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Diffraction model of elastic hadron-hadron scattering
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A simple diffractive amplitude for high-energy elastic hadron-hadron scattering is given, which

includes some typical cases of diffraction.

We show the similarities of the model to a realistic

geometrical model which explains pp and pp scattering in the energy region /s < 1.8 TeV well and
could provide a reasonable extrapolation to higher energies.
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I. INTRODUCTION

The black disk may be the asymptotic shape of elas-
tic hadron-hadron interactions [1]. At least some models
predict it under a rising total cross section and elasticity
with energy [1,2]. If the black disk is realized asymptot-
ically for hadron-hadron interactions, it will be an inter-
esting question how the asymptopia will be approached
(3]

Since the uniform disk has the profile of the most com-
pact state with the minimum radius allowed by unitarity,
unitarity-saturating features of strong interactions may
be observed even before the onset of asymptopia [4]. In
this work we give a simple parametric representation for
the elastic hadron-hadron diffraction scattering ampli-
tude which ends at the uniform disk and shows its qual-
itative similarities with a realistic geometrical model at
the CERN Large Hadron Collider (/s = 15.4 TeV), the
Superconducting Super Collider (40 TeV), and higher en-
ergy regions.

II. THE BESSEL FUNCTION MODEL

We neglect the effects of the spin of the hadron and
of the real part of the scattering amplitude. The diffrac-
tion model for elastic hadron-hadron scattering, which
is discussed here and is called the Bessel function model
hereafter, is given by the impact-parameter scattering
amplitude a(b) as

v—1
o 2¢ (1 b forb< R,
~2ia(b) = 1 — s(b) = wi (1-8)

0 forb> R,
(1)

where s(b) is the impact-parameter S matrix, o; the to-
tal cross section, R the interaction radius, and v a real
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parameter in the range v > 1 characterizing the shape of
the interaction.

The differential cross section is related to the impact-
parameter amplitude a(b) by

2
do
—LE‘ =A4r , (2)

/ ~ baba(b)Jo(v=th)

and is given by

do

o? y _
= = 10 T+ )@/ L)Y, =RV, (3)

where t is the squared momentum transfer, J,, the Bessel
function of the order v, and I' the gamma function.

If we define the forward slope B and the forward cur-
vature C by expressing the differential cross section at
small momentum transfers as [1]

do do 2
a0 _ (a0 (Bt+Ct3+--)
dt ( dt >t=0 ¢ ’ (4)

we obtain, from (3),

R? R* 1
B:2(V+1)’ C=—E(V+1)2(V+2)' (5)

Also we have the following expression for the elastic cross

section:
0
do o? v?
ol = — |dt= -~ .
7el /_oo(dt) mRZ2w -1 ©)

This gives the cutoff interaction radius R in terms of o,
and the elasticity z = o1/0; as

. 1/2
_ (o v
R= (41&':521/——1) ) (7)
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The radius measured in units of \/0,/z is a monotoni-
cally increasing function of v for v > 1. The slope and
curvature are also given by

oy v?

T amz2+ v 1)

2
C = 1 Ot v? ’ 1
16\ 4nz w—-1) (w+1)2(v+2)°

The amplitude (1) involves three important cases of
high-energy diffraction scattering [1]. (i) The case v =1
corresponds to the uniform-disk (UD) model. The uni-
form disk is the minimum-radius solution for given oy
and z allowed by unitarity [3]; (ii) when v takes 2, the
impact-parameter amplitude is parabolic in b and satu-
rates the MacDowell-Martin (MM) bound [5], Bum =
(0¢/18mx), which is the lower limit for the forward log-
arithmic slope B for given o; and z; (iii) if we take the
limit ¥ — oo, the impact-parameter amplitude becomes
Gaussian, giving an exponentially falling differential
cross section in [t|. The last case can be easily seen if
we rewrite the impact-parameter amplitude in terms of
z and o as

(8)

Ot

v—1
2z(2v—1) _ 4wz 2u—132
—Zza(b) — v (1 —uf“‘b forb< R 5
forb>R.
(9)

In the limit of ¥ — oo we have

2
d_U = it_e(ot/w"m)t . (10)

—~2ia(b) = 4ze(Bm=/aIt" dt  16r

The unitarity condition 0 < —2ia(b) < 1 imposed for
the geometrical absorber picture [0 < s(b) < 1] gives the
restriction on the elasticity as

0<z< —2 .
- T 4 -2

(11)
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FIG. 1. The impact-parameter amplitudes (1) divided by
2z, —ia(b)/z, of the Bessel function model are shown for
v =1,1.5,2,3, and oo.
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FIG. 2. The differential cross sections of the Bessel function
model (3) for v = 1,2,3,10, and oo.

These three cases, (i), (ii), and (iii), often play the
role of the reference frames when we discuss high-energy
diffraction scattering. The reason why we are partic-
ularly interested in model (1), compared with other
parametrizations such as a(b) o« [1 — (b/R)]™ or 1 —
(b/R)™, is that it involves these cases of the diffraction
amplitude and affords their natural generalization. Fur-
ther it represents some features of the behavior of the
differential cross sections at very high energies with v
monotonically decreasing with increasing z as will be dis-
cussed in the following.

The impact-parameter amplitude (1) is shown in
Fig. 1, the differential cross section (3) in Fig. 2, and the
trajectory (B/Bmm ——R/B;,I/bz,l) given by Egs. (7) and (8)
in Fig. 3. The slope B takes the minimum value By at
v = 2 and has the same value (9/8)Bmy for v = 1 and
oo for given o;/z.
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FIG. 3. The slope-radius relation of the Bessel function

model. Here UD denotes the uniform-disk limit and MM the
MacDowell-Martin bound.
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II1. COMPARISON WITH REALISTIC
GEOMETRICAL MODEL

Let us consider what will be expected for the differen-
tial cross section of hadron-hadron scattering at very high
energies. Unfortunately, we have no experimental data
at energies higher than /s = 1.8 TeV. Therefore, we
use the predictions of the generalized geometrical scaling
(GGS) model [6,7], which has the basic features of geo-
metrical pictures including the Chou-Yang model [8]. In
this model the impact-parameter amplitude is given by

—2ia(b) =1 — e~ U=
with

Q(s,b) = w(s)g(b/r(s)) (12)

where the strength w(s) and the scaling length parameter
r(s) are taken to reproduce the elasticity and the total
cross section for a given eikonal shape function g(b).

If we take

9(6) = 3 (ub)*K(ub) (13)

where K3 is the modified Bessel function of the order 3,
and assume r(s) = 1, with p being the mass of the dipole
electromagnetic form factor of the proton, we have the
Chou-Yang model. This model does not explain, how-
ever, the Pp experiments at the CERN SppS and the Fer-
milab Tevatron Collider [6].

If we assume p as energy dependent or, equivalently,
introduce the scaling length parameter r(s), then the am-
plitude (12) reasonably reproduces the differential cross
sections at small momentum transfers [t| < 1.5 (GeV/c)?
in the energy region from the CERN Intersecting Stor-
age Ring (ISR) to the Tevatron (/s = 20 — 2000 GeV)
[6]. This generalization of the Chou-Yang model will be
called the Chou-Yang (CY) generalized geometrical scal-
ing (GGS) model.

The quantity which specifies the structure of the scat-
tering amplitude under the GGS hypothesis is the elas-
ticity z, and for a fixed = the differential cross section
shows the geometrical scaling behavior [9]; i.e., it is the
functon of o4t. If z increases, it implies the increase
of the strength w(s). This means the flattening of the
impact-parameter amplitude rises at a small impact pa-
rameter and extends to a larger one, finally giving the
black-disk structure at £ ~ 0.5. Therefore, the results
of the following analysis, though obtained for a specific
model, will hold approximately for any physically sensi-
ble models having (s,b) divergent as s tends to infin-
ity. In this respect we note that there appears a kind
of eikonal-shape independence of geometrical scattering
amplitude from z ~ 0.35 at small momentum transfers
including the dip-bump region. This is caused by the ex-
ponentiation effect just stated. We show the situation in
Fig. 4 where we give the differential cross sections for the
eikonal function,

9(b/r(s)) = (nfm{“b/;(s)} Kn(ub/r(s)), (14)
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FIG. 4. Eikonal-shape-independent feature of the geomet-
rical model. The results are given for g(b, s) of Eq. (14) for
n=1,2 3 and 4 at z = 1/3.

with n =1 — 4 at ¢ = 1/3, which is taken to be some-
what smaller than 0.35. The cases n = 1 and 2 have spe-
cial interest in connection with the Chou-Yang model of
meson-meson and meson-nucleon scattering, respectively,
if the meson electromagnetic form factor is approximated
by a pole. We emphasize that neither n = 2 nor 4 can
explain the pp and pp data at the ISR region even at
small momentum transfers; therefore, the eikonal-shape
independence of the differential cross section indicated in
Fig. 4 is not trivial [10]. This flattening of the interaction
profile caused by the growing eikonal in the exponent in
Eq. (12) reflects a unitarity-saturating property of the
strong interaction.

Now we give some features of the GGS differential cross
section [3,6,7].

(a) As z increases, B/Bum of the CY GGS model
decreases to the minimum value ~ 1.03 around = = 0.38,
then turns to increase to the asymptotic value (9/8) of
the uniform disk at z = 0.5.

(b) The dip structure has already been clearly observed
at ISR experiments, and will persist at all higher energies,
if the GGS hypothesis has validity. If the elasticity =
increases as energy increases, the value o(t4ip|/x of the
dip position steadily decreases and finally arrives at that
of the black disk.

(c) The height of the second maximum of the nor-
malized differential cross section (do/dt)/(do/dt)i=o in-
creases as the elasticity increases. This is often empha-
sized as one of the important consequences of the geo-
metrical picture.

(d) The curvature C changes its sign from positive to
negative as x increases. This occurs around z = 0.3 for
the case of the CY GGS model.

These properties (a)—(d) are also shared by the Bessel
function model (1), if the elasticity z is related in such a
way that z increases as v decreases [the maximum elas-
ticity given by Eq. (11) has such a feature]. In the follow-
ing we give the properties of the Bessel function model
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corresponding to (a)—(d).

(o) The behavior (a) of the forward slope looks like
the change of B in (8) as v decreases from infinity to 1:
the ratio B/Bum starts from (9/8) at v = oo, reaches
the minimum value 1 at v = 2, then increases to (9/8) of
the uniform disk as v tends to 1.

(B) The first dip of the cross section (3) is monotoni-
cally moving forward as v decreases from infinity (where
dips are pushed away to infinite |t|) to 1.

(v) The second diffraction maximum of the Bessel
function model increases as v decreases.

(8) The curvature C is always negative as given in

Eq. (8).

Hence common features exist between the Bessel func-
tion model (1) and the GGS picture. There are, of
course, differences if we compare quantitatively. The ra-
tio B/Bmm takes the value only between 9/8 and 1 in the
diffraction picture (1), while the CY GGS model takes
the value higher than 1.03 and even higher than 9/8 be-
low ~ 10 TeV. When v is very large, B/Bmm is near 9/8
and Eq. (3) gives a dip at very large |t| while the CY GGS
model gives the ratio B/Bmym ~ 9/8 at = 0.25 (10 TeV)
and the model predicts a dip at [t| ~ 0.5 (GeV/c)? at this
energy. Here the value in parentheses is the c.m. system
(c.m.s.) energy of pp scattering giving the same elastic-
ity, when we dare to extrapolate the empirical fit formula

TABLE I. Comparison of the Bessel function model with Chou-Yang GGS model where the only

free parameter v of the Bessel function model is chosen to give the same dip position as that of the
GGS model. The cases shown correspond to those in Fig. 5. Here zmax is the allowed maximum
elasticity which satisfies the unitarity, Eq. (11). If the elasticity is larger than Tmax, the Bessel
function model violates the geometrical model unitarity restriction —2ia(b) < 1 for some range of

b at its small values.

Chou-Yang GGS model

T 0.23 0.3 0.35 0.4 0.5
ot|taip| /167 10.3 7.2 5.6 4.7 3.7
B/BMM 1.16 1.11 1.06 1.03 1.125
Bessel function model
v 10.64 (c0) 5.35 3.08 1.74 1
Tmax 0.262 (0.25) 0.276 0.298 0.351 0.5
B/BuwMm 1.08 (1.125) 1.045 1.014 1.002 1.125
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FIG. 6. The X-Y diagram of the Bessel function model
(the dotted curves) and the Chou-Yang GGS model prediction
(the thin solid curve). The CY GGS and the Chou-Yang
model give the same curve. The thick straight line O-A is the
MacDowell-Martin bound [5] and the thick solid curve A-B is
the Chao-Yang bound [14].

for the cross sections obtained below 1.8 TeV [11]. We
have also used the value of the total cross section of the
empirical formula in the calculation at 10 TeV. The for-
ward curvature C of the Bessel function model is negative
definite and monotonically increasing as v increases from
1 to oo, where the curvature vanishes, but the CY GGS
model gives zero curvature only around z = 0.3 (50 TeV).

Therefore, the similarity is gross and global and the
local quantitative agreement is not much expected, but
a direct comparison of the Bessel function model with
the GGS model is still worthwhile to give a better under-
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standing of their mutual relation. We show the differen-
tial cross sections of the Bessel function model and the
predictions of the CY GGS model in Fig. 5 for z = 0.23
(v/s = 1.8 TeV), 0.3 (50), 0.35 (2x 103), and 0.4 (4 x 10°)
with those of Eq. (3) having the same dip positions as
those of CY GGS. Clearly the agreement is improved
as « increases, though quantitatively the agreement is
not so good as seen in the forward slope shown in Ta-
ble I, where we give some results of the GGS calcula-
tion and of the Bessel function model corresponding to
Fig. 5. If we restrict the region of momentum transfer to
0 < o¢|t|/16wz < 8, we can see a reasonable agreement.
This restriction of the region suggests to us to regard
the low-energy region below 1 TeV as v ~ oo, nearly
degenerate as suggested by an approximate scaling with
oit/x [13], by ignoring the dip structure appearing at
o¢lt|/16mx > 8.

As another way of looking at the resemblance between
two models, we give the X-Y plot of Chao and Yang [14]
in Fig. 6 where X = z and ¥ = 0¢/16nrB. This fig-
ure involves essentially the contents of (a) and (a) stated
above. At low elasticities below ~ 0.25, the CY GGS
curve (which gives the same as the Chou-Yang model
[8] in this case) roughly moves along the dotted O-D
line which corresponds to v = oo of the Bessel func-
tion model. (Actually the envelope of the line OP forms
the allowed area for the Bessel function model when P
moves on the Bessel function curve.) As z increases, the
CY GGS curve shifts upwards, but not as fast as the
Bessel function model bends. It crosses over the Bessel
function line around z ~ 0.4 and approaches the Chao-
Yang bound given by the thick solid A-B curve which,
for z > 1/3, takes up the MacDowell-Martin bound given
by the O-A line. The black disk locates at B. The area
enclosed by O-A-B-C-O is allowed by unitarity [14].
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As the last comparison of two models, we show their
interaction profiles in Fig. 7. Since their similarities are
global, there is no unique way for making a comparison.
In Fig. 5 we have compared the two models giving the
same dip positions. Here we give the CY GGS amplitude
with the elasticity £ and the Bessel function amplitude
with v related to = by v = 2z/(4z — 1), since the Bessel
function with such a value of v may be considered as
the closest to the CY model from a unitarity viewpoint.
Comparison of two profiles indicates that their resem-
blance is gross and does not increase as z increases in
the range given in Fig. 7. They approach the uniform
disk in different ways as also suggested by the X-Y dia-
gram in Fig. 6.

If the asymptopia is signaled by (1) the sharp-edge
structure of the interaction which may be accompanied
by negative curvature [2] and (2) the eikonal-shape in-
dependence (hence process independence) feature of the
interaction, the GGS calculation for pp and pp scattering
suggests ¢ ~ 0.3 for the former and 0.35 for the latter.

M. KAWASAKI, T. MAEHARA, AND M. YONEZAWA

IV. SUMMARY

We have shown that the Bessel function model (1) has
many interesting features as a simple diffraction model.
Although the physical meaning of this model, beyond
special cases (i)—(iii), needs to be studied further, the
model serves at least as an illustration for realistic geo-
metrical models. It is to be stressed, though not directly
related with the Bessel function model itself, that the fea-
tures of the differential cross section will become nearly
independent of the shape of the eikonal from = ~ 0.35
as envisaged from Figs. 4 and 5: at higher elasticities all
elastic baryon-baryon and meson-baryon interactions will
assume common structures which may resemble more and
more the Bessel function model. If such geometrization
of the scattering amplitude starts, the elastic differential
cross section may not provide useful information on the
hadron interaction. In other words, the study in the en-
ergy region below that reached at the Superconducting
Super Collider is quite important.
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