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The decays B -+ PP, where P denotes a light pseudoscalar meson, are analyzed. Numerous
triangle relations for amplitudes hold within Savor SU(3) symmetry, relating (for example) the de-

cays B+ ~ x+m, x K+, and ++K . Such relations can improve the possibilities for learning about
phases of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and for early detection of CP-violating
asymmetries. Within the context of a graphical analysis of decays, relations are analyzed among
SU(3) amplitudes which hold if some graphs are neglected. These relations allow the determination
of weak and strong phases from rate measurements alone. Estimates of SU(3) breaking are included.
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I. INTRODUCTION

The present explanation of CP violation in the
neutral ka,on system makes use of phases in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix describing
the charge-changing weak transitions of quarks. The CP-
violating decays of mesons ("B"mesons) containing a b

or b quark provide n»merous ways to check this picture.
However, it is not necessary to observe a CP-violating
quantity (such as a rate asymmetry) in order to measure
CKM phases. In the present article we undertake a gen-
eral Savor SU(3) analysis of the decays B -+ PP, where
P denotes a light pseudoscalar meson, and find that infor-
mation on CKM phases can be obtained &om the study
of rates alone. We also find that the SU(3) relations are of
use in interpreting and anticipating CP-violating asym-
metries in these decays. We begin by mentioning why
B -+ PP decays have been found interesting in previous
works.

The study of rate asymmetries in decays of neutral B
mesons to CP eigenstates provides crisp information on
CKM phases, but at several costs. (1) One must know
whether a neutral B meson was a B or B at the time of
production, and one must usually study time-dependent
rate asymmetries. (2) In decays to CP eigenstates, the
possibility of two distinct weak subprocesses contribut-
ing to each direct decay amplitude requires a somewhat
more elaborate analysis. As an example, the dominant
subprocess in B ~ m+x, is expected to be one in-
volving b ~ duu. However, if direct b m d ("penguin")
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transitions mediated by virtual u, c, and t quarks and
gluons also contribute, the observed CP-violating asym-
metries are affected [1]. Here, the study of rates for all
possible charge states in B -+ ver and B -+ mx decays
and the time-dependence of Bs(t) ~ z+x allows one to
separate by isospin all the relevant effects and to obtain
information on CKM phases [2].

In B decays to "self-tagging" modes such as B+ 1
x K+ and B+ ~ ++K, a difference between the
branching ratio for the mode and its charge conjugate
immediately signals CP violation. In order that a dif-
ference in rates be observable, it is necessary to have a
nonzero difference between the phase shifts in two strong
eigenchannels (I = 1/2 and I = 3/2 in the case of z'K),
as well as two different weak subprocesses contributing
to the decay. In B + mK the two weak subprocesses are
b ~ Gus and the CKM-favored b ~ s penguin ampli-
tude. Using isospin, it is possible to separate these two
subprocesses in order to extract the CKM phase from
decays of neutral B mesons to the CP eigenstate x K, .
For this purpose one must measure the time dependence
of Bo(t) -+ z'oK, as well as the rates for decays of all pos-
sible charge states in B + mK and B ~ xK processes
[3-5].

Information about Gnal-state phases per se has already
been obtained in decays of charmed mesons to xK, and
phase shift differences have been found significant in some
channels [6]. No evidence for strong phase shift differ-
ences in B decays has been found yet [7].

Decays such as B —+ mm and B —+ ~K are related to
one another by SU(3) symmetry [8—13]. It is then natu-
ral to ask whether the isospin analyses of Refs. [2—5] can
be generalized to SU(3) in order to obtain further infor-
mation about the prospects for observing CP violation
in such decays as B —+ mX, or for measuring weak and
final-state phases. In the present paper we report the
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results of efforts to 6nd such information.
We have undertaken a systematic review of the SU(3)

predictions for the decays B —+ PP. We have examined
a number of linear relations among amplitudes which fol-
low from previous SU(3) analyses, but whose simplicity
seems to have gone unnoticed. Among these is a rela-
tion between the amplitude for B+ —+ m+vr and pairs of
amplitudes for B m vrK. This relation is expressed as
a triangle in the coinplex plane. It is a necessary (but
not sufficient) condition for the observability of CP viola-
tion in B+ -+ mK decays that this triangle have nonzero
area. The triangle relation simpli6es the analysis used
to obtain information on CKM angles &om the study of
time-dependent neutral B decays to the CP eigenstate
x K„which uses a somewhat more involved quadrangle
relation [3—5].

This triangle is also of great utility in another respect.
Using only charged B decays, it allows the clean extrac-
tion of a weak CKM phase. Furthermore, using it and
other triangle relations involving the decays B m vrx and
B + vrK, along with the rates for B + KK, one can
also obtain information about two weak CKM phases, as
well as about 6nal-state phases. A possible experimen-
tal advantage of these methods for obtaining CKM phase
information is that no time-dependent measurements are
necessary —only decay rates are needed. We have also
found relations between certain 6nal-state phase differ-
ences in B ~ xx and B ~ mK decays.

Our analysis is performed using a simple graphical
method which has been shown equivalent [8] to a decom-
position in terms of SU(3) reduced matrix elements. The
graphical description is overcomplete in the sense that we
can write six dHFerent graphs, but they always appear in
the form of five linear combinations, corresponding to the
five reduced matrix elements in an SU(3) decomposition.

It is possible that the graphs which we use to construct
decay amplitudes take on a more direct meaning. Thus, a
process which could take place only as a result of a certain
graph (such as quark-antiquark annihilation) might not
be fed by rescattering kom another graph. We thus make
a systematic study of the effects of neglecting certain
graphs whose contributions are expected to be small in
the limit of in6nite mass of the b quark. These correspond
to W exchange, W in the direct channel ("annihilation" ),
and annihilation through a penguin graph (vacuum fiavor
quantum numbers in the direct channel). We are left with
three other types of graph and, correspondingly, three
independent combinations of reduced matrix elements.

It is thus our purpose to draw attention to a number of
interesting questions about amp/itude8 and their phases
which can be addressed purely &om the standpoint of
rutes in B + PP decays. A full discussion of amplitudes
was performed in Ref. [8], but without inuch emphasis
on the simple linear relations among them. The treat-
ment in Ref. [9] dealt primarily with rates, for which few
direct relations exist in the LC = 0 sector. There does
not appear to have been a previous discussion of the ef-
fects of neglect of certain contributions in the graphical
description of decays.

The effects of SU(3) breaking can be taken into ac-
count in factorizable amplitudes in which a weak current

II. SU($) ANAIY'SIS

A. De8nitions and counting of reduced matrix
elements

Adopting the same conventions as Ref. [8], we take
the u, d, and 8 quarks to transform as a triplet of Ba-
vor SU(3), and the —u, d, and s to transform as an an-
titriplet. The mesons are de6ned in such a way as to
form isospin multiplets without extra signs. Thus, the
plons will belong to an lsotrlplet lf we take

s+ = ud, n. = (dd —uu)/~2, vr = du, —

while the kaons and antikaons will belong to isodoublets
if we take

K+ =u8, K =ds, (2)

produces a pion or kaon by the use of the appropriate
meson decay constant f or f~ —1.2f . It may be nec-
essary to test factorization for the full set of amplitudes
we consider in order to justify this approach fully.

In Sec. II we recapitulate the full SU(3) analysis of
Ref. [8] in terms of graphical contributions. We stress
the wide variety of relations that hold among dMerent
amplitudes. These include not only separate relations
among ES = 0 and ~AS~ = 1 transitions, but also rela-
tions between the two sectors. We give speci6c examples
relating to B + vrx and B ~ xK decays, and show
how to extract useful 6nal-state interaction information
form these processes. For completeness, we also quote
results involving an octet g, which we denote g„and
mention their limited usefulness. While we concentrate
on AC = 0 transitions, we brie8y treat decays to 6nal
states involving charm, in the context of extraction of
final-state phase differences from decay rates.

We next specialize, in Sec. III, to the case in which
certain diagrams contributing to decay amplitudes are
neglected. We translate this assumption into linear re-
lations among SU(3) reduced matrix elements, and dis-
cuss the corresponding relations among amplitudes for
decays. The physical consequences for observability of
CP violation in various channels are mentioned. The ne-

glect of some diagrams permits one to determine the weak
CKM phases, the strong 6nal-state phases, and the sizes
of the relevant contributing diagrams from rate measure-
ments alone. For example, the measurement of charged
B-meson decays to mx and m'K permits the extraction of
the CKM phase p.

With appropriate warnings, we treat the case of a
"physical" g and g' using graphical methods in Sec. IV.
Some possible efFects of SU(3) breaking are mentioned in
Sec. V. We summarize our results and discuss experi-
mental prospects in Sec. VI. An Appendix lists the de-
composition of reduced matrix elements labeled by SU(3)
representations into graphical contributions, in order to
display explicitly the connection between the two lan-
guages.
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K =—sd, K =—-su.0

We choose res = (2aa —u6 —dd)/+6. The true rI looks
more like an octet-singlet ~ixture with a ~ixing angle of
around 19 to 20' [14],such that rl

—(aa —u6 —dd)/~3.
In order to treat such a state correctly, we would have
to introduce additional reduced matrix elements in the
context of SU(3), additional graphs within the context
of a graphical analysis, and decays involving g'. We ex-
pect the predictive power of such an approach would be
minimal. Thus, we quote results for octet g's mainly for
completeness.

The B mesons are taken to be B+ = bu, Bo —= bd,
and B ——bs. Their charge conjugates are defined as
B = —bu, Bo =—bd, and B —= bs.

We now count reduced matrix elexnents for transitions
to charmless PP final states. The weak Hamiltonian
operators associated with the transitions b -+ quu and
6 -+ q(q = d or a) can transform as a 3', 6, or 15' of
SU(3). When combined with the triplet light quark in
the B meson, these operators then lead to the following
representation in the direct channel:

(&)
b

(c)
b

(e)

P, P'

A, A'

(b) b

(d)
b

b

c,

E, E'

PA, PA'

3' x3=1+Sg, (4)

6x3=8g+10,

15' x 3 = 83 + 10' + 2'F. (6)

We are concerned with couplings of these representa-
tions to the symmetric product of two octets (the pseu-
doscalar mesons, which are in an 8-wave final state).
Since (8 x 8), = 1+8+ 27, the singlet, octet, and 27-

piet each have unique couplings to this pair of mesons,
while the decimets cannot couple to them. Thus, the de-

cays are characterized by one singlet, three octet, and one
27-piet amplitude. The decomposition in terms of these
amplitudes is given in Ref. [8], and is implied by the re-
sults of the Appendix. Separate amplitudes apply to the
cases of strangeness-preserving and strangeness-changing
transitions. As we shall see, there are relations between
linear combinations of the strangeness-preserving and
strangeness-changing amplitudes.

B. Amplitudes in terms of graphical contributions

The SU(3) analysis of b,C = 0 B -+ PP decays is
equivalent to a decomposition of amplitudes in terms of
graphical contributions. We shall adopt a notation in
which an unprimed amplitude stands for a strangeness-
preserving decay, while a primed contribution stands for
a strangeness-changing decay. The relevant graphs are
illustrated in Fig 1. They . consist of the following [10]:
(1) a (color-favored) "tree" amplitude T or Tr, associated
with the transition b -+ quu (q = d or a) in which the qu
system forms a color-singlet pseudoscalar meson while
the u combines with the spectator quark to form the
other pseudoscalar meson; (2) a "color-suppressed" am-
plitude C or C', associated with the transition b ~ uuq in

FIG. 1. Diagrams describing decays of B mesons to pairs
of light pseudoscalar mesons. Here q = d for unprimed ampli-

tudes and a for primed amplitudes. (a) "Tree" (color-favored)
amplitude T or T'; (b) "color-suppressed" amplitude C or C';

(c) "penguin" amplitude P or P' (we do not show intermedi-

ate quarks and gluons); (d) "exchange" amplitude 8 or E';
(e) "annihilation" amplitude A or A'; (f) "penguin annihila-
tion" amplitude PA or PA'.

which the uu system is incorporated into a neutral pseu-
doscalar meson while the q combines with the spectator
quark to form the other meson; (3) a "penguin" amplitude
P or P' associated with the transition b ~ q involv-

ing virtual quarks of charge 2/3 coupling to one or more
gluons in a loop; (4) an "exchange" amplitude E or E'
in which the b quark and an initial q quark in the de-
caying (neutral) B xneson exchange a W and become a
uu pair; (5) an "annihilation" amplitude A or A' con-
tributing only to charged B decay through the subpro-
cess bu ~ qu by means of a R' in the direct channel; and
(6) a "penguin"annihilation" amplitude PA or PA' in
which an initial bq state annihilates into vacuum quan-
tum numbers.

This set of amplitudes is over-complete. The physi-
cal processes of interest involve only five distinct linear
combinations of the amplitudes, which are given in terxns
of SU(3) direct-channel representations in the Appendix.
Here we shall simply xnention acceptable linearly inde-
pendent sets of axnplitudes once we have expanded all
processes of interest in terms of the above contributions.

The results for ES = 0 transitions are shown in Ta-
ble I, while those for ~b, S~ = 1 transitions are shown in
Table II. We can identify the following linearly indepen-
dent combinations of LS = 0 amplitudes: for example,
the combination C + T occurs in B+ —+ sr+~0; the com-
bination C —P occurs in B, + m Ko; the combination
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Final
state T C P

B+ -+ 7r+vr —1/V2 —1/+2 0
K+K 0 0 1
s'+res —1/v 6 —1/~6 —2/v 6

E A PA
0 0 0
0 1 0
0 —2/~6 0

TABLE I. Decomposition of 8 —+ PP amplitudes for
QC = AS = 0 transitions in terms of graphical contribu-
tions.

nation P'+ T' occurs in B —+ vr K+, the combination
O' —P' occurs in Bo m m. Ko, the combination P'+ A'
occurs in B+ —+ 7r+K, the combination P'+ PA' occurs
in B, ~ K K, and the combination E'+ PA' occurs in
B. +~+~-

It is not possible to identify linear combinations of de-
cay amplitudes which depend upon the six graphical con-
tributions separately.

a'~ ~+~-

K+K-
KoKo
7t g8

0

'Q8Q8

J3, —+ ++K
~OKO

gsK'

—1

0
0
0
0
0

—1

0
0

0 —1 —1
—1/~2 1/~2 1/v 2

0 0 —1
0 1 0
0 —1/v3 1/~3

1/3&2 1/3v 2 1/3~2

0 —1

—1/~6 1/v 6

I/~2
—1

0

C. Linear relations among amplitudes

Since each table contains 12 decay amplitudes while
there are only five linearly independent reduced matrix
elements, it must be possible to find seven amplitude
relations for each. This is indeed the case. We write re-
lations in terms of decay amplitudes, and then translate
them into statements about the corresponding combina-
tions of graphical contributions.

f. ciS = 0 preceasea

P+ A occurs in B+ -+ K+K; the combination P+ PA
occurs in B + K K; the combination E + PA occurs
in Bo ~ K+K

Similarly, for the amplitudes in Table II, the combi-

A familiar isospin relation for B -1 vr7r decays, express-
ing the fact that there is just one I = 0 and one I = 2
amplitude as a result of the form of the interaction giving
rise to the decay, is [2]

A(B m m. +7r )+ V2A(B m m m ) = ~2A(B+ m x+m ),

or

(T+ P+ E—+ PA) + (—i + P+ E+ PA) = —(C+ T).

If the rates are such that the triangle must have nonhero area, we conclude either that there are diferent interactions
in the I = 0 and I = 2 final states, or that there are important contributions Rom amplitudes with different CKM
phases (such as T and P), or both.

There are two other triangular relations involving only pious and kaons in the final state:

TABLE II. Decomposition of B -+ PP amplitudes for b,C = 0, ~b S~ = 1 transitions in terms of
graphical contributions.

Final
state
~+K'
~'K+
g8K+

y1

0
—1/~2
—1/~6

~l
0

—1/~6

Pl
1

—1/v 2

1/~6

@I

0
0

0

A'

—1/~2
1/~6

PA'
0
0

0

~-K+
0KQ

g8Ko

—1
0
0

0
—1/~2
—1/~6

vr+7r

vrOmO

K+K
KoK0

@8+8

0
0

—1
0
G

G

0

0
0

—1/g3
—Jh/3

0
0

—1
1

0
2~2/3

—1

1/~3
1/3~2

—1

0
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v2A(B, wx K) =&2A(B wx x )+A(B wK+K ),

1.e.)

(—C+P) = (—C+P+E+PA) —(E+PA), (10)

and

A(B, w s+K ) = A(B" w vr+x ) —A(B w K+K ),

i.e.,

(T +—P) = (T +—P + E + PA) + (E + PA). (12)

We shall anticipate a result of Sec. III in which the B ~ K+K amplitude may be very small if rescattering efFects
are negligible. In that case each of the last two relations connects a rate for a charge state of B, m xK to that for a
charge state of B -+ xx. For completeness, we include a fourth triangle relation which can be constructed &om the
above three, and hence is not independent:

A(B, w ++K ) + &2A(B, w x K ) = +2A(B+ w vr+xo), (13)

i.e.,

(T + P)—+ (—C + P) = —(C+ T). (14)

In addition there are three equations relating the am-
plitudes for decays involving a single gs to linear com-
binations of two other amplitudes, and one relation be-
tween A(Bo ~ gsris) and a linear combination of three
other amplitudes. These last four relations are expected
to be of limited usefulness, as we have mentioned, since
the physical g is rather far &om a pure octet. If the reader
wishes to assume that no other graphs contribute to the
production of physical g states, the reader is welcome to
do so, at the risk of ignoring additional SU(3) octet am-
plitudes when one ri is produced and an additional SU(3)
singlet amplitude when two g's are produced.

[ASi = 1 processes

A(B, mvr+m ) = ~2A(B, mm m ), (17)

1.e.)

(E'+ PA—') = (E'+ PA—')

A(Bo -+ s K+) = A(B, w K+K ) —A(B, w x+s ),

(»)

extensive analyses regarding the possibility of observing
direct CP violation in B ~ vrK decays.

The two other relations involving only pions and kaons
are

The weak Hamiltonian giving rise to b,C = 0, iESi = 1
decays has pieces which transform as bI = 0 and b,I =
1. In the decays B ~ mK there are thus two separate
I = 1/2 amplitudes and one I = 3/2 amplitude. Thus,
one can write a relation among the amplitudes for the
four different charge states [3—5]:

c.e.,

(T'+ P') = (—T' + P'+ E' +—PA') + (E'+ PA').

(2o)

v 2A(B+ w s K+) + A(B+ w 7r+K )

= &2A(B -+ m K ) + A(B -+ m. K+), (15)

or

(T'+ C'+ P'—+ A') + (P'+ A') = (—C'+ P')
(T'+ P'). (16)—

Both sides correspond to the combination (C'+T') with-
isospin 3/2. We shall have a good deal more to say about
this relation in what follows. It has been the object of

The Brst of these follows &om isospin alone; the I = 2
Gnal state is not produced. As we shall see in Sec. III, the
B, ~ vnr branching ratios are expected to be extremely
small if rescattering eKects do not alter the predictions
of diagrams. The second relation implies that if (Bo m
vr K+) is observed with a branching ratio of order 10
as appears possible [15], at least one of the processes
on the right-hand side must be present with a similar
branching ratio. Our conjecture based on the results of
Sec. III will be that it is the process B, + K+K

There are also four linear relations involving decays to
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3. Relations between DS = 0 and ]CPS] = 1 processes

The unprimed and primed amplitudes are related,
since they involve difFerent CKM factors but similar
hadronic physics. There are two classes of such rela-
tions. The primed nonpenguin amplitudes are related to
the unprimed ones by the ratio r„= V„,/V„q --0.23,

T'/T = C'/C = E'/E = A'/A = r„. (21)

The primed penguin amplitudes are related to the un-
primed ones by the ratio rq = Vi, /Vq~, since the penguin
amplitudes are dominated by the top quark loop [16].
This quantity has a magnitude of about 5 6 2. It has a
complex phase if CKM phases indeed are the source of
the observed CP violation in the kaon system. Thus

P'/P = PA'/PA = r, (22)

It is possible to write three independent amplitude re-
lations which involve only r„by choosing processes that;
contain the combinations C+T, T—A, and T+E. The re-
lation involving C+T is particularly useful since it allows
one to relate the B+ ~ vr+vro amplitude (with isospin 2)
to the linear combination of B ~ vrK amplitudes already
written above with isospin 3/2:

V 2A(B+ w m K+) + A(B+ + ir+K )

= r„v 2A(B+ -+ ir+n ), (23)

s.e.,

(T'+ C'+ —P'+ A') + (P'+ A') = r„(C+T—). (24)

In SU(3) language, these combinations of amplitudes cor-
respond to a pure 27-piet.

A relation involving the combination T —A is

A(B+ m ++K ) + A(B m vr K+)

= r„[A(B+ -+ K+K ) + A(B, i vr+K )] (25)

OI

= r„[A(B i vr+m ) + A(B -+ K K )] (27)

or

(T' + P' + E' + P—A') + (P' + PA')

(P' + A') —(T' + P') = r„[(P+ A) —(T + P)]. (26)

A relation involving the combination T + E is

A(B, + K+K ) + A(B. w K K )

r„—= r„(f~/f„) = 1.2r„. (30)

A Fierz rearrangement suggests that this should also be
a better estimate of C'/C. Consequently, a more precise
version of (23) is

y 2A(B+ m vroK+) + A(B+ -+ x+Ko)

= i „v 2A(B+ -+ sr+sr ). (31)

We shall discuss SU(3) breaking effects more fully in Sec.
V.

D. Speci6c applications to B ~ mm and B ~ mK

The amplitude of the decay to a CP eigenstate, B
~+a, consists of terms which have two difFerent CKM
phases, sometimes denoted by "tree" and "penguin"
phases, p =arg(V„'&V„g) and —P =arg(VJ, Vqg), respec-
tively [17]. This affects the time-dependent CP asym-
metry in this process, which does not measure directly
an angle (a) of the CKM unitarity triangle [1].

The effect of the penguin term can be eliminated if
one measures, besides the time-dependent rate of B
7r+vr, also the (time-integrated) rates for all possible
charge states in B ~ mn and B ~ vnr. This method [2)
is based on the isospin triangle relation (7) and on its
charge conjugate relation.

Similarly, the quadrangle isospin relation (15), for
B ~ vrK, can be used to eliminate the effect of the
penguin amplitude in order to measure o, in the time-
dependent rate of Bo -+ iroK, [3—5]. For that purpose
one would have to measure all the eight rates of B + vrK
and B m wK. Since SU(3) relates B ~ ver to B i vrK,
as in Eq. (31), one may try to use this symmetry to
reduce the number of necessary measurements required
to determine a weak phase. Also, 6nal-state interaction
phases in these two types of processes may be related.
The triangle and quadrangle relations may be used to
measure some of these phases, which determine the mag-
nitude of CP asymmetries in charged B decays. Here we
will recapitulate this method, in order to demonstrate
how this may work within an SU(3) framework.

The ratio r& appears in the relation between two ampli-
tudes which involve the combinations P'+PA' or P+PA:

A(B, m K K ) = r, A(B —i K K ). (29)

Finally, there should be one relat;ion which involves a
mixture of penguin and nonpenguin amplitudes such as
C —P or P + T. We cannot write such a relation in as
simple a form as the others.

SU(3)-breaking effects may be taken into account in
any amplitude in which a weak current produces a
charged pseudoscalar meson by noting that the ampli-
tude must contain the factor f or flc = 1.2f . Thus, a
better estimate of the ratio T'/T in Eq. (21) is

= r„[ (T + P + E + P—A) + (P + PA)] (28). Isospin in B -+ mm

We shall discuss the likely magnitudes of terms in these
relations -in Sec. III.

Equation (7) follows &om a decomposition in terms of
amplitudes into final states with isospin 0 and 2 [2]:
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A(B m 7r+x ) = A2 —Ap,

~2A(B -+ vr z ) = 2A2+Ap,

y 2A(B+ m sr+sr ) = 3A

In terms of graphical contributions,

(32)

tixne-dependent decay rate of B —+ vr+m is given by
~A(B m z+m )/A(Bp m sr+sr )~sin(2a+8), which can
then be used to determine o..

CP violation in direct decays would be manifested by
two triangles with difFerent shapes. This requires final-
state interaction phase ddFerences. The final-state inter-
action phase diHerence L~ can be determined koxn the
phase of

A2 ———s(T+ t ):——a2e'~e' ', Ao Ao = —2iao(p) sin 0!e'

as shown in Fig. 2.

(35)

Ap ——s[(2T —t + 3E) + (3P + 3PA)]

= ap(T)e'~e* + ap(p)e '~e' ~ (3.3)

On the right-hand sides the amplitudes are decomposed
into terms with different weak phases, Arg(V„'&V„g)

p, Arg(Vt&Vqg) = —P, and different final-state interaction
phases h2, bz, 6J . Similar relations hold for the charge-
conjugated amplitudes, A, in which one only changes the
sign of the weak phases. For convenience, let us define
A = e2'~A, and let us rotate all amplitudes by a phase
factor e '~e 'e'. We then find

A2 ——A2 ———a2,

Ap = ap(T) 8 —ap(p) e' e

2. Isosptn in B -+ mK

In B -+ xE the isospin amplitudes consist of two AI =
1 "tree" amplitudes, Aqy2, A3~2 into final states with I =
1/2, 3/2, and an amplitude Bz/2 of a bI = 0 operator,
which is a "tree-penguin" mixture. This leads to the
decomposition [3—5]

A(B ~ z K ) A3/2 + A1/2 Bl/2~

y 2A(B m 7r K ) = 2As/2 —Aq/2 + Bq/2,

A(B+ m x+K ) = As/2+ Ag/2 +BE/2)

02A(B+ w w K+) = 2As/2 —Aq/2 —Bg/2. (36)

Ap = ap(z )e —ap(~) e™e (34)

~2A - ~2A - 3 A& —— -3 a ~
I

where b,; = b; —h2.
The triangle relations for B ~ zz, Eq. (7), and

B ~ xx are shown in Fig. 2. The two triangles are
fixed by measurements of all six decay rates, which de-
termine the sides of the triangles. This determines the
angle 8. The coefficient of the sin(b, mt) term in the

This implies the quadrangle relation (15), where both
sides of this equation express one of the diagonals of the
quadrangle. A similar quadrangle, with a common diag-
onal, describes the amplitudes of the charge-conjugated
processes B -+ xX. The other two diagonals of the two
quadrangles can be shown to have a common midpoint.
Except for a class of ambiguities enumerated in Ref. [4],
this suffices to specify the shapes of both quadrangles
using the eight rate measurements. The relative orienta-
tion of the two quadrangles can then be used to eliminate
the penguin contribution from the time-dependent rate
of the decay to the CP eigenstate B ~ x K„ in order
to enable a xneasurement of o;.

8. SU($) relatione bettaeera amplitudee and etrorag
phases in B —+ m~ and B —+ mK

FIG. 2. Isospin triangles for B -+ z.z (upper) aud
B ~ zz (lower). The lower triangle can also be Sipped
about the horizontal axis. Here A+ = A(B -+ z'+z ),

A+ = A(B m z+z ), A:— A(BP -+ z Pz P),A—:A(B m m x ). The isospin amplitudes Az, Ap,
and A.o are de6ned in the text.

Since the previous method involves a large nuxnber of
rate measurexnents, with some axnbiguity in the shape
of the quadrangles, one may want to use SU(3) to re-
late B ~ nK to B -+ z'z. Within SU(3) the common
diagonal of the two quadrangles is given by

3As/2 —— (T'+ t ') = r„3Az———r„~2A(B+ ~ z'+z' )

(37)

as observed already in (31). The rate of B+ -+ vr+z

determines the magnitude of the common diagonal, and
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thus circumvents a good deal of the uncertainty associ-
ated with the geometric construction of the two quad-
rangles. Specifically, to determine this diagonal, one can
make use just of rates for charged B decays, as in (31).
The quadrangle (15) and the triangle (31) can be com-
bined to yield another triangle

r ~ZA(B -& xjP) = 3 A 3&i

y/2A(B -+ vr K ) + A(B m s K+)

= r„v2A(B+ -+ ~+7r ), (38)

i.e. ,

—(O' —P') —(T' + P') = r„(C—+ T).

An analysis completely analogous to that of B m mm can
now be used: the decay rates for the three processes in
this triangle and their CP conjugates can be combined
with the coefficient of the sin(b, mt) term in the time-
dependent rate for B m zr K, to determine n. This
is the first of several examples we present in this paper
showing how SU(3) can be used to obtain information
about CKM phases.

The triangle (31) relating the three amplitudes of
charged B decays to mx and vrK is interesting in its
own right, since its construction requires only self-tagging
modes. This triangle is very similar to that of B + sr~.
One would like to find a relation between the correspond-
ing measurable final state phases appearing in the two
triangles. For that purpose, let us complete the anal-
ogy by defining an I = 1/2 amplitude (parallel to Ao in
Bmnn) as

E. Isospin analysis of H ~ mD

Although we have concentrated on decays of B mesons
to pairs of light pseudoscalars, some useful evidence re-
garding final-state interactions can be obtained &om
the processes B m xD. The transition 6 m due has
6I —AI3 —1 and hence there are unique amplitudes
for I = 1/2 and I = 3/2 final states. In terms of these,
the physical decay amplitudes may be written

A(B+ m 7r+D ) = As/~, (42)

FIG. 3. SU(3) triangles involving decays B+ ~ s'+vr

and B+ m s K (upper) or B ~ s'K (lower). The
lower triangle can also be Bipped about the horizontal axis.
Here A +—:A(B+ -+ 7r K+), A+ = A(B+ ~ n+K ),
A =A(B A+K ), A (B ms K). Theisospin
amplitudes A.3/&, C&/~, and C&/q are defined in the text.

+1/2 — (Al/2 + Bi/2) s [(T + + + 3A ) + 3P ]

iy ibT ibJ,= +y/2(T'} e e +y/2(~} e

(40)

A(B m ~+D ) = sA3/2+ sAi/2) (43)

where we used Table II for the expressions in terms
of graphical contributions, and Arg(V„'s V„,)
Arg(VaVq, ) = x.

Comparing (40) with (33) we note that both Ao and
Cq/2 consist of two terms with specific weak phases,
which, however, involve diferent graphical contributions,
and thus have in general different final-state interaction
phases, bT g bT, bI, g bp. Following the arguments
which led to (31) one can similarly show that the final-
state interaction phase difference b,J = bp —bs /2(b3/2 =
b&) can be determined from the phase of

Cy/2 —Cy/2 ——2iay/2(~) sin pe' (41)

as shown in Fig. 3.
In the case E+PA = 0, to be discussed in Sec. III, only

the diagram P in B —+ mm carries the "penguin" weak
phase as in B + mK. Neglecting the phase due to the
perturbatively calculated absorptive part of the physical
cc quark pair in the penguin diagram, which is very small
[18], one has bI = b~. Thus, in the limit E + PA = 0,
the two final-state phase diH'erences in B ~ mm and in
B + mK are equal, A~

A(B m vr D ) = ~2(A3/2 Ai/2)/3.

These equations are of the same form as those employed
to conclude that significant final-state interactions occur
in D m vrK decays. They imply the triangle relation

A(B + ~+D ) + ~2A(B m 7r D )

Experimental data [7] exist for the two processes in-
volving charged pions, but only an upper limit exists at
present for B -+ vroao. These results lead to an upper
limit on the phase shift difFerence [19],cos(bi/2 —bs/2) )
0.82 (90% C.L.), or ~bi/2 —bs/2~ ( 35'. With improved
data, one may be able to tell whether the triangle has
nonzero area. Since these decays are all expected to be
governed by the same CKM factor, nonzero area for the
triangle would be unambiguous evidence for a diff'erence
in final-state phases between the I = 1/2 and I = 3/2
amplitudes. A similar approach [19] failed to detect any
phase shift differences between I = 1/2 and I = 3/2
amplitudes in the decays B m xo' and B ~ pD.
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III. NEGLECT OF CERTAIN DIAGRAMS

A. Linear relations among reduced amplitudes

The diagrams denoted by E, A, PA involve contribu-
tions to amplitudes which should behave as f~/m~ in
comparison with those &om the diagrams T, C, and P
(and similarly for their primed counterparts). This sup-
pression factor of f~/m~ ( (250 MeV/5 GeV) is due
to the smallness of the B meson wave function at the
origin, and it should remain valid imless rescattering ef-
fects are important. Such rescatterings indeed could be
responsible for certain decays of charmed particles (such
as D ~ K P [20]), but should be less important for
the higher-energy B decays. In addition the diagrams E
and A are also helicity suppressed by a factor m„,g, /m~
since the B mesons are pseudoscalars. We shall investi-
gate in the present section the consequences of assuming
that only T, C, P, and the corresponding primed quan-
tities are nonvanishing.

The relations for reduced matrix elements in SU(3)
entailed by this ass»option are surprisingly simple. The
singlet and the octet (8i) arising from the 3' operator in
the weak Hamiltonian become related to one another,
while the 27-piet amplitude and the octet (8s) which
arises &om the 15' operator become related:

I'(B, w x K ) = I'(B w n s ), (49)

I'(B, -+ ++K ) = I'(B m m+n ). (50)

As for ib, Si = 1 processes, the quadrangle relation (15)
for B ~ xK is unchanged. However, as mentioned in
Sec. II D, in the context of SU(3) it is more convenient
to think of this quadrangle relation as not independent,
since it can be expressed in terms of two triangle rela-
tions. As a result of the vanishing of the B, ~ x+m

transition, the triangle relation (19) becomes a rate rela-
tion

I'(B -+ x K+) = I'(B, w K K+). (51)

This leaves 13 nonzero amplitudes involving pious and
kaons, as shown in Table III. [In this table, the ~2(B+ m
m+mo) under the (T—+ C) column means that A(B+ ~
@+no) = (T—+ C)/~2, and similarly for other entries. ]

Given the relations (21) and (22), these 13 amplitudes
can be expressed in terms of three independent quanti-
ties, leading to ten relations among the amplitudes. For
AS = 0 processes, the triangle relation (7) for B m em is
not simplified by the assumptions of the present section.
However, the two triangle relations (9) and (ll) of the
exact treatment become two rate relations

(8 ) = -~~(1)/4 {8 ] = (27)/4. (46) There is one new relation between amplitudes which
are pure P,

The amplitude (82) which arises from the 8 operator
remains unconstrained. A(B+ w K+Ko) = A(BO -+ KOKo), (52)

B. Relations among decay amplitudes
and one new relation involving pure P':

r(B'-+ K+K-) = 0, (47)

I'(B, m n+n ) = I'(B, -+ n n ) = 0. (48)

There are now three independent SU(3) amplitudes for
LS = 0 transitions expressed in terms of the three inde-

pendent graphical contributions T, C, and P, and three
for ib, Si = 1 transitions expressed in terms of T', C', and
P'. The relations (21) and (22) between these two sets
noted in Sec. II continue to hold.

When the E, A, PA diagrams and their primed coun-
terparts are neglected, certain decays become forbidden:

A(B+wx+K ) =A(B, -+K K ). (53)

Since above we have listed six relations [counting the
triangle relation (7)], there should be four relations be-
tween AS = 0 and ib, Si = 1 processes. Three of these,
the two triangle relations (23) and (38) and the rate rela-
tion (29), are unchanged from the exact treatment. [The
s K quadrangle relation (15) is simply related to the two
triangle relations (23) and (38).] Finally, give the as-
sumptions of this section, the two quadrangle relations
(25) and (27) become equivalent, and can be written in
terms of decays of Bo and B+ only:

TABLE III. The 13 decay amplitudes in terms of the eight graphical combinations.

(T~C)—
~2(B+~ + ')

-(C —P)
~2(B' m vr's')
+2(B, -+s K)

(T+P)—
B' ~ ~+~-
B.~ ~+K-

(P)
B+ -+ K+K'
B -+K K

(T'+ C'+ P')—
+2(B+ ~ ~OK+)

—(C' —P')

+2(B ws. K)

(T'+P')—
B wx K+
B, -+K K+

(P')

B+ ~ ~+K'
B, -+K K
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A(B+ ~ ~+K') + A(B' -+ ~-K+)

= r„[-A(B+ + K+K')+ A(B' + ~+~-)], (54)

i.e.,

{P')—(T'+ P') = r„[(P)—(T + P)]. {55)
+0 -0

Note that the left-hand side of this relation, and others
like it, is likely to involve the cancellation of two nearly
equal amplitudes if P' is the dominant effect in [AS~ = 1
transitions, as we expect to be likely (see below).

To sum up, the assumption of ignoring the diagrams E,
A, PA and their corresponding primed quantities leads
to ten relations axnong B decay amplitudes: six rate re-
lations, three triangle relations, and one quadrangle re-
lation. These will be very useful in extracting both weak
and strong phase information &om B decays.

Finally, there is an additional point: The penguin con-
tributions in B ~ xx and B m xK are now related to
one another since the amplitude PA is no longer present
in B -+ xm. Thus, we expect the strong phase shift dif-
ference bJ —62 in B ~ 7rx to be equal to the difference
b+ —bs/2 in B ~ s.K. We showed in Sec. II D how to
measure these ddI'erences.

C. Measuring the angle p

FIG. 4. SU(3) triangles involving decays of charged
B's which may be used to measure the angle p. Here
A + = A{B+ -+ n K+) A+ = A(B+ -+ n+K ),
A = A(B -+ s K ), A = A(B -+ n K),
A+ = A(B+ ~ s'+s' ) = —(C+ T)/~2 = 3aqe'~e' '/~2,
A = A(B ~ s s ) = 3a&e '~e' '/~2, and
"- =—(&K/f-) I&-/&-d I

Neglecting A' in (24), the triangle relation (31) and
its charge conjugate can be used to measure the angle

p [21]. This follows from the the fact that the ampli-
tude —(C+ T) = ~2A(B+ ~ vr+vro) has the tree weak
phase p, whereas the amplitude P' = A(B+ m x+Ko)
has the penguin phase x. The two triangles for B+ and
B decays are shown in Fig. 4, with the notation de-
fined in the caption. We have drawn the figure such that
the strong phase e'~~ lies along the horizontal axis. The
strong phase b'2 was discussed in Sec. II D 1.

The measurements of the four independent rates for
B+ -+m K+ B mx K, B+ +~+K, andB+ ~
x+x can determine p. If A' can be neglected, the rates
for B+ —+ ++K and B ~ vr K should be equal. We
expect I'(B+ ~ x+7r ) = I'(B + vr 7ro) in any case,
as noted earlier. The triangle for B decays can also
be fBpped about its horizontal axis, leading to a twofold

ambiguity.
If b~ —b2 ——0, we will not observe a CP-violating

difFerence between the rates for B+ ~ m K+ and B
m K . Nevertheless, accepting the standard model CKM
mechanism for CP violation in the kaon system, we know
that p g 0, which selects the "Sipped" solution as shown
in the lower figure.

The present data on B decays to pairs of pseu-
doscalars [15] do not allow one to distinguish between

K+ and sr+~ final states. The combined branching
ratio is about 2 x 10,with equal rates for m K+ and
vr+m being most likely. If this is true, the amplitudes T
and P' have about the same magnitude, so that the short
sides of the triangles in Fig. 4 are probably about 1/4 to

D. Measuring the CKM phases and the strong phase
shifts

The relations of Sec. III B can be further used to mea-
sure all weak phases, as well as the strong phase shifts
and the sizes of the relevant contributing diagrams T, C,
P, and P' [22]. Having neglected E, A, and PA, the
three triangle relations can now be written schematically
[including SU(3) breaking] as

(T+0) = (C —P)+(T+P),

(T+ &) = (&' P')/ -+ (T'+ P-')/-

(T+C) = (T'+ &'+P')/ - (P')/--(5g)

By SU(3) symmetry the strong phases for the primed
graphs are the same as the unprimed ones. We thus have,
for the three relations,

1/3 [= (f~/f„)r„] the lengths of the other two sides.
Then the "long" sides of the triangle must be measured
with fractional accuracies of about (f~/f )r„b~ in order
to achieve an accuracy of b~ in the angle p. For example,
to measure p to a statistical accuracy of about 10', one
probably needs fractional errors of about 1/20 in ampli-
tudes, or 10% in rates. This would require at least 100
decays in each channel of interest.
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$7 'Lbg /A 'l7 18' A
—RP %be»

)
+(A~espesbr + AJ»e

i—
peas~ )

Sa2e'~e* ' = (A~e'~e* o + A~»e' ~/r„)
+(Az e'~e' ~ —AJ»e' ~/r„)»

Saz ——(Ace' + Ape' e' ) + (Az e' —Ape' e' )

(62)

Sag ——(A~e' o + Ap e '~e' ~/r„)
+(Age' r —Apie '~e' ~/r„), (63)

Saz ——(Ape' +Ace' o —Apse '~e' ~/r„)
+Ap»e '~e' ~/r„, (64)

where we again define b„=—b, —hz, and note that —(P+
p) = a —vr.

Consider the two triangle relations in Eqs. (63) and
(64). Implicit there is the relation

3ag ——T+ C = Az e' + A~e'

Thus not only do both these triangles share a common
base but they also share a common subtriangle with sides
T+ C, C, T as shown in Fig. 5(a). Furthermore, this
subtriangle is completely determined, up to a fourfold

Sa2e'7e' * = (Aze'7e* r + Age'~e* o —A e* ~/r„)
+Ap. e*' /r-„, (61)

where a2 [introduced in Eq. (33)] and the quantities
Az, A~, A~, and Ay are real and positive. Multiplying
through on both sides by exp( —ip —ib2) gives

ambiguity, by the two triangles in Eqs. (63) and (64). In
other words, if we measure the five rates for B m x K+
(giving (T+ P'/r„(), Bo +-uoKo (giving (C —P'/r„(),
B+ + m K+ (giving (T + C + P'/r„(), B+ m n+K
(giving (P'/r„(), and B+ ~ m+n (giving (T + C(), we
can determine (T(, (C(, b,c, bz» and b,~ —p. If we also
measure the CP conjugate processes then we can also
separately determine L~ and p.

Now consider the triangle relations in Eqs. (62) and
(63). Since the magnitudes of the penguin diagrams P
and P' can be measured by measuring rates, the sub-
tria, ngle in Eq. (65) (which still holds) is completely de-
termined up to an eightfold ambiguity. This eightfold
ambiguity corresponds to the two intersections of the cir-
cles drawn from the vertices of the triangles as seen in
Fig. 5(b), in addition to the fourfold ambiguity caused
by the possibility of reflecting the triangles about their
bases. Thus by measuring seven rates w'e can extract, in
addition to the parameters mentioned above, the angle
Ep —u. Thus we can determine P = x —e —p. By con-
sidering the CP conjugate processes we can determine
b,p and a separately.

An identical construction to that in the previous para-
graph holds for relations (63) and (64). This provides an
independent way to measure the same quantities and is
likely to be of great help in evaluating the size of SU(3)-
breaking efFects [22].

In Figs. 5(a) and 5(b) more realistic proportions would
be (P(, (C( ( (T( ( (P'/r„(. This hierarchy can reduce
the possibility of discrete ambiguities. Thus, for example,
in Fig. 5(a) two sides of each triangle with base C + T
will be of order (P'/r„(. One of the two choices of relative
orientation of the two triangles will imply that (C( and (T(
are each of order (P'/r„(, violating this hierarchy. Thus
only a tisofold ambiguity will remain, corresponding to
re8ection of each triangle about the base C+ T.

E. Results of further specialization

(a)

T+C

The relative magnitude of penguin effects in the decays
B -+ mvr can be estimated either by direct reference to
various charge states in B + nm [2], or with the help
of SU(3) and some auxiliary ass»uiptions by reference
to the process Bo +s K+ [ll-]. It appears that some
combination of the decays B -+ x+x and B + x K+
has been observed, with the most likely mixture being
approximately equal amounts of each [15]. As a result
of the relations (21) and (22) one then concludes that T
and C are likely to dominate the LS = 0 transitions,
while P' is likely to dominate the (b,S( = 1 transitions.
For reference, we quote some results of assuming this to
be so.

FIG. 5. Triangle relations from which weak phases and
strong phase shift dHFerences can be obtained in the limit
of neglect of certain diagrams. The black dot corresponds
to the solution for the vertex of the triangle in the relation
(66). (a) Relation based on (63) (upper triangle) and (64)
(lower triangle). (b) Relation based on (62) (low'er triangle
with small circle about its vertex) snd (63) (upper triangle
with large circle about its vertex).

f. H -+ 7f& Q7$CALQtkf p81lg&$fhs

If the triangle formed by the complex amplitudes in (7)
has nonzero area and penguin contributions are known
to be small, there must be 6nal-state phase differences
between I = 0 and I = 2 amplitudes. Direct CP viola-
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C+ T

FIG. 6. Isospin triangle for B ~ urer decays with
a small circle of uncertainty associated with unknown
Snal-state phase of the penguin amplitude P. Here
C+ t = ~2A(B+ ~ n+m'), T+ P = A(B—' ~ n+n ),
and C —P = ~2A(B m w 7r ).

tion in rates is not observable but the usual measurement
of a CP-violating difference between the time-integrated
rates for B ~t—o ~ 7r+m' and B ~t —o ~ 7r+n measures
the angle n in the unitarity triangle. Here n+ P+ p = 7r,

with P = Arg V ~V&s and p = ArgV„'sV„s.
If the magnitude ~PI is measured to be small in com-

parison with T and C (by the study of B+ ~ K+Ko
and Be ~ K K as mentioned below), and all the other
graphs give negligible contributions, one can draw the
triangle of Eq. (7) as shown in Fig. 6, with a circle of
error around one vertex corresponding to the uncertainty
in the phase of P. (This assumes we have not yet mea-
sured that phase using methods mentioned earlier). If
this circle is small enough, we can obtain approximate
information on the relative strong phases of the ampli-
tudes C and T, and hence on the phase difference b2 —bo

in B + xx.

not occur, and the triangle relation (7) becomes a rela-
tion between two amplitudes, entailing a rate prediction
1(B+~ ~+~') = 1(BO ~ ~+~-)/2.

If the color-suppressed amplitudes C' can be neglected
in B -+ srÃ in comparison to T' and P', one obtains the
rate relations 21'(Bo m xeKe) = I'(B+ ~ 7r+Ko) and
21'(B+ m xoK+) = I'(B —+ 7r K+). This may help in
extracting the weak phase &om the time dependence of
Bo + ~oK

In decays to charmed anal states, the absence of a
color-suppressed contributions would lead to equal rates
for B+ -+ vr+D and B + x+D and a suppression
of B ~ vr Do. It will be interesting to watch as the
data on these processes improve, to learn the actual sup-
pression factor. A similar suppression is expected in
B -+ KD. The magnitude of color suppression in this
class of processes would become crucial for a measure-
ment of the unitarity triangle angle p from the rates of
the self-tagged modes B+ ~ K+D, B+ + K+D, and
B+ m A+DPI, where Dc~ denotes a CP eigenstate
[23]. Too strong a suppression of B+ ~ K+Do, which
only involves a color-suppressed and an annihilation dia-
gram, would presumably make this method unfeasible.

IV. RESULTS FOR PHYSICAL q AND g'

The physical g and g' appear to be octet-singlet mix-
tures:

rl = res cosp —rlq sing, rl' = qs sing+ rtq cosp, (66)

2. B —+ mK' with penyuine alone

All rates are related [9]; those with charged pions are
twice those with neutral ones. The quadrangles in Fig.
3 have zero area because their common diagonal receives
no contributions &om penguin amplitudes and hence van-
ishes. As mentioned in Sec. II, one expects to be able
to tell directly from the B+ + x+m rate how large this
diagonal actually is. If the quadrangles have zero area,
the CP-violating difference between the time-integrated
rates for B (q 0 ~ m Ks and B ~q o m vr Ks measures
the angle P in the unitarity triangle.

8. Othe' H ~ I P nate pmdictiona

If P is negligible in comparison with C and T, the
processes B+ -+ K+K and B —+ K K have negligible
rates in comparison with B ~ mn. . (We have already
argued that Bo -+ K+K is likely to be small. ) For
~b, S~ = 1 transitions, there appear to be no special rate
predictions beyond those for B —+ mK which follow &om
the assumption of P' dominance. (We exclude processes
involving rls's from this discussion, as usual. )

1Veglect of color suppressed -diayranas

If both P and C are negligible in comparison with T
in AS = 0 B + PP decays, the B + m. m decay does

where res = (2ss —uu —dd)/~6 and rh = (uu + dd +
ss)/~3.

For a mixing angle of P = 19.5'=arcsin ~(1/3), close
to one obtained in a recent analysis [14], the physical q
and. g' can be represented approximately as

rl = (ss —uu —dd)/~3, q' = (uu+ dd+ 2ss)/v 6.

We shall calculate amplitudes for production of these
states in terms purely of the graphical contributions of
Figs. 1(a)—l(c), neglecting the small terms associated
with exchange, annihilation, or penguin annihilation. We
also neglect graphs in which one or two final-state parti-
cles are connected to the rest of the diagram by gluons
(or vacuum quantum numbers) alone. It would not make
sense to neglect such graphs while still continuing, for ex-
ample, to take account of the disconnected penguin anni-
hilation graph of Fig. 1(f). As mentioned in Sec. II, a full

SU(3) analysis would have to take account of all types of
disconnected graphs as a result of the singlet components
of g and q'. The validity of the neglect of disconnected
graphs in charmed-particle decays involving g and q' has
been discussed by Lipkin [24]. The results are shown in
Tables IV and V.

An interesting feature of these results is the absence of
the P contribution to B, m gK and the P' contribution
to B -+ K q. The 6rst result says that B, -+ gK may
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B+~

Final
state

-1/~S
1/~6

C
—1/~S
1/v 6

P
-2/~S
2/v 6

BO ~

B, w

x'9'
nn
gq'

gK
g'K

0
0

~2/S
-v 2/S
~2/6

-1/~S
1/v 6

—2/v 6
1/~S
~2/S

-~2/S
~2/6

0

S/v 6

TABLE IV. Decomposition of B + PP amplitudes involv-
ing q and q' for AC = b,S = 0 transitions in terms of graph-
ical contributions. Here g and g' are de6ned as in Eq. (67).

A. Meson decay constants

In the description of decays via factorization, a charged
weak current can xnaterialize either into a pion, with de-
cay constant f = 132 MeV, or into a kaon, with decay
constant flc = 160 MeV. Through Fierz identities it is
sometimes assumed that neutral quark-antiquark cora-
binations emerging &om a weak vertex materialize into
neutral pseudoscalar mesons with corresponding decay
constants, though this assumption is on shakier ground.

Since f~/f = 1.2, one can expect this effect alone
to contribute to deviations in decay rates by more than
40'%%uo &om the naive SU(3) expectation, independently of
the mass of the decaying particle. Such effects have been
taken into account in Ref. [11]in relating penguin effects
in B -+ x~ to the corresponding ones in B ~ vrK.

be a good probe of the color-suppressed contribution C.
This can be tested by comparison with the value of C
as extracted using B -+ zz, z K, and KK (Sec. III D).
The second result says that the decay B ~ K g may be
considerably suppressed in comparison with B ~ K x .
The suppression of the P' contribution is complete for the
particular mixing scheme (67), but is also considerable

[25] for a mixing angle of P = 10' such that r1 (~2sa-
uu —dd)/2.

V. SU(3)-BREAKING EFFECTS

As pointed out in Ref. [9], there appear to be important
SU(3)-breaking effects in charmed meson decays. One
expects [26] I'(D ~ K+K )/I'(Do ~ vr+z ) = 1, but
this ratio appears to be [6,27] 2.6+0.4. It is possible to
take at least partial account of such effects in the case of
B decays. Some of them are expected to be independent
of the mass of the decaying quark and some are expected
to decrease with increasing quark mass. The independent
ways we have described of extracting the same strong
and weak phases with SU(3) relations provide a way to
measure the size of SU(3) breaking efFects.

B. Form factors and hadronization

The rates for processes like D ~ K+K and D
m+x, if calculated using factorization, depend not only
on meson decay constants but also on form factors for
D +K and-D ~ z'. If f&+ &(0)/f&+ (0) ) 1.2, one
can understand why the rates for D -+ K+K and
Do ~ sr+a are so different. The cooperation of two dif-
ferent SU(3)-breaking effects (decay constants and form
factors) in this case originates in the presence of two dif-
ferent tree subprocesses (c ~ dud and c ~ sus). No sim-
ilar case arises in B decays, and therefore SU(3) breaking
is generally expected to be smaller.

Some evidence that the corresponding ratio
f&~&(0)/f&~ (0) exceeds 1, and could be of the order
of 1.1+0.1, comes from a recent /CD sum rule calcu-
lation [28]. In Ref. [11] this ratio of form factors was
assumed equal to 1. This ratio may be relevant to the
ratio of b ~ 8 and b ~ d penguin contributions, at least
for the decays of nonstrange B's.

In SU(3) we assume that the probability of producing
an extra ss pair form the vacuum equals the probability
for uu and dd production. For the heavy B xneson this
may be a good approximation.

TABLE V. Decomposition of B ~ PP amplitudes for
bC = 0, ~b, S~ = 1 transitions involving g and g' as dejned in
(67) in terms of graphical contributions.

C. Speci8c applications

Final
state
~K+
g'K+

gK
g'K

x'9'
nfl

9'9'

~l
—1/~S
1/~6

~l
—1/~S
1/v 6

—1/~S
1/v 6

-1/g6
1/gs

-+2/s
—1/s+2gi/s-

P'
0

s/~6

0
s/~6

0
0

+2/s
v 2/S

2+2/s

The SU(3) relations between b,S = 0 and ~b, S~ = 1
transitions are of two types, Eqs. (21) and (22). For
LS = 0 processes, the dominant effects are expected to
be T and C, while for ~AS~ = 1 we expect P' to dominate.
The sxnall admixture of P in AS = 0 transitions is esti-
mated from P' using (22), while the small contributions
of T' and C' to ~B,S[ = 1 transitions are estimated using
(21). In both of these cases, since SU(3) is only used
in order to estimate the magnitude of the sxnaller ampli-
tude, the effects of SU(3) breaking will be suppressed by
a factor of 4 to 5 in any given decay.

When we come to relations such as (23) in which two
large amplitudes nearly cancel, SU(3) breaking is more
important. Here, by referring to the graphs which give
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rise to the amplitudes C and T, and assuming factoriza-
tion to govern their behavior, we can expect the main
effect of SU(3) breaking to involve the ratio fry/f W. e
then expect (23) to be replaced by (31), as mentioned
above and as used in the subsequent discussions.

The factor f~/f is well motivated in the case of the
ratio T'/T, where factorization has been tested for some
processes like B +D-~ (see, e.g. , Ref. [29]). As men-
tioned above, one relies on a Fierz rearrangement to jus-
tify it for C'/C. It may be possible to check this assump-
tion more explicitly by comparing various B + Dx and
B + DK decays. In addition, the redundancy of the
measurements of the strong and weak phases described
in Sec. III D could give us an additional handle on the
size of SU(3)-breaking eH'ects (beyond f~/f )

It is more difBcult to estimate the effects of SU(3)
breaking on an equation such as (29) which involves the
ratio rq in (22). Both form factor and hadronization ef-

fects enter into corrections to this relation.

VI. SUMMARY AND EXPERIMENTAL
PROSPECTS

We have examined the decays of B mesons to two light
pseudoscalars within the context of SU(3), looking for
amplitude relations, simplifications, and help in sorting
out the physics of the B ~ z'K system. While the SU(3)
decompositions we obtain are not new, we have found
a member of simple linear relations axnong amplitudes
whose validity tests assumptions at various levels of gen-
erality.

An SU(3) analysis without further simplifying assump-
tions leads to several rate predictions, a number of tri-
angle relations among amplitudes, and one very useful
relation (23) [or (31) if SU(3) breaking is taken into ac-
count] between the amplitude for B+ ~ vr+zo and the
I = 3/2 amplitude in B ~ vrK. This last relation can be
used in several different ways, including the specification
of relative phases of various B -+ mK amplitudes and the
substitution of a measurement of the B+ ~ m+vr rate
for a xneasurement of the rates for Bo ~ m K+ and the
charge-conjugate process in sorting out CKM phases. We
have also shown how to extract strong Snal-state phase
differences bJ —h2 or b~ —bsyz between the penguin
amplitude and the I = 2 axnplitude in B + vrx or the
I = 3/2 amplitude in B ~ zK.

Additional predictions are obtained if one is prepared
to neglect certain contributions in a manner motivated
by a graphical SU(3) language. The neglect of these con-
tributions is predicated on the relative»~importance of
strong rescattering effects. These predictions &equently
convert triangle relations to relations regarding rates,
since in a number of cases they imply that one side of
a triangle has vanishing length. One application of these
relations is that measurements of the rates for B+ to

o m+Ko and woK+ and. the charge-conjugate pro-
cesses can be used to determine the weak CKM phase p.
With measurements of the remaining rates for B decays
to arm, mK, and KK, one can obtain the CKM phases
p and o. and all the relevant differences of strong phase

shifts.
In the xnore general case, when all amplitudes are con-

sidered, we can learn about final-state phase shift difFer-
ences &om the decays B m mD, which involve a single
CKM factor. If such phase shift difFerences were small,
we would expect them to be even smaller in the decays
to pairs of light pseudoscalars in which more energy is
released. One relies on the presence of such phase shift
differences in order to be able to detect direct CP viola-
tion in such processes as self-tagging B ~ vrK decays.

As we have mentioned earlier, some combination of the
decays B -+ vr+m' and B -+ vr K+ has been observed
[15], with a total branching ratio of about 2 x 10 . If
this consists of equal amounts of mx and mK, and if the
xK decays are indeed dominated by a AI = 0 transition
as occurs in penguin graphs, all the charge states of B m
mK should be observable at levels of 10 5 for charged
pions or half that for neutral pions. Similarly, if color-
unsuppressed tree diagrams dominate the B m or+a
process, and if it occurs at a level of 10,one should see
B+ -+ m+x at a level of half that. Once these signals are
observed, refinements of rate information will be able to
test for the presence of subdominant contributions. The
next step would be to look for processes which we predict
to be suppressed; searches at branching ratios down to
10 ~ would be able to provide information on amplitudes
at the 10%% level and could be of great help in sorting out
prospects for observing signals of CP violation.
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APPENDIX: SU(3) REDUCED MATRIX
ELEMENTS

We relate the SU(3) reduced matrix elements as intro-
duced by Zeppenfeld [8] to the diagrammatic contribu-
tions described in Sec. II.

We introduce a shorthand based on the decomposition
(4)—(6) in Sec. II. There is a unique singlet amplitude;
we denote it by (1). The three octet amplitudes arising
from the 3', 6, and 15' operators in (4)—(6) are denoted
by (8q), {82),and (8s), respectively. There is a unique
amplitude (27}. The singlet and Srst octet receive con-
tributions involving both V ~V„'& and A&V&& (we can elim-
inate V,~V,& using»~itarity), while the second and. third
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{I}= 2~3 PA+ ',E+-',P —-—,', C+ ',T,- (Al)

P + Is (T + A) —I'(C + E), (A2)

{82}= (C+ A —T —E),
4

{8,}= — (T+ C) — (A+ E),
1 5

8 3 8 3
(A4)

octets and the 27-piet receive only contributions propor-
tional to V„zV„'&. Here q stands for d or 8.

It is sufficient to discuss the case of b,C = 0, hS =
0 decays; a corresponding set of relations exists for the
strangeness-changing AC = 0 amplitudes. Absorbing
CKM factors into the definitions of reduced amplitudes,
we then have the relations

{27}=—
2

All amplitudes are linear combinations of these contri-
butions. A corresponding set of relations exists for the
primed quantities, with primed contributions related to
unprimed ones by Eqs. (21) and (22).

The singlet amplitude is the only one which contains
the penguin annihilation (PA) contribution. It does not
receive any contribution &om the annihilation graph,
which contributes only to direct-channel octet ampli-
tudes. The penguin contribution P appears only in the
singlet and first octet amplitudes.

If one neglects E, A, and PA one obtains the rela-
tions (46), reducing the number of independent SU(3)
amplitudes from ffve to three. However, the same re-
lations also follow &om the less restrictive assu~ptions
E+ A = E + PA = 0. As one sees &om the discussion
of Tables I and II, these are the only two independent
combinations which contain exclusively contributions of
graphs we wish to neglect.
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