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A new procedure for solving the spinless Salpeter equation is developed. This procedure is imple-
mented with the Cornell potential, where all of the required matrix elements can be calculated from ana-
lytic expressions in a convenient basis. Beginning with analytic results for the square of the momentum
operator, the matrix elements of the nonlocal kinetic energy operator are obtained from an algorithm
that computes the square root of the square of the relativistic kinetic energy operator. Results calculat-
ed with the spinless Salpeter equation are compared with those obtained from Schrédinger’s equation for
heavy-quark systems, heavy-light systems, and light-quark systems. In each case the Salpeter energies
agree with experiment substantially better than the Schrodinger energies.

PACS number(s): 03.65.Pm, 12.39.Pn, 14.40.Cs, 14.40.Gx

I. INTRODUCTION

Since the pioneering work of Stanley and Robson [1]
and of Godfrey and Isgur [2], it has been apparent that
calculations of mesons containing a light quark should
simultaneously address a number of relativistic correc-
tions. These include the effects of relativistic kinematics
[3], which require a nonlocal kinetic energy operator, as
well as momentum-dependent corrections to the potential
energy operator, which introduce nonlocal modifications
of the relative coordinate and adjustments to the
strengths of various parts of the potential. Since the
comprehensive calculations of Godfrey and Isgur [2]
agreed with a broad spectrum of experimental data, one
might infer that a solid foundation for the treatment of
relativistic corrections had been established. However,
the subsequent calculation of Gara et al. [4], which was
based on a reduced Bethe-Salpeter analysis of relativistic
potential and kinetic energy effects, did not find this to be
the case. Indeed, they discovered that the trend of their
25-18 separations for decreasing constituent masses was
contrary to the behavior of the observed separations.
They were able to trace this disturbing trend to the
behavior of relativistic corrections to the potential for
scalar exchange. The general conclusions of Gara et al.
about the difficulty of finding a consistent relativistic ex-
tension of the nonrelativistic quark model were supported
in a more recent calculation by Lucha, Rupprecht, and
Schoberl [5].

In view of this confusing picture and the difficulties in-
herent in finding a coherent viewpoint to address ques-
tions of relativistic consistency, it is important to see if
one can find support for an experimental signature of the
relativistic kinetic energy operator [6,7]. To this end, we
have followed the scenario used by Jacobs, Olsson, and
Suchyta (JOS) [6], that is, to conduct a competition be-
tween Schrodinger’s equation and the spinless Salpeter
equation, using the Cornell potential. In each case, the
parameters are determined independently. We extended
the original scope of the JOS calculation from heavy-
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quark systems to include heavy-light systems in Ref. [7].
In the present work we present additional results for the
heavy-quark systems and the heavy-light systems and ex-
tend the scope of the comparison between the two wave
equations to light-quark systems.

The energy eigenvalues and the eigenfunctions of Refs.
[1] and [2] were obtained by diagonalizing the Hamiltoni-
an operator after calculating the matrix elements of both
the kinetic and potential energy operators in a harmonic
oscillator basis. Following JOS, in the calculation report-
ed in Ref. [7] we used a basis in which each radial func-
tion consisted of a centrifugal barrier factor, a common
exponential function and a Laguerre polynomial. In all
of the Salpeter calculations just discussed, the matrix ele-
ments of the kinetic energy operator were evaluated by
numerical integrations in momentum space. Below we
develop a procedure which will dispense with the necessity
of these numerical integrations for obtaining the kinetic
energy matrix elements.

The new procedure begins with analytic results for the
square of the momentum operator in the Laguerre poly-
nomial basis [7]. To this matrix we add a diagonal matrix
to include the effects of the square of the rest mass.
Thus, we have analytic expressions for the matrix ele-
ments of the square of the kinetic energy operator. In or-
der to find the matrix elements of the kinetic energy
operator, we implement an algorithm to take the square
root of the squared operator. Our algorithm, which is
based on diagonalizing a real symmetric matrix, is in
essence the same algorithm used by Nickisch, Durand,
Durand, and Gara [8,9] and was discussed in an earlier
report [10]. Below, we show that this procedure leads to
stable values for the matrix elements representing the
kinetic energy operator. These matrix elements for the
kinetic energy operator are uniquely determined by the
Laguerre polynomial basis, and thus they may be used as
part of the procedure to determine the elements of the
Hamiltonian operator for arbitrary (well-behaved) poten-
tials. Since the analytic expressions for the square of the
momentum operator are straightforward to evaluate and
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the size of the matrix required to take the square root
(30X 30 or 40X40) is not too large, the implementation
of the new procedure should result in a substantial sav-
ings in computer time in most cases.

In the case of the Cornell potential, we have shown [7]
that one can also obtain analytic expressions for both the
linear and Coulomb parts of the Cornell potential, re-
gardless of the value of the angular momentum. When
the analytic results for the potential are combined with
results of the square root algorithm, it is apparent that all
of the matrix elements necessary to solve the spinless Sal-
peter equation with a Cornell potential can be generated
analytically.

Further, I should like to note that there is considerable
interest [11-14] in approaching the spinless Salpeter
equation from momentum space. There, in order to solve
the Cornell potential problem, one has to develop a pro-
cedure for handling the singular kernels [11] that arise
from both the Coulomb and the linear potentials. Al-
though we have not had any direct experience with the
singular integral equations, it is likely that our present
matrix mechanics method is easier to implement.

Our method for solving the spinless Salpeter equation
is presented in Sec. II. Explicit expressions for all of the
requisite matrix elements are listed there as well as some
of the procedures for verifying the correctness of our re-
sults. Our results for the spin-averaged energies of the Y
system, charmonium, the B-flavor mesons, the charmed
mesons, and the light mesons are presented in Sec. III.
In each sector we show that the Salpeter eigenvalues
agree with experiments better than the Schrodinger ei-
genvalues. The advantage becomes more pronounced as
the systems become lighter, as one might expect. In Sec.
IV we discuss some of the problems presented by allow-
ing the coupling constant to run and some possible future
applications of our method.

II. SOLUTION OF THE SPINLESS SALPETER
EQUATION

The spinless Salpeter equation [6,15] for a quark and
antiquark in a mutual orbit in their center-of-momentum
system may be expressed

HY,=E,¥, , )

H=vY"m?}+p*+V mi+p>+V(rN+Vgp(r), Q)

where E, denotes the total energy of the system, V(r) is
the central potential, and Vgp(r) includes the effects of
all spin-dependent potentials. Since our point of compar-
ison with experiment is the spin-averaged energies, we
will neglect the effects of Vg,. The Cornell potential [16]
is given by

V(r)=Ar—«/r+C , (3)
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where A is the string constant and « is the Coulomb pa-
rameter. The additive constant C is zero in the heavy-
quark sector. It is mildly flavor dependent in the heavy-
light sector and flavor dependent in the light-quark sec-
tor. This flavor dependence is not a surprise, since it was
necessary to add such a constant for each quark-
antiquark system in the original calculations [16]. Since
we are interested in identifying a set of circumstances un-
der which we can compare Schrodinger’s and Salpeter’s
equations, most of our results will be based on strict
flavor independence of A and k. However, we also
present some results in the heavy-quark sector where the
parameter « is allowed to run, in order to see if the re-
quired behavior of k is compatible with asymptotic free-
dom [5].

To solve Egs. (1) and (2) we choose the method of Ray-
leigh, Ritz, and Galerkin [17], where one expands the
wave function in terms of a complete set of basis func-
tions. We take this basis set [18] to be

R, (r)=N,B"*(2Br)e PLX %28r), 4)
where
(1) - (5)
N = T t21+3)

I denotes the angular momentum, Lf’ +2 denotes an asso-
ciated Laguerre polynomial [19,20], and B is a parameter
that sets the scale of length. Thus, the determination of
the energy eigenvalues requires the diagonalization of a
Hamiltonian matrix whose elements are calculated with
the functions of Egs. (4) and (5). We have shown [7] that
it is possible to obtain accurate results for the low-lying S
and P states with a range of possible scale lengths B.
However, for the Y system the optimum value of S,
which requires the smallest number of basis states, is near
2.0 GeV. For charmonium and the light-quark systems
the optimum values of 8 are somewhat smaller.

In Ref. [7] we have shown that the matrix elements of
the nonrelativistic kinetic energy operator may be evalu-
ated analytically. If the result for the nonrelativistic
kinetic energy operator there is multiplied by twice the
reduced mass, then the matrix elements for the square of
the momentum operator take the form

BZN nl N n'l

nn' 2

% LSMI (n+21+3)
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where n must be restricted to values smaller than n’. For
S, P, and D states the results are especially simple: that is,

2+——8,mr} (1=0), (7)
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wheren <n’.

Equations (6)—(9) are the starting point for the algo-
rithm to determine the matrix elements of the kinetic en-
ergy operator of Eq. (2). The theoretical underpinnings
of the procedure are based on well-known properties of
matrices and are described in some detail in Refs. [8,9].
One begins the procedure by adding m? times the unit
matrix to the matrix elements of p? to form the matrix
elements of the square of the kinetic energy operator,

(E?),=p}+m?* (step 1) . (10)

Use a library subroutine [EVCSF in the International
Mathematical and Scientific Library (IMSL)] to diagonal-
ize the matrix representative of the square of the kinetic
energy operator (step 2). The operator (E2), is related to
the diagonal matrix A formed from the eigenvalues by
the similarity transformation

(E3),=UAU!, (11)
where U is the matrix of normalized eigenvectors. Form
the square root of the diagonal matrix A by taking the
positive square roots of each of its eigenvalues (step 3).
Use the similarity transformation of Eq. (11) to restore
the square root matrix to the original basis: that is,

(E.);=UAY2U"! (step 4) . (12)

The operator computed with Eq. (12) is the desired
representative of the relativistic kinetic energy operator
for a particle of mass m. The four-step algorithm must
be carried out for each of the constituent quarks of Eq.
(2). The kinetic energy calculation is readily implement-
ed as a FORTRAN program on a Vax 8650.

172
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It is important to ascertain the role of matrix size in
the results for the matrix elements of the relativistic ener-
gy operator of step 4. In order to investigate concerns
about stability of these results, we have undertaken a
comparison of results obtained with 20X20, 30X30,
40X 40, and 60X 60 matrices for the Y system where
m;=m,. Results from the first column of the matrix
representation of the kinetic energy operator are present-
ed in Table I for the first three cases and compared with
the results of a numerical integration in momentum
space, which was used in the earlier calculation [7]. Since
the results of the 40X 40 calculation are almost identical
to those of the numerical integration, it is clear that a
matrix of this size should suffice to give accurate results
for the relativistic kinetic energy operator, although sub-
stantially smaller matrices may suffice for some applica-
tions [21]. The accuracy of the 40X 40 calculation is also
supported by comparison with the results of the 60X 60
calculation.

We have also shown [7] that all of the potential energy
matrix elements of Egs. (2) and (3) can be obtained
analytically. For arbitrary values of angular momentum,
the matrix elements of the linear potential may be ex-

pressed as a tridiagonal matrix: namely,
A

<Ar)nn’= 2B

((21+3+2n)5,,
—Vn'(n'+21+2)8, , 4
—Vnn ¥20F2)6, 1] . (13)

The matrix elements for the Coulomb potential may also
be expressed in an analytic form. For S, P, and D states,
the expressions simplify to

(14)

(15)
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where n<n’. When the matrix elements of Egs.
(13)—(16) are combined with those of the four-step algo-
rithm above, all of the matrix elements required to diago-
nalize the Hamiltonian operator of the spinless Salpeter
equation of Eq. (1) have been determined. This second
diagonalization is also readily carried out with EVCSF.

(1=2), (16)

)n'+6)

—

The role of the size of the Hamiltonian matrix in deter-
mining the low-lying S eigenvalues is explored in Fig. 1.
There, it is clear that these eigenvalues are accurate for
8 X8 or 10X 10 matrices, if 3=2.0 GeV, which is near
the optimum value [22] for the Y system. Use of a larger
value of B, for example, B=5.0 GeV, requires larger
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TABLE I. Matrix elements of the kinetic energy operator for

B=2.0GeV and m =5.0 GeV.
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TABLE II. Spin-averaged energies for heavy-quarkonium
systems. The results for Y were obtained with =2.0 GeV and
those for charmonium were obtained with f=1.5 GeV. The
ranges of error include errors from the measurements and un-
certainties in the procedures used to determine the spin aver-
ages. The quantities y* are computed with the states below the
flavor thresholds.

Matrix size Numerical
Element 20X20 30X30 40X 40 Result
(Ex)oo 5.3613 5.3613 5.3613 5.3613
(Ex)io 0.3861 0.3861 0.3861 0.3861
(Ey )0 0.2325 0.2325 0.2324 0.2324
(Ey )30 0.1540 0.1539 0.1539 0.1539
(Ey)ao 0.1086 0.1085 0.1085 0.1085
(Ey)so 0.0802 0.0801 0.0801 0.0801
(Ex)so 0.0614 0.0613 0.0613 0.0613
(Ex)m 0.0485 0.0483 0.0483 0.0483
(Ey)go 0.0392 0.0390 0.0390 0.0390

Hamiltonian matrices to achieve the same accuracy. In
order to provide a comfortable margin for error, we have
used a 20X20 Hamiltonian matrix to obtain the results
presented below.

III. RESULTS

Cornell potential eigenvalues for heavy-quark systems
are presented in Table II and compared with spin-
averaged measurements of the low-lying S, P, and D ener-
gies [23]. Since the energies of the singlet S states of the
Y system have not been measured, determining the spin
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FIG. 1. Low-lying S eigenvalues as a function of matrix size
from Salpeter’s equation. The full curves were obtained with
B=2.0 GeV and the dashed curves with =5.0 GeV. The mass
is 4.731 GeV and the potential parameters are the same as those
used in Table II below.

Schrodinger Salpeter Experiment®
States (MeV) (MeV) (MeV)

bb states
1S 9448 9448 9448+5
28 10007 9999 100175
3S 10356 10351 1035145
45 10 642 10639 10580+?
58 10 894 10892 10865+?
6S 11123 11122 11019+?
1P 9901 9900 9900+ 1
2P 10261 10262 102601
1D 10 148 10 150

cC states
1S 3067 3067 306712
28 3693 3668 3663+5
3S 4164 4112 4040+?
4S 4568 4486 4415+?
1P 3497 3504 3525+1
2P 3991 3970
1D 3806 3811 3770%?
2D 4242 4216 4159+?
X: 827 459

Parameters
my; (GeV) 4.749 4.7305
m. (GeV) 1.320 1.3195
4 (GeV?) 0.191 0.203
K 0.472 0.437

2Particle Data Group (Ref. [23]).

averages requires theoretical input. We take the

hyperfine splittings of these states from two recent,
comprehensive calculations [24] that give consistent re-
sults. Then we allow for about a 50% error in this result.
The error bar for the 25 state of charmonium reflects the
experimental uncertainties surrounding 7.(2S). The
quantity ¥ listed in Table II is defined as

M_th__M_expt 2
Xzzz P E— AM-' , (17

where AM,; denote the error bars listed in Table II. The
x? comparison listed in Table II is based on those Y and
charmonium states below the flavor thresholds, since
these states should be less contaminated with the compli-
cations of continuum effects. This quantity is almost a
factor of 2 larger for the Schrédinger results than for the
Salpeter results, and the difference arises almost entirely
from charmonium. It is remarkable how closely the two
calculated results for the 45, 55, and 6S states of the Y
system agree, which of course supports the usual claim
that this system is a good example of a nonrelativistic
system. The Salpeter results for the charmonium states
above threshold are substantially better than their
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Schrodinger counterparts. The Schrodinger results in
Table II were also obtained by diagonalizing the nonrela-
tivistic Hamiltonian matrix [7]. They were checked by
comparing with the results of a numerical integration
[25].

In Table III we present our results for the heavy-light
systems, where the parameters A and « are the same as
those used in Table II. It was necessary to introduce the
flavor-dependent constants Cp, and Cjp to obtain good fits
to the D and B meson masses with reasonable values for
the light-quark constituent masses. The agreement of our
earlier Salpeter prediction [7] for the By mass with the
recent measurements [26,27] is very gratifying. Including
this By measurement in our y? calculation for the heavy-
light sector leads to an advantage of the Salpeter results
over the Schrodinger that is a factor of about 5.

Using the values for the light-quark masses obtained in
Table III, we have calculated energies of the low-lying
states of light-quark systems in Table IV. In each case it
was necessary to add a constant to bring the scale of ener-
gies into good agreement with experiment. The spin-
averaged data for the ui or dd systems in Table IV are an
average of the spin averages of the isoscalar and the iso-
vector mesons in the light, unflavored sector. The error
bars measure the differences between these two spin aver-
ages. The y? value listed in Table IV for the Salpeter re-

TABLE III. Spin-averaged energies for the heavy-light sys-
tems. Both the Salpeter and the Schrodinger results were ob-
tained with B=1.0 GeV. The parameters C, and Cj are the
additive constants for the charmed sector and the bottom sector
respectively. The units of all parameters listed are MeV.

Schrédinger Salpeter Experiment
States (MeV) (MeV) (MeV)
Charmed sector
D(1S) 1973 1973 1973+ 32
D(2S) 2757 2615
D(1P) 2474 2457 2437+10
D(2P) 3125 2960
Dg(18) 2075 2075 207512
Dg(2S) 2771 2713
Dg(1P) 2534 2544 2550+10
Dg(2P) 3099 3045
Bottom sector
B(1S) 5313 5313 531343
B(25) 6066 5892
B(1P) 5799 5780
B(2P) 6420 6011
Bg(15) 5383 5404 5410+10°
Bg(2S) 6038 5982
Bg(1P) 5824 5858
Bg(2P) 6348 6300
v 23.6 4.7
m, 325 150
mg 602 364
Cp —441 —244
Cy —470 —213

TABLE IV. Spin-averaged energies for light quark-antiquark
systems. Both the Schrodinger and Salpeter results were ob-
tained with $=1.0 GeV. The light-quark masses are the same
as those listed in Table III.

Schrodinger Salpeter ~ Experiment®
States (MeV) (MeV) (MeV)
uit or dd states
1S 681 703 667+57°
28 1577 1416 1397128
1P 1240 1240 1240+15
1D 1692 1642 1666122
Strange sector
K(1S5) 794 794 794+1
K(28) 1626 1495 1412+50
K(1P) 1320 1315 1383150
K(1D) 1738 1703 1713150
S§ states
18 1004 1004 1004*1
28 1759 1695 16651+65°¢
1P 1490 1508 1507x15
1D 1869 1885 1850150
v 66.5 7.4
Parameters
C. —934 —599
Ck —987 —624
Cs —913 —527

?Particle Data Group (Ref. [23]).

®These errors reflect the differences between the spin averages of
the light isoscalars and the isovectors.

°This number is based on the assumption that the 25 hyperfine
splitting for ¢ is no larger than the 18S.

sults is almost an order of magnitude better than the
Schrédinger y2.

In Table V we present results from charmonium where
the Coulomb parameter « is allowed to run from its
values used to fit the Y system. We fix the value of « in
Table V by adjusting the 1P energy to agree with experi-

TABLE V. Spin-averaged energies of charmonium with a
running coupling constant.

Schrodinger Salpeter Experiment
States (MeV) (MeV) (Mev)
CC states
15 3067 3067 306712
28 3715 3681 36635
3s 4190 4129 4040+?
4S 4595 4504 4415+?
1P 3525 3525 3525+1
2P 4023 3993
1D 3841 3837 3770L?
2D 4277 4242 4159+?
Xheavy 115 29.9
oar® 145 29.1
m, (GeV) 1.3555 1.344
A (GeV?) 0.191 0.203
Kehar 0.561 0.491

#Particle Data Group (Ref. [23]).
YRecent measurement from the CERN e *e ™ collider LEP (Ref.
[26]).

2In this calculation of y? the experimental errors of the states
above threshold are taken to be the widths of the respective
states.
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ment, thereby eliminating a large contribution to the x?
calculations of Table II. It is interesting to note that the
variation of k in Table V is what one would expect from
asymptotic freedom [5]. One set of the y? values listed in
Table V is obtained from both the Y and the charmonium
states below the flavor thresholds. The other y? values
are obtained from all the charmonium states. In each
case the Salpeter results for y? are substantially better.

IV. DISCUSSION AND OUTLOOK

In each sector that we have examined, the heavy sec-
tor, the heavy-light sector, and the light sector, we have
found that the eigenvalues obtained with Salpeter’s equa-
tion agree with the spin-averaged data better than those
obtained with Schrodinger’s equation. We have found
this to be the case when the string tension and Coulomb
parameter are taken to be universal and in a preliminary
study of heavy-quark systems where the Coulomb param-
eter is allowed to run in a manner consistent with asymp-
totic freedom. In view of the difficulties that Lucha,
Ruprecht, and Schoberl [5] encountered when attempting
to reconcile their results with asymptotic freedom, it is
important to assess our prospects of encountering similar
difficulties. If we follow the strategy used in Table V,
that is, we assume that the string constant is universal,
but we allow the Coulomb parameter « to run in order to
adjust the calculated Salpeter 1P-1S differences to agree
with the measured values, then we can decide what kind
of adjustment is necessary for each of the lighter systems.
Since the 1P-1S differences listed in Table IV for kaons
and for the u# system are somewhat too small, these two
systems would require a larger value of « (than the Y sys-
tem), which would be consistent with asymptotic free-
dom. The 1P-1S differences listed in Tables III and IV
for the Dg mesons and the s5 system agree very well with
the measured differences, which is not consistent with ex-
pectations based on asymptotic freedom. Further, the
Salpeter result listed in Table III for the D mesons is
about 2 MeV larger than the measured 1P-1S difference.
Thus, the promising observation about the Coulomb pa-
rameter and asymptotic freedom in Table V is not sup-
ported by a more comprehensive analysis of our results
for systems with light quarks. Of course, all of the
discrepancies between the Salpeter results of Tables III
and IV (+20 to —68 MeV) and experiments are relative-
ly small and thus may be swamped by relativistic poten-
tial effects. In any event, it seems premature to pursue
this question of consistency of asymptotic freedom

beyond the heavy-quark systems without careful atten-
tion to relativistic potential corrections.

The advantages of the results of Salpeter’s equation
over Schrodinger’s presented above may be viewed as an
indication of a signature for the relativistic kinetic energy
operator, although we have only considered the Cornell
potential. It would be interesting to know if other static
potentials in widespread use [24,25,28-31] would give a
similar indication of the importance of using relativistic
kinematics. Perhaps such considerations could be used
to classify some of the alternative forms of the quark-
antiquark potentials into a group that produces better re-
sults with the Salpeter equation and a group that does
not. Of course, any such classification may prove to be
premature, because relativistic potential effects may very
well lead to a different grouping of potentials when a
higher degree of relativistic consistency is considered.

After completing this study of the effects of relativistic
kinematics, the most compelling issue would seem to be a
careful consideration of relativistic potential corrections
in order to address the dichotomy of viewpoints
represented by a natural interpretation of the work of
Godfrey and Isgur [2] on the one hand and the results of
Gara et al. [4] and Lucha, Rupprecht, and Schéberl (5]
on the other. If one uses the reduced Bethe-Salpeter
equation as a context for the study of relativistic potential
corrections, then one will encounter many nonlocal
corrections to the potential energy, including a term of
the form

(4 14—
Vimi+p? V/mj+p?

In order to calculate the matrix elements of this operator,
one must insert two complete sets of states. Thus, this
operator involves the multiplication of three matrices. If
one works in the basis of Eq. (4), then it should be possi-
ble to obtain representatives for the momentum-
dependent operators from the analytic expressions of Egs.
(6)—(9). It will be important to study the role of matrix
size in obtaining stable results for the momentum-
dependent operators of Eq. (18) and for accurately carry-
ing out the matrix multiplications there.

(r) (18)

1
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