvent will also modify the multipli-
cative factor a, of WOGE, thus giving rise to the defining
Eq. (4.20) for FGGE where

( WGGE ) ( WGGE )a, /a (810)

To calculate ( Woo@) it is enough to consider only the
(12) pair, using the same reference spectrum basis as de-
scribed for F„„and multiplying the result by 3. The re-
sulting expression for WGGE in operator form (except for
the factor ( co) where it appears), but neglecting the non-
central terms, works out straightforwardly as

4M a,p&3 1 3p~
QGE 2 ( )2 ki ki

+ (3—2cr, o2)5 (u)
4 c0

(811)
Here we have used a mixed representation wherein u

minimal corrections due to deviations from the respective
reference values.

For completeness, we also record the full expression
for (a, ) [27]:

—1

(a, ) =a, (M —(co) )= ln
12m. (M —(co) )

33—2 A

(=u, ) is a normalized relative coordinate for the (12)
pair, viz. ,

u =Qu, u, , Pr, z=2u/&3, g, = —iPc)„
l

(812)

=R +ZR,Az cos(8, +8&)+%3cos(283) . (813)

The last two terms are not only small compared to A~
but contribute only in second order on taking the expec-
tation values over the angles. Thus, to sufBcient accura-
cy, we have

+
s (4%iAq+%3) .1 1 3

2u 16%
(814)

The calculation of the RHS is easily facilitated by the
method of Appendix A employed for the various normal-
izations, and yields the result

1 ~ I'(21+n+5/2)
u I'(21 +n +3)

3 1+2(l +1)(l +n +1)
8 (21+n+4)(21+n+3) (815)

For the second term of (Bl 1), we have the complex repre-
sentation

(816)

where u is now given by (813).
Similarly for the third term, we have

5 (u)=5 [(Z+Z*)/&2] . (817)

The rest of the calculation is lengthy but straightforward
and will lead to explicit formulas of the type (815), fol-
lowing the method of Appendix A. The results are

where j; is the corresponding momentum and the various
expectation values are taken with respect to the states in-
volved, after taking due care of the order in which the g;
and u; variables appear in (Bl1). Further the quantity
(co) continues to be given by (86}. At this stage it is
more convenient to specialize to the coordinate represen-
tation for the various wave functions, and for this the
momentum-space (f,vl) structure of the wave functions
given in Appendix A is already available. However, as
earlier noted at the end of Appendix A, the momentum
wave functions in the complex basis can be adapted al-
most verbatim to the corresponding coordinate space ex-
pressions via the correspondence (A16). Indeed in order
not to have to repeat the various definitions in Appendix
A, it is more convenient to regard the variables Z; and
Z; given therein as the corresponding coordinates id&,

t

and ic}z themselves, so that the variable u can now be
I

expressed in the complex basis as

2u =Z +Z' +2Z.Z'

[2(l+n)+(21+n+ —', )(l(1+n —1} n+5/2)]—(
1 1 I (21+n+3/2)

(818)
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and

2 I ( n +21 + 1) I (21 +n +3/2)
I (l+1)I ( +l+1) (41+2 +1)!!

(819)

All the expressions [(815), (818), and (819)] are valid

only for natural-parity states. While (819) is exact, (815}
and (818) are based on the approximation (814), thus ac-
counting for a mismatch of a n. factor between the two
groups. We have also checked these results against an al-
ternative formulation in terms of creation and annihila-
tion operators a, a', a, a' defined in Eq. (4.7), and
found the necessary consistency [34], but these details are
omitted for brevity.

3. Mixing of states via OGE terms

~70&'

~
70 )d ~2 Xc0c + ~2X."0: ~«

(820)

We now illustrate the mixing aspects as between
different states, brought about by both spin-dependent
and spin-independent OGE terms in the full package
(811). While the role of the former has been well recog-
nized in the literature [32], that of the latter has been rel-

atively obscure, but stems rather naturally from the
present classi6cation scheme which assigns a new quan-
tum number N, to the various states involved. For the
mixing of two states, one has to evaluate the full (2X2)
matrix of FooE, defined through Eq. (4.20} and (Bl1),
corresponding to both on- and off-diagonal elements, and
then add the same to the (already diagonal) part F„„,Eq.
(4.19), in order to get the full F(M, N) matrix to be subse-

quently diagonalized.
We now give an example of mixing between two states

bearing the same quantum number N„viz. , ~70) and its
radial excitation ~70)„(e.g., D33 versus D33 S3, versus

S3', }. Both the states have the same qtIq wave functions

except for their respective spatial parts. The complete
wave functions for the two states may be written com-
pactly as

where the spin-isospin functions are defined as in Eqs.
(4.21)—(4.24). The evaluation of the spatial matrix ele-
ments is a straightforward extension of the steps indicat-
ed in (811)—(817), while the spin-isospin matrix elements
may be simpli6ed through the use of the orthonormality
of ~X,p, ) and ~X,*p;) as well as the result

~X,
' —X, —2X,'

t z (821)

As to the off-diagonal elements of M, a„p, (to)z the
most natural assignments are the geometrical means of
the corresponding values in the two different states. For
completeness the full wave functions for the D33 and D3'3

states are

IW(F»);4, (F») & =(2Z+Z+, 2Z+)e " (824)

We note in the passing that some spin-dependent correc-
tions which arise also from F„„[26]have been routinely
included in the calculations and found to provide 5 5%
contribution to F(M, N}. Mixing among other admissible
states can be treated in a similar fashion.

~D33;D'3'3 ) =&2Z+e ' (1;Z Z' —2)g/zp, , (822)

( Z +X—I /2+ t Z3 X 1 /2)e

(823)

where the subscripts in y stand for the respective m,
values.

As another example, we illustrate the mixing between
two states having dtQerent N, quantum numbers, viz. ,
~56) and ~70), whose prototypes are F, (s1 680) and
FI&(2000}, respectively, and whose wave functions are
given by (4.21) and (4.23), respectively. In this case, only
the last term (Fermi-Breit) of FooE, Eq. (811), will con-
tribute, and the rest of the procedure is the same as indi-
cated above, using the maximally stretched spatial wave
functions:
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