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We determine the mass width of the p meson by applying the 8-matrix formalism to the reaction
e+e ~ m+m in the timelike region. We obtain M~ = (757 56. 1.5) MeV and I'~ = (142.5 + 3.5)
MeV, which are significantly smaller than the values quoted by the Particle Data Group. These
values are almost independent of the specific form used to model the background.

PACS number(s): 14.40.Cs, 11.55.Bq, 13.40.Gp, 13.65.+i

I. INTRODUCTION

Mass and width are physical properties of an unstable
particle. They should be independent of the theoretical
model for the production and decay mechanisms chosen
to determine their values from experimental data.

The usual approach to analyze processes involving res-
onances has been to use a Breit-Wigner formula which in-
cludes an energy-dependent width (see p. III.51 of Ref.
[1]). This choice relies on dynamical and kinematical
assumptions regarding the production and decay mecha-
nisms of the resonance (see, for example, Refs. [2,4,10,11]
for hadronic resonances and the on-shell scheme for the
Zo gauge boson). However, it could happen that this ap-
proach is not adequate when we deal with wide hadronic
resonances, because of the strong model dependences in-
volved there.

As is well known, the S-matrix approach to scattering
and decay amplitudes provides an alternative definition
of the mass (M) and width (I') of a resonance [3]. In
the case of an s-channel resonance, these parameters can
be defined from the position of the pole of the S-matrix
amplitude in the complex s as

duction and z+N -+ pN experiments for the po mass,
whereas the weighted average of the po width is strongly
infiuenced by the e+e ~ x+z' data. Those deter-
minations could be inconsistent because difFerent Breit-
Wigner parametrizations have been used to model the
resonant production of the ~+sr pair. In particular, it
should be noted that the Breit-Wigner formulas used to
extract M~ and I'~ contain an energy-dependent width.

In this work we apply the S-matrix approach to deter-
mine the p mass and width from the e+e m m+7t data
[4] in the timelike region 2m ( +s ( 1.1 GeV. As will
be shown below, our results for M~ and I"~ are system-
atically smaller than the ones quoted in Ref. [1]. They
are also independent either (i) of the particular form that
we choose to parametrize the energy dependence of the
background or (ii) of the choice of the normalization con-
dition F (0) = 1. We also find a simple rule to derive

M~ and I'~ from the corresponding parameters entering
the Breit-Wigner formulas that use an energy-dependent
width.

Finally, we explore some of the main consequences that
could arise f'rom the new values of po parameters for some
decays of light mesons.

s i, =M —MI'.

This de6nition of the mass and width of an unstable
particle is independent of the process used to determine
these parameters, and it is also independent of the theo-
retical model for the production and decay mechanisms
of the particle.

In the present paper we are concerned with the deter-
mination of the mass and width (M~ and I'~) of the po

vector meson from the experimental data on the sr+ elec-
tromagnetic form factor F (s). As can be easily checked,
the values of these parameters as quoted by the Par-
ticle Data Group [1], M~ = (7.68.1 6 0.5) MeV and
I'~ = (151.5 + 1.2) MeV, arise mainly from photopro-

II. m+ ELECTROMAGNETIC FORM FACTOR

Our purpose in this section is to determine the p pa-
rameters from the e+e annihilation into a ~++ pair
by using data in the timelike region 2m + ( +s & 1.1
GeV [4], where +s is the total center-of-mass energy.

The total cross section for this reaction can be written

7i 0!
a(e+e m 7r+~ ) = (s —4m ) l ~F (s)[ . (2)3s

The m+ electromagnetic form factor F (s) is an ana-
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lytic function in s, with a cut starting at s = 4m2, and
it is normalized such that E (0) = l. F (s) has also a
pole corresponding to the resonant production of m+x
Thus it can be represented as

F (s) = + B(s),
A

P

y s —s~
(4)

where s~ is the position of the pole, A is the residue at the
pole, and B(s) represents the nonresonant background in
the region near s~. As has been emphasized also in Ref.
[5], the position of the pole is a physical property of the
S-matrix amplitude. Thus it provides a good definition
of the mass and width for an unstable particle through
Eq. (1).

In the mod. el for F (s), we should take also into ac-
count the contribution of the u(782), since isospin break-
ing allows the coupling u7rz' through the p-u mixing [6].
By using the vector dominance model (VDM) [7], we can
represent both contributions to F (s) as shown in Fig.
1.

The effect of p-~ IIIIxing is to multiply the resonant
term in Eq. (3) by the factor

F (s) =
I

1+y I+B(s)
A p M'q

8 —sp l 8 —8~)
(7)

In the next section we will perform several 6ts to the
F„(s) data by assnming different forms for the back-
ground term. Furthermore, we will set A to be a real con-
stant and introduce a dimensionless constant a through
the relation A = —aM2.

P

III. FITS TO EXPERIMENTAL DATA
OF F„(S)

A. Fit with real constants a and B

In the present fit we choose the simplest case B(s) = b,
with b a real constant. In this case, Eqs. (6) and (7) take
the explicit forms

Our aim in this section is to convince the reader that
the extracted values for M~ and I'~ are almost indepen-
dent of the speci6c choice we make to parametrize the
background term B(s). In Secs. IIIA—III C we present
the fits when we relax the condition of F (0), and in Sec.
IIID we discuss the same cases when we fix F (0) = l.

2m .f,y= (5)

where y is a small dimensionless parameter which quan-
tifies the isospin-breaking contribution and s:—M
iM I' . Within the VDM approach we have

and

F(i) (s)
aM,' +b

s —M2 + ill'p )
yM.- M~+ IM.r. (8)

where eM&/fv defines the vector-meson —photon cou-
pling and m~ describes the strength of the p-u mixing,
m~~ —( p]IIX =

Iu ). M~ and I' are the mass and
width of the u Ineson, which we will fix in the following
to their values given in Refs. [1,8]:

M = (781.95 6 0.14) MeV,

I' = (8.43 + 0.10) MeV.

Thus, taking into account p-ur IIIIxing, Eq. (3) becomes
either

2() aM
Mrs — +i p p

yM2

s —M2+iM I'

(9)

M~ = (756.76 6 0.82) MeV,

Both Eqs. (8) and (9) contain five free parameters to
be determined kom experiment: M~, I'~, a, b, and y.

These formulas provide, respectively, a good fit to ex-
perimental data (see Figs. 2 and 3) without the need to
fix F (0). We obtain, respectively, the resonant parame-
ters

AF (s)=
I

+B(s)
I I

1+y (6) I'p ——(143.91 + 1.15) MeV
(10)

or and

P
1

4t

P J'
l I

FIG. 1. Vector-meson contributions to the
x+ electromagnetic form factor.
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TABLE I. Results of the its for the parameters u, 5, and y appearing in Eqs. (8) and (9) [E (0)
is a free parameter].

Model
~( )(s)
F(~)( )

y (10 ')
—1.91+0.15
—1.92+0.15

a
1.195+0.007
1.194+0.006

—0.233+0.013
—0.234+0.011

x'
1.0Q

1.01

Mp ——(7M.63 6 0.55) MeV,

I' = (144.14 + 1.13) MeV.

The remaining parameters of the fit are shown in Table
I.

We observe that both parametrizations of F (s) lead
to essentially the same set of values for the &ee parame-
ters. From a simple inspection of Eqs. (8) and (9), this
means that the p-u mixing and background terms are
very weakly coupled.

B. Fit arith an a-dependent background

The next step is to introduce the energy-dependent
background in F (s). In this case the most general form
of F (s) can be found as

gives a larger value for the p mass, it also corresponds
to an unacceptably large y /NDF. Finally, note that the
effect of introducing higher powers of z in P(z) is com-
pensated by a change in the normalization factor a.

Thus, fmm the Gts shown in Table II and including
terms with c; g 0 for N & 2, we extract the values

Mp ——(757.M+ 1.50) MeV,

(14)
I'p ——(141 + 2) MeV,

which are in good agreement with Eqs. (10) and (11).

C. Fit for timelike and spacelike s

One of the simplest nonlinear backgrounds that can be
used for F (s) in the timelike region is

u2 4

] ''(')] =
(s-M2)2+Mzr2

M2
x 1+y

~ -M2+ ~M.r.

where P is a polynomial of degree N: namely,

N

P(z) = ) c;z', cp ——1,

M2

(»)

-aMz
F(4)( )

P /1 yWy- ' =.-M;+ M,r, , +, -M. + M.r. )
t

s —M,')
l

x 1+5 (15)

Again, if we do not use the condition F (0) = 1, we still
have a fit with five &ee parameters. The best fit to the
experimental data in the timelike region (2m ( its (
1.1 GeV) is obtained for the following set of parameters:

i=0

which will represent the background.
We will carry out several fits by taking successively

N = 0, . . . , 4. Since we are not fixing F (0), we will have
fits with N+ 4 &ee parameters corresponding, respec-
tively, to Mp, I'p, a, and y and the N values of the c;
coefficients.

The results of the best fits for each case are given in Ta-
ble II. We observe that the stability of the fits (namely,
the fits for which Mp and I'p remain almost constant
when N increases) is attained once we include c2 P 0.
Observe also that although the fit with c; = 0 for N & 1

Mp ——(757.03 6 0.76) MeV,
I' = (141.22 6 1.19) MeV,

y = (—1.87 k 0.15) x 10

a = 1.176 + 0.007,
b = -0.192 + 0.009,

= 0.90.

(16)

As can be easily realized, the p mass and width as
well as the p-~ nuxing parameter y remain almost the
same as in the previous fits, whereas the effect of the
new parametrization, Eq. (15), is to change the size of

TABLE II. Results of the Sts for the parameters appearing in Eqs.

(Mev) r (Mev) C1 Cg

0 766.90+0.43 143.10+1.09 1.346+0.014
1 756.90+0.82 145.21+1.16 1.448+0.017 0.378+0.020
2 756.93+0.59 139.80+1.76 1.359+0.026 0.404+0.020 0.061+0.043
3 758.60+0.78 141.80+1.93 1.384+0.029 0.278+0.049 0.088+0.051
4 758.74+1.14 141.36+1.14 1.375+0.062 0.267+0.062 0.126+0.035

(12) and (13) [F (0) is a free parameter].

C3 C4 y (1o-')
—2.19+0.14
—1.94+0.15
—1.84+0.15

0.176+0.067 —1.89+0.15
0.206+0.089 0.044+0.059 —1.89+0.15

x'
4.555
1.066
0.922
0.875
0.883
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TABLE III. Results of the Sts for F„(s) when we impose the constraint F (0) = 1 on Eqs. (8) and (0).

Model M~ (MeV)
F (s) 757.71+0.74
F (s) 757.62j0.74

I' (MeV)
145.42+1.03
145.66+1.03

1.202+0.006
1.202+0.006

—0.202+0.006
—0.202+0.006

u(10 ')
—1.96+0.15
—1.97+0.15

x'
1.08
1.09

the normalization factor a and the background parameter
b.

When s & 4m, Eq. (15) becomes

F('l(o) = o.962+ o.o2o,

F('i(0) = o.96o + o.o1z,

F (0) = 0.98Z 60.013,

(1Z)
whereas if we use Eq. (19) and Table II, we get

With Eqs. (16) and (1Z) we can also give a satisfactory
fit to the experimental data of F (s) in the spacelike
region [9], —0.253 & s & —0.015 GeV2.

D. Pits to F„(s) when F (0) = 1

aM2
F(1,2)

(&)
u + b

8 —M2
P

(18)

In the previous examples we have chosen to fit the
experimental data with five &ee parameters in cases
F ' ' (s) and N + 4 parameters (N ) 2) in the case

F (a). In these cases we did not impose the constraint
F (0) = 1. Thus, in the first part of this section, we will
use the fitted parameters given above to derive the value
of F (0). In the second part we will fit the experimental
data by imposing the condition F (0) = 1 to Eqs. (8),
(9), and (12) and (15).

When s & 4m the p-u niixing is negligible and the
widths are absent. In this case Eqs. (8) and (9) take the
form

~ 1.014 6 0.052 if N = 2,
F(s)(0) = ( 0.935 + 0.131 if N = 3, (22)

0.9ZQ+ 0.1Z6 if N = 4.

From the values of F (0) quoted above, we observe that
they are in satisfactory agreement with the theoretical
expectation F„(0)= l.

Next, we will carry out the fits to experimental data
by imposing the condition F (0) = 1 to Eqs. (8), (9),
and (18) and (12) and (19). The results of the fits are
given in Tables III and IV, which should be compared
to the corresponding results given in Eqs. (10) and (ll)
and Tables I and II.

We can also impose the constraint F„(0)= 1 on F (s)(4)

[Eqs. (15) and (20)]. The values of the parameters cor-
responding to the best fit are

M~ = (Z57.30 6 O.Z5) MeV,
I'p ——(142.29 + 0.88) MeV,

y = (—1.89+0.15) x 10 ',
a = 1.182 6 0.005,
b = -0.182 k 0.005,

= 0.91,

whereas Eqs. (12) and (15) become, respectively,

t
s —M2)

=(.-M) M )
and

(19)

to be compared to the corresponding values in Eq. (16).
From a comparison of both set of fits, it is very in-

teresting to realize that the constraint F (0) = 1 does
not produce a significant shiit on the fitted values for M~
and I'~. The efFect of imposing this condition is compen-
sated for by changes into the background terms and/or
the normalization factor a.

(20)
s —M2

(
M2

)
By using the values of the parameters given in Eqs.

(10), (ll), and (16) and Table I into Eqs. (18) and (20)
at s = 0, we obtain

IV. FROZEN p-u MIXING

In the previous fits we have included the isospin-
breaking contributions to the electromagnetic form fac-

TABLE IV. Results of the fits for F (a) when we impose the constraint F (0) = 1 on Eq. (12). The results are given only
for N ) 2 in Eq. (13).

N M~ (MeV) I'p (MeV)
2 756.78+0.78 140.34+1.42
3 757.83+0.98 139.94+1.28
4 757.96+0.93 141.83+1.30

CL Cy C2 C3 C4

1.369+0.110 0.409+0.020 0.140+ 0.025
1.357+0.113 0.344+0.041 0.15?+0.021 0.077+0.041
1.387+0.119 0.330+0.036 0.047+0.023 0.078+0.037 0.081+0.019

V(10 ') X'
—1.85+0.15 0.917
—1.85+0.15 0.892
—1.88+0.15 0.888
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(24)+,
and we shall assume s and P to be real constants.

If the condition E (0) = 1 is not fixed in Eq. (24),
the fit to experimental data contains six free parameters.
The corresponding best parameters of the fit are

Mp = (757.00 + 0.59) MeV,
I' = (143.41 6 1.27) MeV,

s = (12.23+ 1.20) x 10 s,

Q = (116.7+5.8)',
a = 1.1976 0.006,
5 = —0.231 6 0.008,

= 1.00.

(25)

As can be easily checked, the mass and width of the p
remain the same as the ones found in the previous section.

Now, if we compare Eq. (24) and the model described
by Eq. (9), we can establish a correspondence between
both models by defining an "average energy" a such that

tor by a simple product of the two u and p Breit-Wigner
shapes. This form is strongly motivated by the VDM.
In this section we shall ass»me that a contact term is
allowed for the uz.z coupling, i.e., that the factor aris-
ing kom p-u mixing, a—yM2/(s —M2 +iMpI'p) in Eq.
(9), is kozen at a given s = s value (see below); as in
the previous analysis, we do not observe any shift in the
position of the pole of the electromagnetic form factor.

In terms of the quantities e and P which describe, re-
spectively, the isospin-violating contact term and the rel-
ative phase between the pnz and uzz couplings, we have

aM2 M2
F&'&(s) =—,'. +se'4'

8 MP2-+ iMpr p 8- M2+ iM.r.

V. COMPARISON WITH RESULTS
THAT USE AN ENERGY-DEPENDENT WIDTH

In this section we find a relationship between the p
mass and width as defined kom the pole position and
the corresponding parameters which enter in the Breit-
Wigner formula with an energy-dependent width. This
relation provides values Mp and I'p which are consistent
with the ones quoted in previous sections.

Our starting point is to realize that an expression with
a single pole can be put into a Breit-Wigner shape with
an energy-dependent width by using the transformation

[1 —iz(a)](s —M +iMpI'p) = s = M +iMI'(s), (29)

where

M = M —zMpI'p, (30a)

Mf' = M,r, (1+*'), (30b)

z(s) = M[1 —I (.)] (30c)

I'=- f(.= M').

Thus M and I' represent the mass and width param-
eters that enter the Breit-Wigner shape with an energy-
dependent width.

Since the p ~ zz decay proceeds through an / = 1
wave, I'(s) can be pararnetrized as

ayM2
s(a) exp[i/(s)] =— (26) ~() ( q (s) ) /'M)

i q (M2)) (+s)
With this relation and the results given in Eq. (25), we
obtain

+s = (M,' —M,r,coty)'~'
= (792.18+0.89) MeV,

which is not too far kom the u mass [M = (781.95 +
0.14) MeV], and

where q (s) = (s/4 —m2)i~2 is the momentum of the z
in the rest kame of the p.

As has been assumed explicitly in Eqs. (29) and (30a)
and is shown below, z(s) is an almost constant function
of s [z(s) z(s = M2)] for two interesting models that
use a Breit-Wigner shape with an s-dependent width.

(a) The model used in Ref. [10] corresponds to the
choice

scos P[(s —M ) + M21'2]

aM2(a —M2)

= (—2.16+0.35) x 10 s. (28)

%=1,
M = 775.4 MeV,

F = 149.6 MeV,
Thus the effect of introducing a direct isospin-violating

coupling in the I = 0, G = —1 channel is to slightly
increase the value of an "efFective" p-ur inUcing, but it
does not change the resonant properties (the position of
the pole) of the p .

Finally, let us remark that it is very interesting to note
that all the above fits, except when N = 0 in Eq. (13),
give very semi&ar curves as those presented in Figs. 2 and
3.

which according to Eq. (30c) implies z(s = M2)
—0.236. Using Eqs. (30a) and (30b) one obtains

M~ = 758.5 MeV,

(34)
F = 144.8 MeV.

(b) For the model used in Ref. [11],we can identify
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A = 1.748,
M = 768.7 MeV,
I' = 142.8 MeV.

(35)
(i) The pm miziny strength. To calculate the strength

of the p-u xxuxing form Eq. (5), we need the ratio f /f~
In the context of the VDM, the leptonic partial rate of a
neutral vector meson is given by

According to Eq. (30c), this model will correspond to
x(a = M~) —0.1589 and using Eqs. (30a) and (30b)
vre get

Mp ——757.55 MeV,

I'(V -+ e+e ) = —
~ ~

Mv,
4m /a)' (f~)

which gives rise to the ratio

I'p ——141.70 MeV.

The values for M~ and I'~ quoted in Eqs. (34) and (36)
are in very good agreement with the ones quoted in Sec.
III. This becomes obvious if we realize that, under the
transformation given in Eq. (29), we can isolate the pole
of a Breit-Wigner shape with an energy-dependent width
and put into the background its remaining s dependence.

VI. DISCUSSION OF RESULTS
AND CONCLUSIONS

f M I'(pme+e )

fp Mpl'((u m e+e )

Now, by using the experimental partial widths [1]
I'(p m e+e ) = (6.77 6 0.32) keV, I'((u -+ e+e ) =
(0.60 +0.02) keV, and the results of Eqs. (37) and Table
I, we obtain

(m~ ~) = (
—3.735 6 0.300) x 10 GeV, (39)

whereas if we use the results of Eqs. (25) and (28), we
get

(m~ ~) = (—4.22560.684) x 10 GeV . (40)
In the present paper we have used the 8-matrix ap-

proach to analyze the experimental data on the electro-
magnetic form factor in the timelike region. This ap-
proach allows a model-independent determination of the
mass and width of the po vector meson.

In order to study the possible influence of different
Breit= Wigner parametrization on the resonant proper-
ties of the p, we have parametrized the background term
by assurxnng different models. From the several fits we
have performed, we conclude that the mass and width of
the po are consistent with the values

Mp ——(757.5 + 1.5) MeV,

I'p ——(142.5 + 3.5) MeV,
(37)

which are significantly smaller than the corresponding
parameters quoted in Ref. [1]: namely,

M~ = (768.160.5) MeV,

I'p ——(151.5 + 1.2) MeV.
(38)

As expected in the S-matrix formalism, the extracted
values for the mass and width of the po have the following
properties: (a) They are almost independent of whether
or not we impose the normalization condition F (0) = 1
in the different fits; (b) the comique effects of the different
parametrizations for F (s) is to change the size of the
residue at the pole and background terms appearing in
Eq. (3). We also found [Eqs. (34) and (36)] that M~
and I'~ derived from the Breit-Wigner formulas with an
energy-dependent width via the transformation given in
Eqs. (29) and (30) are also consistent with the results
presented in Eqs. (37).

In the folio+ring @re shall explore some interesting con-
sequences that could have the new values of M~ and I'~.

Thus the value of m2 obtained from the approxima-
tion of Eqs. (24) and (26) is larger, although also with a
larger error.

The p-~ nuxing strength derived Rom the fit of Sec.
III C is

(M' —4m.'q '

X
M,'p,

(42)

= (1.85 6 0.30)%, (43)

to be compared with B(ur -+ m.+x ) = (2.21+0.30)% [1].
(ii) T~e ~&&o p ~ & p/p+ M vr+p. In the isospin sym-

metry limit, the ratio R = I'(po ~ ~op)/I'(p+ ~ ~+~) is
equal to 1. In the context of the vector dominance model,
the neutral po decay is enhanced by isospin-breaking cor-
rections due to the decay chain po —+ a ~ vr p. In par-
ticular, this correction is very sensitive to the p mass
because of the narrowness of the ur(782) [see Eq. (44)].

Including this isospin-breaking correction, ere obtain

4 0a= 1+f-
fp M2 —M2+iM I' k +

(44)

vrhere k is the corresponding three-momentum of the x
in the p rest kame.

If we use the results of Eqs. (37) and (41) and if we
assume M~+ M~o [1], we obtain, from Eq. (44),

(m~ ~) = (—3.669+0.300) x 10 GeV,

which is consistent with the result given in Eq. (39).
The new values of the po parameters, Eqs. (37), and of

the p-u rruxing, Eq. (41), would slightly modify the rate
of the G-parity-violating decay u -+ m+7r; we obtain
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R'"' '" = 1.772(2.395),

where the term in parentheses is obtained. when M~o ——

768.1 MeV [1].
The result given in Eq. (45) should be compared to

the experimental value R "~~ = 1.78 6 0.49 (Ref. [1] p.
VII.13) and the theoretical prediction R = 1.11 given in
Ref. [12]

In summary, the new values of the p resonance pa-
rameters could have interesting consequences for a test
of fiavor symmetry breaking in the sector of light mesons.

Note added. After we submitted this paper, we became
aware of Refs. [13—16] which deal with the determination
of the po parameters form the pole position of the 8 ma-
trix.

References [13,14] focus their attention on nor scatter-
ing. In contradistinction to em scattering, which involves
resonances in different channels (J = 0, 1) and where ex-
perimental data are not as precise and abundant, the re-
action e+e -+ x+n serves as a filter to select precisely

the J = 1 channel. Thus we might expect to obtain the
cleanest values for the p parameters in the second case.

On the other hand, Ref. [15] deals with the determina-
tion of the pole parameters &om the m+ electromagnetic
form factor. Their analysis included available data from
the full kinematical (spacelike and timelike) region. Their
main result indicated a discrepancy between the space-
like and timelike data for the pion form factor. However,
using a different analytical approach, Dubnicka and Mar-
tinovic [16] found that no contradiction exists between
both sets of data. Their results for the pole parameters,
M~ = 761.1 62.9 MeV and I'~ = 144.963.7 MeV, are in
very good agreement with ours.
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