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Dynamics of a disoriented chiral condensate
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We use the linear o model to analyze the dynamics of a disoriented chiral condensate. For idealized
boundary conditions appropriate to high energy collisions, the problem can be reduced to a one-
dimensional one. The evolution of the chiral state is then that of a simple dynamical system and
can be studied analytically.
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I. INTRODUCTION

The aim of this paper is to present a simple, analytical
discussion of the time evolution of a disoriented chiral
condensate (DCC) which could be produced in a high-
energy collision [1—3]. We shall extend our previous in-
vestigation [3] and make contact with recent works which
have been triggered by the idea of a "quench, " put for-
ward in Ref. [4]. Specifically, we shall study the classical
equations of motion of the linear o model, assuming ran-
dom initial conditions for the fields and their derivatives.
This randomness could result Rom a sudden cooling of
a hot quark-gluon plasma, as proposed in [4], but we
shall not insist on an interpretation based on initial ther-
mal equilibrium. The evolution of the system will be
described by the classical equations of motion of the 0.

model. We neglect possible quantum effects (for a recent
discussion of the decoherence of the radiation off collid-
ing heavy ions see [5]). The main motivation for using
the linear o model, instead of the nonlinear a model as
in [3], is to allow for the possibility to start the evolu-
tion &om a chirally symmetric random con6guration, as
in [4]. As we shall see, however, many features of our
previous study survive.

As in Ref. [3] we adopt the idealization originally pro-
posed by Heisenberg [6]: we assume that at tiine t = 0
the whole energy of the collision is localized within an
infinitesimally thin slab with infinite transverse extent.
The symmetry of the problem then implies that the fields
depend only on the invariant r = v t2 —z2, where x is
the longitudinal coordinate. This is of course a dramatic
simplification of the actual situation. In particular, our
assumptions lead to unrealistic correlations both in the
transverse plane and in rapidity. However, with this ide-
alization the problem becomes 1+1 dimensional and can
be treated analytically. This will allow us to identify
clearly various regimes of the dynamics of chiral con-

densates in the presence of the longitudinal expansion,
which necessarily occurs in case of high energy collisions.
We believe that such analytical studies are complemen-
tary to numerical simulations [4, 7, 8] aiining at getting
a more realistic picture, and they may prove useful in
understanding the results obtained in such simulations.

Although we use Heisenberg's idealization to justify
working in 1+1 dimensions, we restrict our discussion to
proper times 7 ) 70. An extension of the model down
to w = 0 leads to unphysical results and is completely
unjustified. Heisenberg [6] has pointed out that in a wide
class of nonlinear theories with gradient interactions, the
fields have to vanish like 7 in the limit w ~ 0. It seems
more likely, however, that the fields (m, o) do not tend
to any well de6ned limit as ~ ~ 0 but behave chaotically
(in the loose sense of the word). In any case, as v -+ 0,
the relevant degrees of &eedom are presumably no longer
hadronic and, besides, the efFective theory is certainly
more complicated than the linear 0 model.

Thus we shall assume that starting from some 6nite
time wo, we can describe the state of matter produced in
a collision by the linear 0 model. Our results will turn
out to depend little on the speci6c value of this time vo,
as long as it is chosen so that at wo the system is in the
chirally symmetric configuration. The values of the fields
at this time are taken as random variables. In fact, as
we shall show in Sec. II, the equations of motion are, for
short times, equivalent to the conservation of the isospin
vector and axial vector currents. The bulk of the dynam-
ics will be entirely determined by the values of these cur-
rents at vo. In Sec. III we shall identify several regimes of
the evolution of our chiral condensate. We shall see that
the problem reduces to that of 6nding the motion of a
6ctitious particle in a time-dependent potential and sub-
ject to a time-dependent &iction. The paper concludes
in See. IV with a discussion.

II. FORMULATION OF THE MODEL
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Our system is described by the Lagrangian of the lin-

ear o. model, with the standard chiral symmetry-breaking
term
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L = —[(Bcr)'+ (Bm)2] ——(o'+ m' —1)'+ Ho.
2 4

The fields cr and m are dimensionless and the parameters
A and K have the dimension of (mass)2. We have scaled
out a dimensionless factor Sf2, which would normally
occur in the expression of the Lagrangian for the three-
dimensional model [3]. The parameters of the model may
be related to the masses of the cr and pion field, respec-
tively, m —2A and m = H. For the sake of the argu-
ment we shall proceed as if one had m )) m . We shall
return to this point in the discussion.

The equations of motion read

laws for the isospin currents. When A is large, but not
infinite, one can still separate the general motion into a
motion on the sphere, which one may loosely associate
with the pion degrees of &eedom, and a motion norxnal
to the sphere, which involves the 0 degree of freedom.
As long as the parameter H can be neglected, there is no
scale controlling the motion on the sphere, while A

controls the time dependence of the oscillations normal to
the sphere. When H can no longer be ignored, it controls
the time behavior of pionic excitations.

In order to analyze the evolution of the chiral state, we
shall use the following parametrization, which takes into
account the symmetries of the problem:

and

'(7.o')' = —A(0 +7r —1)0 + H

r '(7.w')' = —A(o +sr —1)n,

erg ——r sin 8,
m', = r cos Hsing,

cr = r cos icos~.

where the prixne denotes differentiation with respect to
v. From (3) one easily gets

I R
%' X 7f

7
(4)

where a is an integration constant. This is a direct con-
sequence of the conservation of the isovector current to-
gether with the assumption that the fields depend on ~
only. Hence the component of m along a vanishes:

= 0.

A further consequence of the equations of motion is the
equation

'[~(no' —om ')]' = Hm,

which is just the statement of partial conservation of the
isoaxial-vector current.

For small enough v, the eKect of the symmetry-
breaking term Hm can be neglected. The isoaxial-vector
current is then conserved, and one can write, in analogy
to (4)

Note that 0 + ~ = r . Our px'oblem has now been
reduced to a simple dynamical problem for a point par-
ticle with one radial degree of &eedom r, corresponding
to the a excitations, and two angular degrees of &eedom
8 and ~, corresponding to the pionic excitations. As will
become clear later, the evolution of the system depends
upon the initial conditions mostly via the constants a
and b (while the detailed initial values of r, e,id and their
derivatives are not essential). The two constants a and
b determine the strength of the isospin vector and ax-
ial vector currents (note that due to a different choice of
variables, the present a and b are twice as large as those
introduced in Ref. [3]). They are random variables whose
probability distribution will be calculated in Sec. IV.

As a final remark in this section, we note that when
Eqs. (4) and (7) are satisfied, the angle u is constant and
given by

a
u = arctan —.

b

Thus the motion is planar in the three-space (0, ms, vr, ).
This plane becomes almost identical to (mi„o') when
b )) a. We shall find convenient, at some point in the
forthcoming discussion, to work in this particular limit.

(7)
III. DCC AS A SIMPLE DY'NAMICAL SYSTEM

where b is another integration constant. When Eqs. (4)
and (7) are satisfied, the component of w along c = a x b
equals o, up to the constant factor a/b. The forms of the
conservation laws (4) and (7) reveal important features
of our model. Because of the syxnmetry of the fields,
and the classical dynamics, in the limit of vanishing pion
mass the isospin vector and axial vector currents keep
fixed orientations in isospace as the system evolves. Of
course, any orientation is equally probable. But once
fixed in the initial conditions, it remains constant.

Equations (4) and (7) are identical to those obtained in
the nonlinear o model [3] and they are independent of A.
The nonlinear o model is obtained in the limit A ~ oo. In
this limit, the motion takes place on the hypersphere o +

= 1 and is entirely determined by the conservation

The initial time 70 is supposed to be such that the mass
term proportional to H can be ignored at the beginning
of the evolution. Then the initial motion is governed
by the two conservation laws for the isospin currents,
i.e. , Eqs. (4) and (7). These translate into the following
equation for the "angular moxnentum" of the fictitious
point particle associated with our system:

(1O)

The equation for the radial xnotion is obtained by neglect-
ing H in the equations of motion (2) and (3), multiplying
the equation for o (mrs) by cos8 (sin8), and adding the
resulting equations. We get



JEAN-PAUL BLAIZOT AND ANDRE KRZYWICKI

d (i')2 A 2 2
K2

(r2 1)2
dv 2 4 2%2r2 r2T3

(12)

We have used Eq. (10) to eliminate 8' and also the fact
that ~ is constant when the isospin currents are strictly
conserved. The second term on the left-hand side may
be interpreted as a time-dependent friction. Thus the
fictitious particle experiences damped oscillations. The
amplitude of these oscillations can be initially quite im-
portant if r(wp) is small. In that case, the repulsive force
represented by the first term on the right-hand side of
(ll) provides to the particle a large velocity. However,
the oscillations are rapidly damped, while the repulsive
force itself decays fast with time.

Further insight on the radial motion can be gained by
considering the time variation of the mechanical energy
of the fictitious particle. This is given by

by the expansion the system is driven towards the orbit
r = 1 [strictly speaking, for H g 0, the orbit would rather
be at r = 1+ O(H/A)].

When r = 1, the integration of Eq. (10) yields
8 = K ln (7/rp) and one recovers the solution of the non-
linear 0 model presented in Ref. [3]. In fact, the ap-
proach to the orbit is fairly slow and a change of regime
will in most cases take place before the orbit is actually
reached. The oscillations in the radial motion have a
large frequency proportional to ~2k. Since the angular
motion, controlled by K, , is generically slower than the
radial one, one can, with good accuracy, replace r in
Eq. (10) by its expectation value over a few periods of
the radial motion. This expectation value reaches a value
approximately equal to 1 in a short time. Therefore, the
result 8 = v. ln (7 /7p) can be taken as a good approxima-
tion from nearly the beginning of the evolution.

A change of regime is expected to occur when the mass
term proportional to H can no longer be ignored. I et us
therefore discuss in more detail the quality of the approx-
imation H = 0. Integrating Eq. (6) for orb one has

r ~ ] +
C

, cos (y 2k~ + r)),
(~2A~) '

where | and g are integration constants fixed by the
initial conditions. Thus, because of the damping caused

This derivative is particularly large, in absolute value,
during the very early stage of the evolution due to the
presence of the term 7 . The whole damping is of
kinematical origin; it re8ects the decrease of the field en-

ergy density as the system expands. One observes that
the in6uence of the angular motion on the radial motion
quickly disappears. The energy in the angular motion is
controlled by K. It becomes of the same order of mag-
nitude as the potential energy proportional to A when
r K/v 2A and is negligible at later times.

For not too small ~ it is certainly a good approximation
to linearize the expression appearing on the right-hand
side of (ll). An inhomogeneous Bessel equation for r —1
results. The solution takes a particularly suggestive form
for ~2A~ )) max[r, 1]:

~r sin0 dw. (14)

bK
&( —.

H

It remains to determine the conditions ensuring that
~ = const, because the planarity of the motion in the
three-space (o, xb, vr, ) is another characteristic feature of
the early, chirally symmetric regime. Using the polar
parametrization (8) and Eqs. (6) and (4) one finds, after
some algebra,

In estimating the integral above it is important to no-

tice that the integrand is oscillating, and it does so quite
rapidly when K is large. In order to find a rough esti-
mate, we replace again r by 1, its average value, so that
8 = r ln (w/rp) [we assume 8(wp) = 0 to avoid the prolif-
eration of inessential integration constants]. The integral
in (14) is then easily evaluated. For large K, it equals
(~2/K) cos [rin(~/~p)]. Therefore, the neglect of H is

justified as long as

H (
cos8sin (u —wp) = —

~

c sos8i nu wr sin8dw —sin8 wr cos8sintuda (16)

where (dp = arctan (a/b), the value u takes when H = 0.
On the right-hand side set u = ~0 + bu and expand,
neglecting terms of O[(heal) 2]. Furthermore, set again r =
1 and 8 = K ln (w/wp) to get

H7.2 bH
cos 8 hid — [a—b cos 8) — sill 8 7 cos 8kBd7

K K

(17)

hand side of (17) vanishes identically and a perturbative
(in H) calculation of hu is impossible. However, one
easily sees that the right-hand side of (17) vanishes when
the time average (her) —a/b. We conclude that the
angle w oscillates with an amplitude of order a/b, i.e.,

independent of H. %e shall assume herefrom that

One can see that, as long as cos8 is not small, ~bur~ is
of order Hr /r. However, when .cos8 = 0, the left-

The constraint (18) makes the problem technically sim-

pler, since w remains small and the motion on the orbit is
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The presence of H in the equations of motion is an
inessential complication as long as (19) is true. We shall
see that a dramatic change of regime occurs when v
b/~H.

Consider first what happens at large times. To this
end we use Eqs. (4) and (6). Working in the polar
parametrization (8), with r = 1, one easily convinces
oneself that 8, u ~ 0 like some inverse power of 7 when
7 -+ oo, modulo possible oscillations. For small enough
e, ur Eq. (6) reads

r-'(re')' = -He,
r '(r~')'= H(u, — (20)

quasiplanar at any time. We do not think that limiting
the discussion to this case is a severe restriction. The
general case is just more cumbersome, without being re-
ally more instructive. With (18) we gain considerably in
clarity. Furthermore, only for large enough b the problem
is really interesting, a point that will become more and
more clear as the discussion will develop. Finally, as will
be shown in Sec. IV, it is improbable that both b and a
are large. When (18) holds, Eq. (15) can be rewritten as

b
(19)

H

d d 1 (2E(r—)—:——(8') + H(1 —cos8)di. d7 2

= --(8')' & 0.
7

(24)

Thus the "energy" E(r) of the pendulum is a strictly
decreasing function of time. As long as the total energy
is much larger than the potential energy H(1 —cose),
the motion is circular. The transition occurs when E(r)
"hits" the potential. Let us solve Eq. (23), treating this
potential as a perturbation. One finds

dependent friction. The asymptotic solution, for w —+ oo,
has already been written in Eq. (22) and describes an
oscillatory motion. The initial value of 8 is not very im-
portant. However, for large b, the derivative 8' = b/r
remains large, generically, at the time when the expec-
tation value of r becomes close to unity. As long as the
angular velocity is large enough, the motion is circular.
Our purpose now is to discuss the transition &om the
circular to oscillatory motion of this simple dynamical
system. In particular, we shall determine the time when
the transition takes place and the amplitude of final os-
cillations [the parameter D in Eqs. (22)].

Equation (23) implies that

while Eq. (4) becomes a constraint on the Wronskian
W((u, 8):

and

8 = bin(r/rp)

W(ur, e) = —. (21)

Recall that the operator appearing on the left-hand side
of Eqs. (20) is the form taken by 82 acting on a field
depending on v. alone. Furthermore, in the regime that
we are now considering, 8 erg and u x,. Hence
Eqs. (20) describe the free propagation of massive pions,
the mass being H ~, as expected. Equations (20) become
Bessel equations when the variable ~Hr is used. One
has

D8,cos(v Hr + (),
( H7)i

a
, sin (y Hr + ()

D( Hr) ~
(22)

8"+ —8'+ Hsine = 0.
7

(23)

This is the equation of a pendul»m subject to a time-

for ~Hr &) 1, where D and ( are integration constants.
Notice that the amplitudes and phases of 8 and ~ are re-
lated by the constraint (21). Equations (22) hold asymp-
totically, independently of the values taken by the con-
stants a and b. In order to determine the constant D, one
needs to match the two extreme regimes discussed so far,
which is not an easy task if attempted in full generality,
but which simplifies considerably when a (& b.

By using the approximation already discussed in which
one replaces r by its expectation value and rr' by zero,
and ass»ming that u remains small enough, we can trans-
form Eq. (6) for ni, into

b v.
8' = —+ H cos [bin (r—/rp)].

b
(26)

Since the slope of E(r) decreases rapidly with r, for large
b the potential is "hit" near its top at time r satisfying
cos [bin(r/rp)] —1. The transition time is estimated
by setting 8' = 0 and is found to be

b
7trans ~

H (27)

As one might have expected, the transition occurs when
the naively estimated kinetic energy becomes comparable
to the potential energy. The amplitude of oscillation that
results is, of course, bounded by m. Actually, it is close to
m just after the transition, precisely because the potential
is hit near its top. Linearizing the potential one gets the
solution (22). Keeping in mind the remark just made
about the amplitude and using (27), one finds

D const x Vb, b)& 1, (28)

where the constant is of order unity. The amplitude of
the pion field is proportional to +b and, consequently, the
height of the rapidity plateau is proportional to b. This is
similar to the result found in [3] in the framework of the
nonlinear o model. As was the case there, the parameter
b ( K when a « b) is a measure of the energy released
in the decay of the condensate.
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IV. DISCUSSION calculation,

We have identified several stages in the evolution of the
chiral condensate. First there is a short phase in which
angular motion and radial motion are strongly coupled.
This phase lasts for a time b/~2A. Next, the fictitious
particle rotates slowly while oscillating rapidly about the
equilibrium radial position r 1. Because of the expan-
sion of the physical system, the energy of the fictitious
particle is damped. At some point there is a transition
Rom circular to oscillatory motion, which actually cor-
responds to free propagation of final state pions. The
transition takes place when the mass of pion excitation
can no longer be neglected and it occurs typically when
~ - b/~H.

The pion field has a random orientation in isospace and
therefore the fraction f of neutral pions is distributed
according to the law

dP(f) = df,

first written explicitly in Ref. [3] (but obtained earlier,
and independently, by Bjorken [9]). At all times the sys-
tem is subject to "&iction." The latter is of purely kine-
matical origin and re8ects the boost invariance imposed
on our solution. There is no true energy dissipation. Sim-

ply, the expansion causes the field energy in a covolume
to decrease.

The two time scales 7i ——(2A) ~ and 7z ——(II) 2, if
estimated using the phenomenological values of the pion
and o masses, differ only by a factor of 4. This is pre-
sumably not sufBcient to guarantee a clean separation
of regixnes, especially when b is not large enough (and
may be related to difBculties in producing large domains
of misaligned vacuum reported in Ref. [7]). Although it
seems that the picture becomes sharper when the con-
densate carries more energy, there is a price to be paid
for that: as will be shown in a moment, the probability
that b is large falls exponentially.

Let the fields (m, o) and their (proper) time deriva-
tives be Gaussian random variables with variances oz
and o2, respectively, at some initial time ~0 belonging to
the chiral symmetric regime (cf. Ref. [4]). With this as-
sumption let us calculate the probability P(r, ur) to find a
given value of r = v az + bz and ur = arctan (a/b). Using
the polar parametrization of the fields in the randomly
oriented hyperplane J a, together with the constraint
r = d'or 8' [cf. (10)], one finds, after a straightforward

K ( r.
P(r, (u) = Ki

]diode)
'

2(n 0 io zoo) (o'io'zoo j
where Ki (z) denotes the second modified Bessel function

Ki(z) /7r/2ze for z ~ oo. The probability distri-
bution (30) falls exponentially at large r. This result is
unlikely to be of much phenomenological relevance since
it is obtained in a (1+1)-dimensional model. The reduc-
tion to 1+1 dimensions means full translational symme-
try in transverse coordinates and, in particular, coher-
ence over large transverse distance. The probability that
such coherence does occur cannot be estimated within the
framework of the model. Equation (30) represents never-
theless a significant conceptual progress with respect to
the discussion of Refs. [1—3]: the present approach, which
has been partly inspired by Ref. [4], enables one to deter-
mine the absolute probability of observing a disoriented
chiral condensate with given global characteristics.

The initial randomness of the fields (7r, o') and their
derivatives does not necessarily reflect thermalization oc-
curring at the early stage of the collision process. Actu-
ally, the most interesting aspect of the quench model put
forward, in this context, by Rajagopal and Wilczek is the
out of equilibrium evolution of the system. In discussing
this evolution one does not need to talk about tempera-
ture at all. Since the seminal work of Landau [10], the
study of complicated nuclear collisions uses the concept
of (local) thermal equilibrium as the central piece of the
paradigm. If we were to assume that local thermal equi-
librium is maintained throughout the time development,
we would be led to use hydrodynamical evolution equa-
tions. The resulting evolution would be very different
from that obtained here. It is unclear, at this moment,
whether the disoriented chiral condensate can be really
produced in high-energy collisions. However, the theoret-
ical investigation of this as yet undiscovered phenomenon
has already turned out to be useful since it has been a
good pretext for trying to figure out nonequilibrium as-
pects of high-energy nuclear collisions.
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