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Semiexclusive production in electron-positron annihilation
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We present a thorough analysis of the direct semiexclusive production in quantum chromody-
namics (QCD) of single, highly isolated mesons from electron-positron or two-photon initial states.
Corrections of higher order and of subleading tvrist are considered, and potential divergences in the
naive calculation are contained. Monte Carlo methods are used to relate the QCD calculations to
experimentally measurable quantities. We Snd that the study of semiexclusive production is the
most sensitive experimental probe of the structure of mesons in the valence (qq) state at energies
~s & 10 GeV.

PACS number(s): 13.65.+i, 12.38.Bx, 13.38.Dg

I. INTRODUCTION

A. Qualitative

To study quantum chromodynamics (/CD) in the real
world is to study hadrons. The con6nement of color, and
the complicated structure of color-singlet hadronic states,
presents the greatest obstacle to the study both of /CD
itself and of other physics at hadron colliders, which will
be masked by /CD efFects. Similarly, the study of weak
processes such as b -+ sp is complicated by the depen-
dence on meson wave functions of the observed hadronic
rates. Thus, it is essential to gain the greatest possible
understanding of the structure of hadrons in preparation
for future experiments.

The study of hadronic properties through exclusive
processes [I] is by now an established industry. Grozin
and Baier [2] and more recently Hyer [3] have proposed an
alternative process, dubbed Semiexclu8ive production,
whose analysis holds promise of illuminating the struc-
ture of mesons with greater precision than is achievable
with exclusive reactions.

Exclusive processes, in which the anal state is com-
pletely speci6ed, are inevitably suppressed by powers of
Q2 at high energies, where Q is the momentum scale ap-
posite to the hard process under consideration [1]. The
degree of this suppression in the amplitude can be shown
to be (p/Q)", where p AqcD is a typical hadronic mo-
mentum scale and n, = np~z$„s Ah~pzoDs is the num-
ber of "spectators" to the hard scattering, which must
emerge collinear to the hadrons they constitute [4]. For
example, the proton form factor falls like Q, so that
the associated cross sections are proportional to Q

In semiexclusive reactions, we specify the properties
of one directly produced meson and demand a high de-
gree of isolation (e.g., isolation in a hemisphere in the
center-of-momentum kame, or by a large rapidity gap)
in order to eliminate inclusive backgrounds. Since we do
not specify the content of the recoil system, we pay the
minimum possible penalty in the cross section: there is
only a single spectator quark. Thus, semiexclusive meson

production, which will be the focus of this paper [5], oc-
curs with cross sections proportional to Q (compared
to total event cross sections of order Q 2). For example,
consider the current data sample of the Cl EO detector
at the Cornell Electron Storage Ring (CESR), about 2

fb . This represents about 10 events of all types. The
semiexclusive production cross sections are about 2—3 fb
for each meson, so several such events are expected even
in the current data sample. On the other hand, the cross
section for exclusive x+x production is on the order of
1 fb, and that for pp production is about 10 2 fb.

The less drastic suppression of semiexclusive cross sec-
tions with increasing energy allows us to study these pro-
cesses at higher energies than the study of exclusive pro-
cesses can reach, putting us in a region where the pertur-
bation expansion is more reliable, and higher-twist terms
more thoroughly suppressed.

Semiexclusive processes have a further advantage in
the study of hadronic structure; the fraction z of the
beam energy carried by the isolated meson can be mea-
sured, and the differential cross section do/dz recon-
structed. The shape of this cross section depends on
the distribution amplitude of the isolated meson; thus
extraction of valence distribution amplitudes with high
precision should become feasible. This is in contrast with
the situation in purely exclusive scattering in which the
angular distribution is trivial (as is the case for form fac-
tors) or is insensitive to the distribution amplitude [6,7].

These advantages are partially, but not entirely, neu-
tralized by the added complications due to the hadroniza-
tion of the recoil system, which introduces nonpertur-
bative physics into the computation of experimental re-
sults. Much of this work focuses on the extraction of
viable results which take into account the behavior of
the hadronizing system.

B. Quantitative

Our computational scheme is that of Lepage and Brod-
sky [1]. The amplitude for any process in which a
"hard" scale Q can be identified is written as a convo-
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lution of a hard-scattering subprocess amplitude, calcu-
lable in perturbative /CD (PQCD), with one or more
process-independent nonperturbative light-cone hadron
wave functions:

Al =) f dxd*k~ Ta;(x4,;0)@;(Tk~;0), (1.1)

where T~ is a PQCD amplitude for the hard scattering
of free partons, g; is the projection of the wave function
onto the ith Fock state, and Q is the "separation scale"
above which processes are deemed hard; processes with
momentum transfer smaller than Q are absorbed into the
wave function.

To leading twist, we may ignore the dependence of TH
on k~ p && Q. Then, defining [8]

Q
()))(z; Q) = d kg/(z, kg, Q), (1.2)

we obtain the simpler form [valid up to terms of
O(p2/Qz) where p & 1 GeV is a typical hadronic mo-
mentum scale]

This paper is organized as follows. Section II com-
putes the tree-level amplitudes at leading twist for the
processes of interest and comments on their structure.
Section III is devoted to next-to-leading twist corrections
to these results, arising from the inclusion of quark and
meson mass terms, intrinsic transverse momenta, and
higher Fock states. Section IV explores the effects of Su-
dakov suppression and the running of the /CD coupling
o, Section V describes the effects of other higher-order
PQCD processes on our results. Section VI explores
the collinear divergence of the naive tree-level amplitude
which arises when one quark is created nearly parallel to
the produced meson; a more accurate, convergent form
is used for this region, and the effect on measurements
away from the collinear region is explored. Section VII
uses standard Monte Carlo methods to study the rela-
tion between the isolation of the directly produced meson
in the partonic system and the experimentally measured
isolation &om hadrons produced in &agmentation. Fi-
nally, Sec. VIII presents our results, extracts experimen-
tally accessible quantities, and discusses the prospects for
constraining hadronic distribution amplitudes.

M = f dzT (x;QH)p(z;Q). II. TREE-LEVEL AMPLITUDES

Another crucial simplification results from the neglect
of all terms of higher twist: the amplitude thus calcu-
lated depends only on the projection of the wave function
onto the Fock state of smallest particle number and with
no orbital angular momentum, the "valence" Fock state
[1]. Thus, the tremendous complexity of the hadronic
structure is reduced to the single valence distribution
amplitude P. Gupta [9] has shown that the factorization
theorems from exclusive processes are also valid in the
semiexclusive case, so that the distribution amplitudes
extracted from the study of semiexclusive processes are
indeed universal.

Figure 1 shows the Feynman diagrams contributing
at the tree level to the simplest semiexclusive process,
e+e ~ K X (of course, any light meson may be pro-
duced by the same mechanism). In this work, we will sys-
tematically explore the properties of the resulting system,
obtaining a set of reliable predictions of experimentally
measurable quantities.

In this section we calculate the tree-level amplitudes
for the semiexclusive process e+e ~ HX, where H is
some meson. The amplitudes take their simplest form in
the center-of-momentum frame if we de6ne [3] the hadron
momentum &action

EH+ Ix ~l

the antiquark and quark (respectively) back momenta
(light-cone momenta in the frame antiparallel to pH)

I;.p~y;Ps—:E; — *

with yq + y2 ——1 —m&/zQ, the beam scattering angles
8 and P, where 8 is the e -to-H polar angle, and P is the
angle between the H-q-q plane and the plane containing
the beam and H [10],and s—:sin(8/2) and c—:cos(8/2).

In these terms, the unpolarized differential cross sec-
tion is

d(r = zzdz dyqdO —)1 1
10247I4

8PlI18

(2.1)

FIG. 1. Feynman diagrams contributing to the semiexclu-
sive process e+e ~ HX. Here we show only the hadronic
event topology; a sum over all possible attachments of the
incoming 7 is assumed. All external particles are outgoing;
arrows indicate fermion Sow.

where we have introduced the notation z = 1 —z; recall
that M, for a process with three final-state particles, has
dimensions of mass

For leading-twist calculations, we use the helicity for-
malism of Ref. [11]; the spinors and polarization vec-
tors are tabulated in Appendix A. We do not need to
compute the interference effects between different quark
helicity amplitudes, even if the resulting hadron helic-
ities are identical, because our neglect of resonance ef-
fects in the recoil system is tantamount to treating the
recoil quarks as observable particles. Thus, pseudoscalar
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states
~
+ —) —

~

—+) and longitudinally polarized vector
states

~
+ —) +

~

—+) will yield identical hard-scattering
amplitudes.

This assumption means that our results will be valid
only in the region in which duality holds; we expect that
it will be very accurate when the invariant mass zQ2
of the hadronizing recoil system is larger than about (2
GeV)2 [12]. This will provide an upper limit on the val-
ues of z at which our computed cross sections are reli-
able; however, at Q 10 GeV the restriction is almost
unnoticeable due to the factor of z in Eq. (2.1), which
ensures that the difFerential cross section do/dz vanishes
asz~1.

Pp ——~6,
Pi = v 30(x —x),
P2 ——2V 21(l —5zz),

P. = 6~5(x —z)(1 —7xx),
P4 = v'330(42x X —14xx+ 1),
Ps ——/546(x —x)(66x x —18xx + 1) .

(2-3)

which does not run with increasing Q for scalar or lon-
gitudinally polarized mesons [1], is equal to 1.

The first few Gegenbauer polynomials are [19]

A. Distribution amplitudes

To leading twist, the hadron wave function enters
only through the valence-state distribution amplitude of
Eq. (1.2). In Eqs. (1.2) and (1.3), we will let x denote
the light-cone momentum fraction carried by the heav-
ier parton, be it quark or antiquark. Thus we expect
(x) & 0.5.

While the asymptotic behavior of the distribution as
Q2 m oo is simple and well understood, the approach
to asymptopia is very slow [1]. One interesting approach
to extraction of distribution amplitudes at moderate Q
is the sum-rule approach [13—16]. This method relates
moments of the distribution of the form

1

(x —x)"P(x)dx,
0

to the observed spectrum of hadron masses. It has so far
yielded predictions in good agreement with experiment;
one of our aims is to provide a more precise test of its
accuracy.

Since the distribution amplitude must vanish like zz at
each end point, it is customary to expand it as a series of
Gegenbauer polynomials [18], which are orthogonal un-
der the measure with weight xx:

P(x) = xx) a,P;(x),fa
2 i=0

A(z) = dx, A(z) —= dx,&(*) — ' &(*)
p x 1 zx p x 1 zx

B = A(O) = f d2. , B—:A(O), (2.4)

C(z) = dx, C(z) —=&(x) — '
&(x)

xx 1 —zx p xx 1 —zx

and

D—:C(0) = C(0) =
'

&(z)

which control the behavior of the cross section. These
quantities are related by

C(z) = zA(z) + D,
C(z) = zA(z) + D,

To proceed from the moments derived from /CD suin
rules to de6nite models of the distribution. amplitude, we
6t the required moments with a sum over the 6rst few
Gegenbauer polynomials. In general, it is far simpler to
test the resulting model than to extract the moments
&om experiment; however, the resulting confrontation
with theory is somewhat oblique. We will discuss the
problem of addressing the sum-rule predictions more di-

rectly in Sec. VIIIE.
We will find it useful to define the integrals [3]

where (2.2)
and

1

xxP;(x)P~(x)dx = b;, ,
0

and J'p, is the hadron decay constant, which can be mea-
sured experimentally in semileptonic decay.

A major advantage of this expansion is that the Gegen-
bauer polynomials are the eigenfunctions of the one-loop
evolution equation for the meson valence distribution am-
plitude [1]. Thus, the running of the coefficients a; is
simple and easily calculable. We will take advantage of
this fact in our analysis of semiexclusive production in
8 decays (Sec. II G). Our normalization ensures that ap,

Note that A and C are logarithmically divergent as
z —+ 1; however, we 6nd that their contributions to cross
sections are always suppressed by one or more powers of
1 —z, so that we obtain consistently finite results. The
Dirac form factors of mesons are determined solely by B
and B: e.g. , F~~ oc ~q, B~~ —q„B~~~.

The foremost goal, when measuring the semiexclusive
cross section. , is the precise extraction of the functions
A(z) and A(z), from which the distribution amplitude

P(x) may be reconstructed. In terms of the Gegenbauer
coefFicients of Eq. (2.2), these integrals can be written
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f~
~
. a;P;(z )ln(1 —z)

fH
~ (—1)'a;P;(z i)ln(1 —z)

v

f~ ". ~ 2'+3B= a;- '
q (i + 1)(i + 2) p

fH . , ( 2i+3
* q(i+1)(i+2)&

fH ~ . a;P;(z ')ln(1 —z)Cz = — g F )2.'=i=O z

fH ~. (—1)'a;P;(z )ln(1 —z)

2;=i=O
z

and

f~ 1, 6 2i+3[1+(—1)') '~ (,
. +1)(,+2)

Here we define F[f(x)) to be the finite part of the Lau-
rent expansion of f in 2: (or, equivalently, the residue
after z -+ 0 divergences have been removed by minimal
subtraction); for instance,

-ln(1 —x) 2 x i 1 z
+ + —+ + ~ ~ ~

x3 2 3 4

1 z
+ + ~ ~ ~

3 4
-ln(1 —x) —z —z' j2

Z3

B. Modeling the distribution amplitude

To obtain concrete predictions for production cross sec-
tions, we must have a specific model of the distribution
amplitude. The simplest "model" is simply the known
asymptotic form [1]

P(z) = f~v3xX. (2.5)

However, there is good reason to believe that the dis-
tribution amplitudes at moderate q2 are very difFer-
ent: predictions of exclusive cross sections based on this
distribution, for example, systematically predict values
far below the experimental results [13].

The distribution amplitudes predicted from /CD sum
rules are in substantially better agreement with present
experimental results [14—17]. Table I presents the coeffi-
cients of the Gegenbauer polynomials in the models we
use. We also present the coefficients for two toy models,
which we will use for purposes of comparison to test the
power of the analysis. The first of these models is the
simple toy model [3)

P»(x) = 2~3f»z z,

TABLE I. CoeKcients of the Gegenbauer polynomials in
each model distribution amplitude.

Distribution

Asymptotic
ZZC K
ZZC 7I

ZZC pL,

ZZC pT
zzc z'; [57]
ZZC 4I

Toy K
"Stealth" K

CoefBcients
+0
1.0 0
1.0 0.24
1.0 0
1.0 0
1.0 0
1.0 0
1.0 0
1.0 0.45
1.0 0.34

G2

0
0.64
1.07
0.27

—0.27
0.11

—0.05
0

0.64

Integrals
B B

0 0 87.fli
0.13 1 43.f» 0.99f»

0 1 44.f
0 1.01fp
0 0.72fp
0 0.93f».
0 0 84f.4,

. 0 1.16f» 0.58f»
0 1.43f» 0 99f».

0.8

0.6—

hC

0.4
hC

I
[

I
[

I
[

I
[

I

QCD sum rules--- Toy model
------ Symmetric
—-- Stealth model

0.2

0.2 0.4 0.6 0.8 1.0

FIG. 2. Models of the distribution amplitude P». The
curve marked +CD sum rules is the model of Ref. [15]; the
symmetric curve shows the asymptotic large-Q limit. The toy
and stealth models are described in the text.

which we will use for strange mesons; the second is a
"stealth" model, with the coefficients aq and a2 chosen
such that the integrals B~ and B~ match those &om the
Zhitnitstii-Zhitnitskii-Chernyak (ZZC) sum-rule model.
The stealth model necessarily bears a strong resemblance
to the sum-rule model, as shown in Fig. 2. The resem-
blance of the transforms A(z) and A(z) is even more ex-
treme; in fact, A(z) and A(z) difFer by no more than 6%
over the range z ( 0.95, and these differences are strongly
anticorrelated, as shown in Fig. 3. Thus, the stealth wave
function serves to illustrate the range of variation in the
distribution which can be concealed in semiexclusive pro-
duction. Of course, the ZZC and stealth distributions
yield precisely the same Dirac form factor as well.

Figure 4 shows the model wave functions obtained by
a fit to the sum-rule moment predictions for the x and
p mesons [14,15]. The symmetry of these wave functions
under x -+ x implies A(z) = A(z). A striking predic-
tion of the sum rules is that P is strongly peaked near
the endpoints, giving it the bimodal structure shown; in
contrast, P~T is strongly peaked at z =

2 and drops ofF

sharply near the end points. Thus, it is predicted that
the transform A (z) will be much greater than Ap(z),
and the cross section correspondingly larger.
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pp
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Yl 3P

25CF
3'2 =

6

and

157CF
13 30P

'I

0.5
0

I

0.4 0.8 0.4
I

0.8

for transversely polarized vector mesons, b&&
——0, and

CF
QO

FIG. 3. The transforms AJc(z) and A~(z) corresponding
to the distribution amplitudes shown in Fig. 2. Note the
extremely close resemblance between the stealth model and
the sum-rule model prediction.

13CF
'V2 =

3 )

and

C. Evolution of the distribution amplitude

The sum-rule models are obtained at a momentum
transfer Qo2 1.5 GeV; since the processes in which we
are interested probe the distribution amplitude at some-
what larger Q2, we must take the evolution of the distri-
bution into account. Since the Gegenbauer polynomials
are eigenfunctions of the evolution equation, this is easily
accomplished by the substitution [1]

16CF
y3 =

3

It is noteworthy that the quark mass terms do not
enter into the evolution potential [1,20]. Thus, heavy-
quark mesons evolve in the same way as light mesons. We
expect that at low-momentum transfer the heavy quark
will carry a large momentum fraction, so that 1—(z) « 1;
thus it is worthwhile to consider the evolution of (z) with
Q2. We find that, in terms of the parameter

where

f n+i
1+4)„-Ic (n + 1)(n+ 2)

~

'

(—:ln ln

the heavy-quark momentum &action obeys the evolution
equation

C~ = s is the color factor, P = 11—2/3ny is the one-loop
@CD P function, A and A' are the quark and antiquark
helicities within the pion, and A' = —A'. For pseudoscalar
or longitudinally polarized mesons, b&& ——1, and the 6rst
few anomalous dimensions p„are

independent of the shape of the distribution amplitude.
Thus, we derive the approximate relation for heavy-light
pseudoscalar mesons

0.8
(z; Q ) (z; Qo) —

I
lnln —lnln

4CF & Q2 Qpol

0.6—
—ZZC m

——ZZC p

Symmetric
- —ZZC p

x 0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Sum-rule distribution amplitudes for the vr and p
mesons [14,16].

For Qo = 1.5 GeV and (x;Qo2) = 0.95, this implies
(z; Q = (10 GeV) ) ~ 0.79 and (x; Q = m&) 0.70.
Clearly the O(1 —(x)) corrections begin to be important
before this stage; nonetheless, we see that the evolution of
the distribution amplitude will quickly smooth any sharp
peaks. Since a substantial cross section for semiexclusive
production at very high energies, e.g. , in Z decays, de-
pends on a strongly peaked distribution amplitude [3],
consideration of the evolution of the distribution ampli-
tude greatly decreases both the expected cross sections
and the efBcacy with which we will be able to discrim-
inate among models; see Fig. 5. We will return to this
point in Secs. VIII C and VIII D.
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0.6
I

~

I
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I D. Mesons with flavor

0.4

———QCD sum rules
—- —Toy model—Symmetric

0.2

0
0 0.2 0.4 0.6 0.8 1.0

FIG. 5. The distribution amplitudes of Fig. 2, evolved to
Q = mz.

In the production of mesons with a nonzero Qavor

quantum number (including isospin), only the four Feyn-
man diagrams of Fig. 1 contribute. We will specialize to
the case H = K or H = K', for the sake of definite-
ness; of course, our results are equally valid for all light
Bavored mesons. In addition, we will omit an overall fac-
tor of e2g2/Q2 = 16m nn, /s, which is understood to be
included in all the amplitudes we will present.

For pseudoscalar mesons or longitudinally polarized
vector mesons (i.e., for antialigned quark spins) the hard-
scattering amplitude is given in [3]:

hazy, &
'

C C—

1(y,)''
* P')

1/2
(+) y2&qu —yxqe y ~ zy2
H — F se

I, zz*gyiy. ( yi )
1 (y, &

"', &zy, l '" se-'~
+— — se 'q„c—

~z (yy) (yy ) 1 —zz
(zy, i '"

cq, se
(y2) 1 —zz )

(2.6)

with the color factor C~ = 4s. The superscript (+) refers
to the case in which the incoming electron and outgo-
ing s quark share the same helicity; it is a simple matter
to show that the opposite-helicity amplitude can be ob-
tained by the substitution c++ s (see Appendix A).

The corresponding amplitude for transversely polar-
ized vector meson production is

(1+cos28), which mixes both transverse and longitudi-
nal contributions with further contamination &om back-
grounds (which will have the 1+cos28 distribution com-
mon to inclusive processes). We will discuss the poten-
tial to extract the other components of the cross section;
however, extremely large event samples seem necessary
for such extraction.

T(+) 2 j= qe q~=C jrZ
z(1 —zz)y2 z(1 —zz)yg

(2.7) E. Mesons without flavor

As noted in Ref. [3], these amplitudes do not vanish even
in the limits q„~ q, and x -+ z, unless we also impose
yq m y2. The hard virtual photon probes the structure
of the meson at the parton level.

The factor ~z in Eq. (2.7) is also noteworthy; it leads
to the vanishing of the amplitude in the exclusive lixnit,
as required by hadron helicity conservation [21]. It must
be noted that the light-cone wave functions of vector
mesons depend on the polarization; thus the total un-
polarized cross section for vector meson production will
s»m contributions &om two distinct distribution ampli-
tudes. However, the simple 1+cos 8 angular distribution
of the cross section for production in transverse polariza-
tion states should aid in disentangling the two processes.
Also, the decays of vector xnesons are to some extent
self-analyzing; the polarization of, e.g., a p meson can
be estimated &om the angular distribution of its decay
products. Thus, at given z, the observed distribution
at leading twist of semiexclusive events, integrated over
dP, should be an incoherent sum of three simple distri-
butions (longitudinal with shape sinz8, and longitudinal
or transverse with shape 1+cosz8). Unfortunately the
cross section is dominated by the term proportional to

Some mesons, such as the g or x, have no nonzero
flavor quantum numbers (excepting isospin). Thus they
might be formed by diagrams like that of Fig. 6, recoiling
against a gg system. Note that only pseudoscalar mesons
can receive such a contribution at leading twist, as the
quark and antiquark spins are antialigned.

FIG. 6. Additional Feynman diagrams which must be con-
sidered in the case of fiavorless pseudoscalar mesons. As in
Fig. 1, a sum over attachments of the incoming p is implicit.
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For definiteness, we will consider h = g. In comput-
ing the amplitude for production of egg, we must sum
over quark helicities and Havors (since in this case the
helicities are no longer observable). We choose to absorb
this factor in the hard-scattering amplitude; that is, we
present the amplitude

1
[T~(e+e w 0+0 gg) —TH(e+e m q j+gg)],

2

but call it TH since we will obtain the full amplitude by
convolving it with the distribution amplitude, as always.
The result is

TH(e+e+

TH (e+e+

TH (e+e+

) iI2
~ »igt) = C~g*s'

I(yminymax )
Cpq; I' z~ Wtgi) = *

~
I

(c'y&
zxx (2ygyg )

I 2 )iI2~ Mzgg) = CzQ;c
(gminymax )

1 —zX)
(

+
x(1 —zx) x(1 —zx) )

gx(1 —zx) x(1 —zx)) '

y~) I

1

g 1 —zx

(2.8)

(2.9)

(2.10)

In this case, the color factor is C~ = g2/3, not
In Eq. (2.9), we have used the notation yt ~ instead of
yq 2 to refer to the two gluon momenta, since the labels
1 and 2 are arbitrary; in Eqs. (2.8) and (2.10), we define

ymin min(yi) and ymax max(yi).
The amplitudes for negative-helicity electrons

(positive-helicity positrons) are obtained, as always, by
the substitution s ++ c (Appendix A). However, in either
case, the amplitudes of Eqs. (2.8)—(2.10) are antisymrnet-
ric under x ~ z. The wave function must be symmetric;
thus the full amplitude, obtained by convolving P with
T~, vanishes. We need not treat such mesons any diKer-
ently than we would aavored states.

F. Mesons vrith gg Fock states

Scalar mesons, with spin-parity 0+, have no qq valence
Fock state but can mix with a gg state. The lightest and
best measured such meson is the fo(975), which we now
consider.

Production in the gg Fock state recoiling against a
q;q; system, shown in Fig. 7, proceeds with the hard-

FIG. 7. Feynman diagrams contributing to production of a
meson in a yg Foe% state. Again, a sum over attachments of
the p' is implicit.

scattering amplitude

TH = —Cy
'

[~zy2(1 —zx )c
2zzxgygg

+2/yiy2(zxx+ z)sce'~+ +zy, (l —zx )s e"~].
(2.11)

again, the color factor C~ ——g2/3.
In Eq. (2.11) the quark spins are considered observ-

ables, and the quark and antiquark are distinguishable, in
contrast with Eq. (2.9) in which we sum over spin states
in the amplitude, leading to destructive interference in
the large-z limit and to antisymmetry under x ~ z. This
should emphasize the importance of studying semiexclu-
sive processes only in the domain in which the assump-
tion of duality is accurate; in the exclusive limit z + 1,
the processes corresponding to Eqs. (2.9) and (2.11) be-
come identical, and both amplitudes vanish.

The result of Eq. (2.11) shows that the amplitude for
scalar meson production in a gg Fock state depends on
the distribution amplitude through the quantity

h~ ~ss ——2~3 /hogs (x)dx,
0

(2.12)

where the constant factor is analogous to that of
Eq. (2.2), and through the integrals Bss, Bss, and Dss,
as defined in Eq. (2.4), where the subscript gg reminds
us that the distribution amplitude in question is Pg~~~.
However, the distribution amplitude must be symmetric
under x e+ x, so we have Bss = Bss = Dss/2.

The lack of valence qq Fock states of 0+ mesons is a
boon to our analysis; any observation of fs(975) produc-
tion at leading twist is an unambiguous signal of forma-
tion in the gg Fock state. The fs(975) decays primarily
to mm', which should provide a clear experimental signal
if it can be distinguished from p(770) i nm.

We can also compute the amplitude for creation of
transversely polarized 2+ mesons in the gg Fock state by
requiring that the gluon spins be aligned. The amplitude
for this process is
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T& —— C—~q, (c~yq+ se' Qzyq)(cgzyq —se' ~yq)
(++) ~z 1

Z XX gyg2
(2.13)

when the gluons have the saxne helicity as the electron
and the outgoing antiquark; the other amplitudes are
obtained by yq ~ y2 and s ++ c. The lightest such xnesons
is the f2(1270); again, its signature is decay to z.z. The
most important backgrounds in this case come &om the
fo(1400) and p(1450), both of which can also decay to
two pions. Also, the suppression of higher-twist terms
is less severe at larger xnass, so that contamination &om

qq states with L = S = 1 must be considered. We will
touch upon this point again in Sec. III C.

Semiexclusive production cross sections for 2++
mesons, such as those for 1 mesons, s»m contributions
&om the transverse and longitudinal polarization states.
Thus, the quantities fp, ~sts~, Dssyr„and Dss~z, where
the subscripts L and T denote transverse and longitudi-
nal polarization states, will contribute to the measured
cross section for fz(1270) production. We will display
our predictions in Sec. VIII A.

G. Zo decays

The channel e+e ~ Z ~ HX can also contribute
to semiexclusive production. Although the suppression
by p2/Q2 is far more severe at the Z peak than at the
energies we have so far considered, we can still obtain
detectable cross sections.

Bjorken et al. [22,23] have pointed out that the re-
quirement of a rapidity gap is a natural and effective
way to identify processes involving production of color
singlets. That is, we may require that the candidate di-
rectly produced mesons be isolated in rapidity (or pseu-
dorapidity) with respect to its own axis by some gap b,Y.
Indeed, the condition of isolation in a hemisphere can be
thought of as a special case of the rapidity gap, where
b,Y = ln(2zE/m~) is a function of z.

For light mesons, e.g. , H = K, isolation in a hemi-
sphere is equivalent to AY = 6+ lnz. This is unnec-
essarily drastic; values of 6Y 4 should be more than
adequate to screen out backgrounds &om the hadroniza-
tion process [24].

Following Ref. [23], we write the weak charge of a
fermion as

(2.14)

containing both the right- and left-handed couplings to
the Z. Then the amplitudes for semiexclusive production
in Z decays can be obtained &om those derived in the
last two sections by the simple substitution qf M 'Qf,
with the understanding that the dot product Qy, .Qy, is
to replace the sum over spins g qy, qy, in the unpolarized
cross section.

We will later see that while the cross sections are much
smaller at this energy, the experimental separation of in-

teresting higher-twist physics is somewhat easier. Thus
we can hope to observe semiexclusive Z decays.

H. Crossing

It should be noted that semiexclusive production
e+e + HX is the crossed process corresponding to
deep-inelastic scattering (DIS) e H -+ e X. Thus, we
expect the cross sections calculated here to bear soxne
relation to the structure functions of DIS.

Indeed, carrying out the crossing operation and eval-
uating the variables q~ and z governing DIS, we find
q2 = —Qz, x = z ~. Thus semiexclusive production
can be said to measure the continuation of the struc-
ture function to the region x & 1. Indeed, the quantity
[A(z)]2 of Eq. (2.4) for z ) 1 shows some properties of a
structure function, with a leading-twist pole contribution
at x = z; the resemblance would be more pronounced
had we not implemented the simplification of Eq. (1.2).

As we shall see in Sec. VI, this pole corresponds to the
collinear singularity at y; = 0 in semiexclusive produc-
tion. Part of our task will be to separate the interesting
but higher-twist central region where y, is not small &om
contamination due to the collinear pole.

III. HIGHER- TWIST CORRECTIONS

So far, we have been concerned with the leading-twist
behavior of semiexclusive amplitudes. In obtaining our
results so far, we have made several simplifying assump-
tions.

(1) We have neglected all quark masses, which give rise
to corrections of order m2/Q2 to the helicity amplitudes
we have calculated and introduce helicity-Hip axnplitudes
at order m/Q [21].

(2) We have neglected the mass of the meson H as
well as that of the hadronizing quarks in defining our
kinematic variables; a xnore careful definition will change
our results by terms on the order of m2~/Qz.

(3) We have assumed that the quark constituents are
perfectly collinear with the hadron comprising them; if
we relax this assumption to allow quark transverse mo-
menta k~, we will obtain a correction of order k&2/Q2

[25]. In addition, we have entirely neglected the effects
of Sudakov suppression [26] on the amplitude.

(4) Finally, we have considered only the valence Fock
state of the meson, and ignored the possibility of mixing
with qqg states. The corrections resulting &om a correct
treatment of such states, while still suppressed by pz/Q2,
have the potential to be numerically large because of the
contribution they receive &om the endpoints of the dis-
tribution amplitude, when one of the constituent partons
is very soft.

Let us deal with these corrections, one at a time.
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A. Quark and meson mass efFects

Terms of order m/Q in the amplitude involve helic-
ity Hips; thus they will contribute only at order m /Q
to the cross section, as will interference terms between
leading-twist amplitudes and O(m2/Q2) corrections. We
can only hope to distinguish contributions of subleading
twist if they show some signature distinguishing them
from the leading-twist cross section, which the interfer-
ence terms will not have. Thus, we do not consider such
terms, but instead choose to restrict our discussion to the
computation of the leading helicity-flip amplitudes.

We account for quark mass terms to first order in m/Q
in internal lines by computing all single Higgs insertions
on the internal quark line. The effect of mass insertions
on external lines is to alter the quark spinor by the sub-
stitution (see Appendix A)

The former is fairly simple. The upper bound zm on z
is determined by our assumption of duality; if the mass of
the hadronizing system, ~zQ, is too small, that assump-
tion fails, and our predictions are vulnerable to large cor-
rections &om poorly understood resonance physics. For
light-quark systems, we require ~zQ ) 2 GeV [27]. For
systems containing a single heavy quark, we should then
require ~zQ ) m~ + 2 GeV, decreasing the upper limit

max.

The kinematic limit on the back momentum yq of the
heavy (anti)quark is then yi ) m /zQ2. The prima
facie effect of this limit is simply to excise a region of
the cross section. However, more careful consideration
shows that the interplay between m~ and yq also affects
the experimental acceptance; we will return to this point
in Sec. VIID.

u+(p) ~ u+(p) + u(+ )(p) +O( i )
p

u~y~+~ considered as a two-component spinor is numeri-
cally identical to ug, but corresponds to opposite helicity

0 0(i.e. , u(y~~) ——p uy, w~le v(y~~) ———p v~).
Since we are interested in obtaining quantities with ex-

perimental signatures distinct Rom those of leading-twist
semiexclusive production, we must consider the produc-
tion of transversely polarized vector mesons with an an-

gular distribution other than the (1+cos28) distribution
obtained from Eq. (2.7).

As an example, we consider the amplitude for e+e
D&c+u . Naively calculating with the substitution of
Eq. (3.1) yields a divergent expression from the region
z -+ 0, in which the quantity m/zzQ becomes large. In
this limit, of course, the first-order expansion in m is
invalid. We choose to contain the divergence by keeping
terms of order m2 in the gluon denominator (zp + li),
which yields uniformly finite expressions.

We are interested in the part of the above amplitude
which is proportional to sce'4'. This is (omitting the usual
factor of e g, /Q )

B. Nonvalence Pock states

This is the greatest technical challenge we must face.
The difBculty arises from the fact that the regulation of
infrared divergences in inclusive processes relies on the
cancellation between graphs like those of Figs. 8(a) and
8(b); however, when we demand that the collinear final-
state particles form a meson, we risk spoiling this cancel-
lation.

In the consideration of exclusive production in the va-
lence state, the incomplete cancellation of infrared diver-
gences leads to the "Sudakov suppression" of exclusive
production [7,26,28]. The Sudakov form factor for exclu-
sive production of a bare colored particle vanishes in the
absence of an in&ared cutofF. However, in production of
color-singlet states the transverse size of the hadron itself
provides a natural in&ared cutoff, rendering the Sudakov
form factor finite.

m. ~z 2 yi——g +
Q zz zz y2

z + 2zg2

zy, + zy2m2/z'z
(3 2)

The expression in square brackets is not numerically
large, especially when one considers that the wave func-
tion is likely concentrated at fairly large x. In fact, it is
generally smaller than the amplitude of Eq. (2.7), even
before the m/Q suppression is taken into account. Thus
the higher-twist contribution to the cross section from
quark mass terms will be not more than m /Q: 3%% for
D mesons at the T4„and less than 0.5%%uo for B mesons
at the Z peak. Since such terms must be disentangled
from both the (1+cos 8) distribution of most semiexclu-
sive events and. the sin 8 component of the distribution
of longitudinally polarized mesons, it seems that their
experimental measurement is out of the question.

Corrections to the denominators in the expression of
the amplitude contribute only at O(m /Q2), and may
generally be neglected. However, we must consider their
effect on the end-point behavior in z and y.

+ JVX&f' JUL/'

(e)

FIG. 8. Diagrams which cancel to provide infrared-6nite
predictions for inclusive amplitudes. (a) shows a higher-order
correction to the process of Fig. I; (b) shows a diagram whose
collinear divergence cancels against that of (a). In exclusive
production, we must consider the diagrams of (a) and (c) to
obtain the Sudakov-corrected amplitude for color-singlet pro-
duction. The factorization prescription, meanwhile, tells us
that (b) and (d) are to be excluded &om the hard-scattering
calculation [but see Fig. 9(b)].
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Our aixn, then, is to compute the contribution from

qqy Fock states, which correspond to infrared-divergent
hard-scattering amplitudes, in a manner consistent with
the existing treatment of Sudakov eHects. To this end,
we consider the prescription of Ref. [1] for the calcula-
tion of exclusive amplitudes. In the graphs of Figs. 8(b)
and 8(d), let k~ denote the gluon's transverse momentum
with respect to the hadron direction of motion. If k& is
smaller than the factorization scale Q2, we are required
to absorb these (possibly nonperturbative) terms into
the bound-state dynamics, rather than compute them in
PQCD. Conversely, if k&2 ) Q2, the gluon is no longer
sufficiently collinear to be included in the distribution
amplitude defined in Eq. (1.2). Thus we should consis-
tently drop contributions from all such diagrams. One
might worry that the remaining sum of diagrams will lack
gauge invariance; however, we have veri6ed by explicit
computation that the diagrams thus discarded become
gauge-invariant in the collinear limit.

Figure 9 shows the Feynman diagrams we must evalu-
ate to compute the amplitude for production in the one-
gluon Fock state. These diagrams possess no collinear
divergences, and their calculation is straightforward. We
obtain the hard-scattering amplitude

c q, y
2

quy2

zgyiy2 ziz2(1 —zeal)y2 zl&2(1 zz2)yl
x [Ci(z + zzs) + Cs(z + 2zzs)]

+C' sce'4 ~z
X2(1 —zz2)y2 xi(1 —zzi)yi

(3.3)

for production of pseudoscalar or of longitudinally po-
larized vector mesons. The color factors Ci ———1j3ij3,
C2 ——8/3v 3, and Cs ——i~3 correspond to the diagrams

(b)

(c)

FIG. 9. The Feynman diagram topologies which must be
included in the amplitude for production of a meson in a qqg
Fock state. In (a) and (c), a sum over all possible attach-
ments of the p' is implicit. In (b), however, only the speci6c
attachment shown should be used; the rest are considered in
Figs. 8(b) and 8(d).

of Figs. 9(a)—9(c), respectively.
Like the helicity-violating amplitudes of the previous

section, the amplitudes for production in a nonvalence
state can best be measured in regions where leading-twist
production is forbidden. Thus, we again consider the
production of transversely polarized vector mesons. The
full hard-scattering amplitude is quite awkward; however,
since we are interested in production with a sin28 angular
distribution, we present only the part proportional to
sin8:

e g, ~ Czq„y2 C3q, 1 z+yq 1—+ +
&i(1 —zXi) yi zXix2 yi zy2 1 —zxi

2Cz ( q, 1+
z (xsy2 zsps

yi q 1 —z~s y2
!+

+1 &3 a 1+3 +2yl )
(3.4)

Again, no n»merically large coefficients appear. While
the gluon is expected to carry less average xnomentum
than the quarks, the distribution amplitude is suppressed
by x3 as x3 m 0, because a very soft gluon cannot couple
to a singlet qq state. Thus, (xs ) is not extremely large.
Also, in this case the suppression factor is p jQ, where
p, & 0.5 GeV does not depend on quark masses; thus
higher-twist contribution to the cross section will prob-
ably be invisibly small. To proceed further, we need in-
formation about the distribution amplitude Pq~s&s,

. this
is the subject of the next section.

C. Nonvalence distribution amplitudes

In order to estimate the size of the contribution to the
semiexclusive cross section froxn the higher-twist terxns of
the preceding section, we must have some xnodel of the
meson distribution amplitudes for the nonvalence states
in question. One approach to this problem is undertaken
by Zhitnitskii et al. [29], who extend the sum-rule ap-
proach of Refs. [13—15] to wave functions of nonleading
twist.
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They propose model distribution amplitudes for the
qqg states of the vr and p: we are interested in the distri-
bution Ps of transversely polarized p mesons [30]. The
sum-rule model distribution is

(3.5)

where fs~ 3.5 x 10 GeV; thus, when convolving
the hard-scattering amplitude and distribution ampli-
tude, we must replace

IV. TRANSVERSE MOMENTUM, SUDAKOU
EFFECTS) AND THE RUNNING COUPLING

So far, we have neglected the running of the strong-
coupling constant a, . While this is technically a cor-
rection at next-to-leading logarithmic order, it assumes
great importance in exclusive reactions because of the
divergence of the one-loop running coupling

(3.6)

and

X2X3X3
-+ 35fsp 0.12 GeV

Thus the extreme smallness of fs~/Q more than counter-
balances the numerical enhancement &om the factors of
z; in the denominator.

Comparison of Eqs. (3.2) and (3.4)—(3.6) suggests that,
in light mesons, quark mass eKects are more important
than eHects &om nonvalence Fock states for m& & 700
MeV. Of course, this is an extremely rough estimate.
However, for our purposes it is sufBcient to demonstrate
that production in nonvalence Fock states does not pro-
vide a measurable signal.

D. Orbital angular momentum

We can compute the corrections of order p/Q result-
ing from our neglect of Pock states with nonzero orbital
angular momentum by including a small transverse mo-
mentum he~ in the spinors uy(p) of Appendix A. Specif-
ically, we wish to consider the contribution &om hard
scatterings such as e+e ~ s d X m KLX.

The wave function must carry a unit of orbital angular
momentum, in order to onset the difference in the spin
states of the meson and of its quark constituents. Thus,
the moment of e + ie„, and with it all such terms in the
amplitude, vanishes, while e~ —ie„may be replaced with
some typical transverse momentum p.

For example, the term of order p/Q and proportional
to sin8 in the amplitude for semiexclusive production of
longitudinally polarized K* mesons is

&98 Xggsee ' ~z
X(1 —zx)y2 2:(1 —zX)yg

(3.7)

Neglecting the factor p/Q, this is numerically smaller
than the corresponding term in Eq. (3.2); thus the er-
ror which its neglect introduces into our calculations is
negligible, while the chance of measuring its contribution
separately is remote.

as Q -+ A2.

It is our belief that too much has been made of this
divergence, which stems from an extrapolation using the
lowest-order (one-loop) /CD P function into precisely
that region in which the lowest-order approximation is
invalid. Nonetheless, in the absence of a better form, one
would be obliged to use this coupling. The recent work
of Mattingly and Stevenson [31] suggests that there is,
indeed, a better form; we shall return to this point in
Sec. VA.

The soft divergence of o,, a8'ects the computation of ex-
clusive amplitudes even at large momentum transfer, be-
cause the gluon virtuality can still be small near the end-
points z ~ 0, x ~ 1. In a proper higher-order treatment,
we would use a scale-setting procedure, such as that used
by Brodsky, Lepage, and Mackenzie (BLM) [32], to fix
the argument of the running coupling a, through the
entire process. However, this is not satisfactory for our
purposes for two reasons.

The first and most concrete is that the scale can only be
set to given order in a, when the perturbative coeFicients
have been obtained to one higher order. Thus no scale
setting is possible when only a tree-level amplitude has
been computed, as is the case here.

The second objection is more fundamental: since the
momentum transfer through the internal gluon depends
on the hadron's distribution amplitude, a single scale
cannot consistently be set for all possible distributions.
Instead, the model wave function enters into the scale,
resulting in a formula of redoubled complexity. This is
a true physical efFect, not an artifact of the procedure;
for example, a wave function which is very strongly sup-
pressed at the endpoints will certainly yield a larger mean
value of q than will one which is concentrated there.

Thus, we must allow the argument of o., to depend on
the momentum &action x in the hard-scattering process.
At first glance, this seems to threaten the finiteness of our
results. However, the work of Sudakov and of Mueller [26]
demonstrates that exclusive amplitudes remain finite.

Heuristically, the picture is as follows: the coupling
can only grow large when the gluon propagates for a large
distance (of order A&&&) in transverse position space. In
this case, the constituents of the final-state hadron are
widely separated and have a large color dipole moment.
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Thus, the probability that they will emit final-state radia-
tion, in which case the process is ipso fceto not exclusive,
approaches 1.

Mueller [26] derived the quantitative effects of this
Sudakov suppression to leading logarithmic order, and
Botts and Sterman [28] extended them to next-to-leading
order (in lnQ). We do not wish to use the entire ma-
chinery thus derived, but instead will take the low road,
absorbing the leading efFects of Sudakov suppression into
an eH'ective coupling constant a,~.

To incorporate Sudakov suppression into the calcula-
tion of exclusive amplitudes, we must undo the simpli-
fication of Eq. (1.3). However, we use the wave func-
tion and propagator not in momentum space, but in the
hybrid space of longitudinal momentum and transverse
position:

m —J d~bxo(b(q))a (q.~), (4.1)

where Ko is a modified Bessel function. The form of
Eq. (1.2) is regained if we assume that the wave function
is independent of b [i.e. , that it is proportional to b (k~)].
Here and in the following, we assume that q is a purely
longitudinal momentum (otherwise see Ref. [7]).

When q is small the proper argument of a, is not q,
but rather max(q2, b 2): the coupling cannot grow large
if the gluon propagates over only a short distance [33].

The form of the Sudatov suppression given by Botts
and Sterman [28] vanishes as IbI ~ A sufBciently
rapidly to contain the divergence of a, in the same limit.
For q -+ A, the efFect of Sudakov suppression is ex-
pressed by the substitution

Ko(bIqI)o. , (q )bdb -+ e ' K()(bIqI)o.,(max(q, b ))bdb,
0

(4.2)

where S(b, q) diverges as b ~ A ~. The contribution
I'rom the region b ) A in Eq. (4.1) is in any case sup-

+2pressed by e «~, so the main eKect for substantial q
is the correction to a, for very small b [which contributes
at O(1/lnq ) to the amplitude].

For small q, the problem is much thornier; the quan-
titative behavior of the Sudakov suppression comes into
play. We take advantage of the fact that the factor
a, (b 2) which enters into the tree-level amplitude as
computed by Eq. (4.1) is precisely the same as the cou-
pling o., which controls final-state radiation and leads to
the Sudakov suppression, and use in place of Eq. (4.2)
the ansatz

to leading order in lnq2. Thus, we are willing to ac-
cept its predictions in the comparatively poorly under-
stood region of small q2, where the results of Ref. [28] are
themselves subject to substantial parametric uncertain-
ties [35).

Finally, this method overs striking ease of computa-
tion. Equation (4.3) can be integrated numerically to
obtain the values of a,g at all q . The result is shown in
Fig. 10. The only parameter involved in the determina-
tion of e,g is AqcD itself. Unfortunately, this parameter
is not yet well determined; current experimental results
give

~Ms 318+si MeV,

min (K()(b'IqI)a, (max(q, b' )))bdb =
q

(4.3)

where MS denotes the modified minimal subtraction
scheme. The resulting uncertainty in our cross sections
is 15%, which is numerically equal to the uncertainty in
a, (Q = 3 GeV): that is, the A dependence of the cross

That is, we postulate that the physical amplitude for ex-
clusive processes does not increase with 6 and use that
assumption to derive a finite form for the eHective gluon
propagator. In fact, since K()(x) diverges only logarith-
mically as x m 0, this formula yields

0.6 I I I I I IIII I I I I I IIII I I I I I III

4~2

2A Pln(A /q2)

the finite size of hadrons means that the amplitude for
exclusive production increases more slowly than 1/q2 for
small q2.

This procedure requires some justification. Our rea-
soning is that the exclusive production amplitude should
not increase with increasing transverse size, as demon-
strated in the observation of color transparency [34]. At
large q, where the Sudakov suppression is well under-
stood, our method reproduces the results of Refs. [26,28]

0.4

0.2

0
10 ' 10O 10' 102

q2/A2

FIG. 10. The e6ective coupling constant n ~ as a function
of the gluon virtuality q .
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section does not reflect a sensitivity to soft physics, but
an imprecision in the size of the /CD coupling at mod-
erate momentum transfer.

It must be emphasized that the effective coupliag o.,g
has no applicability outside the domaia of exclusive or
semiexclusive reactioas, siace its finiteness results &om
the finite transverse size of hadrons. It could be argued
that we have underestimated o.,g by igaoring the pos-
sibility that the fiaal-state radiation might be absorbed
into the hadron, thus preserving the exclusivity of the
reaction; however, such an effect involves the intrinsi-
cally soft process of long-distaace hadronization, and the
events resulting Rom it will share the characteristics of
soft eveats, rather than of the hard direct processes in
which we are interested. Thus we regard such a contri-
bution not as an additional componeat of the signal, but
as a part of the background which should be amenable to
calculation with standard Monte Carlo techniques. Also
note that the vanishing of the effective coupliag, which
seems strongly couaterintuitive, is in fact simply a re-
statemeat of the fact that the effective propagator di-
verges less slowly than 1/q2 for small q: clearly, the same
result is obtained in methods using intrinsic transverse
momeatum smearing or an artificial gluon mass.

The latter technique is commonly used in the compu-
tation of spacelike scattering amplitudes, since an efFec-
tive gluon mass regulates the divergence of the propaga-
tor [36]. This is intended to model the physical effects
of the intrinsic transverse momenta within the hadron,
which serve to eliminate collinear divergences. We could
extend the same approach to the timelike process uader
consideration, though an imaginary gluon mass would be
required. A more accurate treatment could be achieved
by insertiag a term representing the transverse distribu-
tion of the wave function [7],

g(z, k~)
( ~)

10%, illustrating the relative insensitivity of semiexclu-
sive production to the niceties of soft physics.

V. HIGHER-ORDER CORRECTIONS

Before we can have faith ia the results we have derived
thus far, we must know whether they will be overwhelmed
by O(o.,) corrections. We begin by classifying all such
corrections.

The first-order corrections to the production mecha-
nism of Fig. 1 are obtaiaed by attaching an additional
gluon line to the hadronic topology. Some of the ways in
which it may be attached are familiar and have already
been dealt with in other contexts.

For example, the higher-order corrections of Fig. 11(b)
are precisely aaalogous to those which modify the total
cross section aq~q(e+e Mhadrons), since they are com-
pletely internal to the color-singlet recoil system. Thus,
we can, with no calculation whatsoever, be assured that
their entire effect is to increase the total measured cross
section by a factor [1+n, (zQ2)/z] [38].

Similarly, the diagrams of Fig. 11(c) are the same as
those which contribute to the study of purely exclusive
processes. When the internal gluon momentum q is small
compared to the momentum scale Q of the hard process,
it may be considered internal to the meson and treated
as a correction to the wave function.

This brief catalog leaves only two cases uncovered.
First, differentiation between diagrams such as that of
Figs. 11(b) and ll(c) is not perfectly well defined, and
there will be cases where q Q. However, the resulting
corrections are suppressed by 1n(Q2/p ) relative to those
in which one of the gluon momenta is soft, and we may
safely ignore them in this work.

into the integration of Eq. (4.1), again obtaining an ef-
fective coupling which will vaaish as q2lnq at small lon-
gitudinal momentum transfer.

In practice, however, hadroaic amplitudes are insensi-
tive to the transverse wave function. This is especially
true when the Sudakov suppression, which forces the
hadron to be formed at small impact parameter, is also
considered [7]. Thus, we do not expect intrinsic trans-
verse momenta to have a great effect on our results.

In order to test the sensitivity of our results to our as-
suraptions about the effective coupling, we also computed
the cross sections with the efFective coupling,

(b)

4'
P ln(Q2 + m2) A2 ' (4 4)

where m~ = 1.2A was chosen to match the value

obtained by Mattingly and Stevenson [31,37]. The pre-
dicted cross sections at ~s 10 GeV differed by less than

FIG. 11. Some diagrams which will yield O(cx ) corrections
to the amplitude. (a) is simply a vertex correction. (b) is fa-

miliar, when q q, from the analysis of inclusive produc-
tion. (c), with q (( q, is factorizable, internal to the meson,
and will have the same eKect here as in exclusive processes.
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Second, there are unfactorized soft contributions like
that shown in Fig. 12. As described in Ref. [28], these
give rise to the Sudakov suppression of exclusive axnpli-
tudes; the saxne suppression applies in the semiexclusive
case, and we considered its effects in Sec. IV.

In a recent paper [31],Mattingly and Stevenson show
that the third-order corrections to B,+, [3—9] lead,
through the use of perturbation theory optimized with
the principle of ininimal sensitivity (PMS) scale-setting
method [40], to a form of the coupling which approaches
a constant limit as q2 ~ 0. A fit to experimental data
on R,+,— yields a limiting value o., (q2 ~ 0) 0.82.

Thus we may choose to adopt a more conservative ap-
proach than that described in Sec. IV, and merely use the
coupling of Ref. [31] throughout our numerical calcula-
tion [37]. In actuality, neither approach is perfectly sat-
isfactory. The suppression of the effective coupling due
to the finite size of hadrons is a physical effect, which the
naive insertion of a, into exclusive amplitudes ignores;
but the form of Ref. [28] for the Sudakov suppression
is partly predicated on the low-q divergence of the cou-
pling, and is now subject at least to quantitative revisions
which are outside the scope of this paper.

In practice, the use of a,g has the virtue that it natu-
rally incorporates Sudakov effects which serve to contain
the collinear (small-y;) divergence that appears in the
tree-level amplitudes of Eqs. (2.6) and (2.7), and to im-
prove the numerical behavior near the end points. The
physics of this apparent divergence and the means by
which the correct end-point behavior may be computed
are the subjects of the next section.

'W&

FIG. 12. Nonfactorizable soft contributions to the
hard-scattering amplitude TH, which lead to Sudakov sup-
pression.

A. Wave function vs distribution amplitude

The factorization of Eq. (1.2), which assumes that
TH depends only weakly on the internal momenta k~,
is clearly invalid when the momentum transfer y;Q2 of
the exchanged gluon becoxnes comparable to a typical
hadronic xnomentum scale p2.

At this point, we must undo the factorization used in
Eq. (1.3), and instead consider diagrams like those shown
in Fig. 13. In this region, the diagram of Fig. 13(b) is
suppressed by a factor of y; relative to that of Fig. 13(a)
and may safely be neglected. The amplitude may then be
evaluated in terms of the quark &agmentation amplitude
@q~gq. To leading order in y;, we obtain

= e q;Cyc @q~pg(z, jz),(+)

VI. THE SMALL-y COLLINEAR DIVERGENCE

The tree-level amplitudes of Eqs. (2.6)—(2.11) diverge
for y, ~ 0, as the internal gluon approaches its xnass
shell. This apparent divergence is in fact controlled by
several corrections which become important in this limit.
We will discuss some of them, in order of ixnportance.

where

j2 Z2zy Q2

the color factor C» = ~3, and q; is the QED charge of
the quark q.

Thus,

JJcrit

0

& qg&gcrit g2
dyiIM +

I

= 3e q;c I@(z,j~)I2
0

768&4ct2q2
c gs/q(zi zQV zycrit) Iz z (6.1)

where

here Gl,~q(x) is the fragmentation function for finding a
meson h inside the quark q at momentum transfer Qo.
The full &agmentation axnplitude G differs &om g in that
G includes a sum over all Fock states, while g receives a
contribution only from the exclusive "decay" q + hQ.
At large z, however, this difference should vanish; it is
expected that the valence Fock state dominates the struc-

FIG. 13. The diagrams contributing to the semiexclusive
production amplitude at small yi. (a) shows the leading-twist
part (in physical gauges), (b) a higher-twist part
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ture and fragmentation functions at large x.
Combining Eqs. (6.1) and (2.1), we find that the total

spin-averaged contribution to the cross section from the
region y & y,»& is

3vra q; 2do = ggy&(z& zQ/zgzz&i)(l + cos 8)dcosgdz .
8z

(6.2)

We have integrated out the trivial P dependence.
Several things about the contribution to the cross sec-

tion given by Eq. (6.2) are noteworthy. First, and most
disturbing, it is leading twist; the suppression of the cross
section is only Q 2. Thus, we must take great care to
separate the higher-twist direct production in which we
are interested &om this "direct fragmentation" contami-
nation.

That this is possible at all is due to the nature of the
hadronization process. At high energies, where the ex-
tra Q 2 suppression of the semiexclusive signal is severe,
the jets inherit the parton momenta; thus the small-y
region can be identi6ed and discarded with great accu-
racy. In order to pass cuts designed to ensure that the
meson is produced with a high degree of isolation, the
events described by Eq. (6.2) must be transformed in the
hadronization process into events in which no jet is near
the meson; the probability that this will occur is sup-
pressed by Q

2 for large Q. The leopard can change his
spots, but it requires an intrinsically higher-twist process.
Thus the signal for semiexclusive production at moderate
y; is in principle measurable even at arbitrarily large Q .

In fact, the signal from the collinear region which
passes the event shape cuts resembles a higher-order cor-
rection to the tree-level semiexclusive signal. To see this,
recall that a hard gluon must be exchanged between the
quark and antiquark in the recoil system, so that jets will

not form near the meson. Adding this gluon to the tree-
level diagram of Fig. 1, we get the diagram of Fig. 11(c);
the soft gluon which appears in near-collinear tree-level
production corresponds to a soft gluon internal to the
meson in the more complete picture.

Two complications, however, prevent us from lightly
discarding the collinear region from consideration. First,
many interactions can take place between the near-
collinear quark and meson, rather than the single gluon
exchange which appears in the perturbative computation.
Second, the momentum transfer between the outgoing
quark and antiquark also need not be carried by a single
gluon, since we do not demand exclusivity and are un-
able to completely specify the final-state momenta. As a
result, such contributions lack a perturbatively calcula-
ble hard scattering and must be treated by Monte Carlo
techniques.

To estimate the contribution to the measured semiex-
clusive cross section, we need to model the fragmentation
function g. Since we are interested in the region of large
z, we will assume

sumption. The structure functions G(x) near x = 1 are
expected to have the form

G(z;Q ) = C(l —2:) + D

where C is a dimensionless constant parametrizing the
leading-twist behavior, and D represents higher-twist
terms [41]. The approximate forms

G +g„(x) = G -ig(x) = 1.54(1 —x)

Z
do = Ci, —dz(l+ cos 8)dcosg,

z
(6.4)

where Ch ——1.50 for vr and K+, and Ch ——1.11 for K
and K . This is not a small effect, but rather comprises
a substantial fraction of all events.

Since the backgrounds of this sort are so substantial
and involve no short-distance physics in the jet formation
process, we expect that they will be well simulated by
Monte Carlo models. Thus, we defer further analysis of
this region to Sec. VII, where we will examine hadroniza-
tion effects. We mill see that a judicious combination of
experimental cuts can reduce the contamination from the
end points to acceptable levels.

B. Multiple scatterings and y,gjf

To accurately predict the rate of semiexclusive produc-
tion, we must obtain a good estimate of the value y„;& at
which the factorization of Eq. (1.3) is no longer reliable.

Let us consider the physical picture of direct PQCD
production, shown in Fig. 14. Semiexclusive production
depends on the hadron's undergoing no 6nal-state inter-
actions, and this can only proceed if the quark interacts
with the antiquark before scattering from the hadron.

Thus we parametrize the rates Ap, and A~ for the quark
to interact with the hadron and antiquark, respectively.
Neglecting for the moment the running of the coupling
strength, we obtain

G g„(z) = G +g„(x) = 0.54(1 —x)2

fit the experimental observations [42] within statistical
errors. We are not interested in the higher-twist correc-
tions, which share the Q

4 behavior of the semiexclusive
signal and will make a negligible contribution to the sig-
nal after experimental cuts.

Thus, summing over quark and antiquark Bavors and
assuming SU(3) symmetry, we obtain the estimate

g(z) = G(z), (6.3)

this is a somewhat pessimistic but not inaccurate as-

FIG. 14. The physical picture of direct meson production
at leading order. Final-state interactions are more likely be-
tween particles which emerge in close proximity.
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Al, zzpz z f p't
zq2 y«&t

l~ q
(6.5)

the factor of pz/qz comes from comparison of the 1/rz
behavior of the interactions between nonsinglet particles
to their 1/r4 "tidal" interactions with singlet particles
[43]. As Q increases, the degree of collinearity of the
meson constituents increases, and y„;q must decrease.
Including the rn~~ing of the /CD coupling would de-
crease this estimate somewhat, but since the energy of
the qh system grows as a power of Q, the behavior given
in Eq. (6.5) will still hold.

The wave function of Fig. 13 takes into account all such
multiple scatterings; G~yz(z) should be interpreted as the
amplitude for the hard probe &om the recoil antiquark
to find the quark in a qh state. Thus, the prediction of
Eq. (6.2) is unafFected by multiple hard scatterings, as
long as the assumption of Eq. (6.3) holds.

For y & y„;&, the squared invariant mass of the qh
system is at least zy„;qq zyq )) p, so that once
multiple scattering occurs the probability of finding the
original qh system again in a qh state may be neglected.
Thus, we account for the possibility of multiple scattering
for y & y„;t by including a suppression factor

—1
A; 5 y„;,)

A +A,— ~ y'y (6 6)

C. Other soft corrections

D. Sensitivity to y

Our focus will be on finding experimental cuts which
isolate the "good" region y ) y„;& &om the dangerous
region in which multiple scattering becomes important.
We must, however, be able to estimate the contribution

Other intrinsically soft processes will affect the behav-
ior of the amplitude near the collinear pole. For example,
terms proportional to the intrinsic transverse momenta
will be less thoroughly suppressed, so that formation in
Fock states with L, g 0 will proceed with probability
p/y tq; however, this is still a small number, scaling
as Q ~~z. Since we will see that our experimental cuts
effectively exclude the small-y region, we do not consider
this possibility further.

The finite size of hadrons, as enforced by Sudakov sup-
pression [7,26,28,44], where the tendency of large color
dipoles to emit final-state radiation suppresses the ef-
fective wave function at large impact parameter b, has
been dealt with in Sec. IV. The conclusions reached there
are certainly invalid at the collinear pole itself, however,
since the process by which the hadron is formed is itself
soft. Indeed, the result of Eq. (6.2) implicitly accounts
for all soft corrections by absorbing them into the mea-
sured fragmentation function. However, Sudakov effects
should be important for y; ) y„;&,. we will return to this
point in the next section.

&om the small-y end points, so that we may be sure that
our predictions are trustworthy.

We have now dealt with the region y & y„;t unam-
biguously, and have found that standard Monte Carlo
tech~iques should represent it accurately. One diKculty
remains: the sensitivity of our results to y„;q. Clearly, in
a correct treatment which accounts properly for the con-
tributions &om all values of y, the precise value of y„;t
should be irrelevant. However, this is far &om the case
here since the differential cross section from Eq. (2.6)
diverges like y, , we may see a power-law dependence on

y,„, q/y. in our results.
What physical mechanisms are important in this re-

gion? Since the transfer is of order y;Q2 pq, the pro-
cess is still perturbative, but approaching the soft region.
This is precisely the domain in which Sudakov effects be-
come important [44].

With the effective coupling program implemented in
Sec. IV, we find that the inclusion (albeit in a somewhat
naive manner) of Sudakov efFects naturally regulates the
small-x and small-y divergences of amplitudes like that
of Eq. (2.6). While we cannot trust the inherently per-
turbative mechanisms employed in this derivation in the
region y & y„;t,, they should be reasonably accurate in
the region y & y„;t where the momentu~ transfer y;Q2
is large enough to allow a perturbation expansion. Thus,
in this region the effective-coupling method is insensitive
to parametric variations [45]. One feature of this effec-
tive coupling is its q lnq behavior at small q . Since the
gluon virtuality vanishes in the limit y; —+ 0 with which
we are concerned, use of the effective coupling replaces
the 1/y divergences of Eqs. (2.6)—(2.13) with integrable
lny divergences. However, the numerical behavior at the
end points is still unfriendly, and depends on the value
of AggD. We will depend on stringent experimental cuts
to eliminate the dependence on end-point behavior, and
thus on our treatment of soft physics, of the observed
cross sections after integration over y.

VII. HADRONIZATION EFFECTS

In Refs. [2,3], it was assumed that the width of the (an-
gular or rapidity) gap by which the directly produced me-
son was isolated would be unchanged by the hadroniza-
tion process; i.e., that the products of hadronization will
fill the region of phase space spanned by the free par-
tons, but not spill out of it. We shall see that this naive
assumption is highly misleading.

Since we are concerned with the intrinsicaOy soft pro-
cess of hadronization, we may use a phenomenological
model of such processes, the LUND Monte Carlo genera-
tor [46].

Most of our attention will be devoted to two cases: q
10 GeV, where B factories may operate in the near fu-
ture, and Q = mz. In the former case we will enforce
the condition of isolation by requiring either an angular
gap (in the center-of-momentum frame) or a rapidity gap
[23] between the candidate directly produced meson and
the other products of hadronization; in the latter, we will
use isolation in rapidity space exclusively.
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A. Isolation cuts
P(x; z, yi)dyi

U 0

QP(x; z, yi ——0)
(7.1)

Pz

I

t 0 (s) —- —Angular --- Rapidity ""
pZ

!

0.50,
I

The 6rst order of business is to demand a high degree
of isolation of the candidate directly produced meson in
order to reject backgrounds &om inclusive processes. In
each case, we used the LUND Monte Carlo generator to
model the development of the recoil system. As explained
previously, since the hard physics does not ixdiuence the
hadronization process, we expect such a simulation to be
very accurate. We studied the hadronization of uu sys-
tems with the initial-state momenta given by the kine-
matics of Sec. II.

Most of the systems we are interested in are asym-
metric systems such as u8; however, since the dynamics
of hadronization are Savor independent, we confidently
expect that the errors thus introduced are negligible for
light (uds) systems. We will return to the issue of heavy
quarks later.

Given the kinematic variables z and yq, we can de-
fine cumulative acceptance functions: P s(e; z, yi) is
the fraction of events at given z and yi in which the
directly produced meson is isolated by a cone of open-
ing half-angle 8 in the event center-of-momentum kame;
P„,(p,„t,z, yi) is the &action of events in which no parti-
cle except the directly produced meson has p, )p,„t [47];
and P, ~(Y;z, yi) is the fraction of events in which no
particle has rapidity greater than Y along the R axis
[23,48].

The regions of momentum space excluded by these cuts
are shown in Fig. 15. Intuitively, one can see the advan-
tage of the rapidity gap: it is not greatly affected by ei-
ther soft physics in the same hemisphere or hard physics
at large angles.

We obtained numerical values for P(z; z, yi) with the
Monte Carlo generator, typically in runs of 20 000 events.
We then optimized the cut with the 6gure of merit

This method of optimization is chosen to reBect the fact
that the dominant source of background noise is the di-
rect fragmentation contribution of Eq (6. .2). Truly inclu-
sive events are comparatively easy to exclude, especially
given the severity of the cuts which maximize U.

Maximizing this Ggure of merit for each choice of z, we
find that the resulting e(z) are well described by

0.370 —0.438z
cotO =

1 —z
(7.2)

Note that the angular isolation is still extreme even
at moderate z; for example, we demand that a meson
with z = 0.5 be isolated by 73 . The stringent cuts are
necessary mainly to reduce the background &om direct
fragmentation, Eq. (6.2).

We also optimized the cuts p,„t and y at each value
of z; the results of this optimization agreed well with the
fits

p.„, = (0.70 —0.7gz) GeV

and

0.463 —0.541z
max—

1 —z
(7.4)

It is interesting to note that the point at which the angu-
lar cutoff is equivalent to the requirement of isolation in
a hemisphere (z = 0.845) is nearly identical to the corre-
sponding point for the rapidity cut (z = 0.856). We will

make us of this fact shortly.
The acceptance curves with Y „defined by Eq. (7.4)

and those with 8 given by Eq. (7.2) are shown in Fig. 16.
For moderate z, the rapidity cut is clearly superior to the
angular isolation requirement; for large z, however, the
rapidity cut is too restrictive, suppressing the signal as
well as the small-y noise.

A little thought shows the reason for this. When
z & 0.85, the situation is as depicted in Fig. 15(a); the ra-

Pz

0.5
(o)

0
0.8

0.4
—1.0—

l

0
Px

0.8

FIG. 15. The regions of momentum space excluded by the
isolation cuts we consider. The numerical values shown are
those used for Q = 10.58 GeV and (a) z = 0.7, (b) z = 0.95.
In each case, the isolation cut is given by the requirement that
the phase space above the line be empty except for the can-
didate directly produced meson itself. It must be emphasized
that the stringency of the cuts is not a matter of taste, but is
chosen to maximize the figure of merit U of Eq. (7.1).

0.4

p I

0.5 0.? 1.0

FIG. 16. The acceptance P(z, yi) with (s) the rapidity cut
defined in Eq. (7.4) snd (b) the angular cut of Eq. (7.2).
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To eliminate low-multiplicity inclusive backgrounds, we
also required that the recoil system contain at least six
particles. The resulting acceptance P(z, yq) is shown in
Figs. 18 and 19. The rejection of small y is now nearly
perfect; as a result, we will be able to isolate a clean
semiexclusive signal &om the region of moderate y.

10-'

~ 10 2

CL

1.0

0.6— -15

15

C. Acceptances at the Z peak

Y = 1.6 —1.4z,
0.004T;„=0.90—
1 —z

(7.9)

In precisely the same manner as above, we can define,
optimize, and compute acceptances P(z, yq) at Q = mz.
In this case, we replace Eqs. (7.7) and (7.8) with the
requirements

0.4
Y1

0.8

0.2—

0
0.5

j
I

0.7 0.9
Z

FIG. 21. The acceptance P(z, yz) for semiexclusive produc-
tion of charmed mesons at the T4, resonance. Here yq

——y, is
the back momentum of the c quark in the hadronizing system.

T,, = 0.57 —0.23z.

Figure 20 shows the results of these constraints. The
acceptances are substantially larger in the central region,
and much better suppressed at the end points in y;, than
the acceptances at Q = my. This serves to offset the in-
creased predominance of the leading-twist collinear con-
tribution, as described in Sec. VIA.

D. Quark mass efFects

To examine the interesting cases of semiexclusive D
production at the T resonance and B production at the
Z pole, we must allow for nonzero quark masses, and the
concomitant energetic weak decays, in the computation
of the acceptance P(z, yq). This does not involve any
conceptual changes to the approach we have described;
in particular, Monte Carlo simulation of the hadronizing
system should still provide physically reliable results.

Figure 21 shows the results of this analysis. Note that
the restriction on the mass of the hadronizing system

leads to a much more severe constraint on z; otherwise,
the results are qualitatively similar to those in Sec. VII B.

Similarly, we must account for the B mass and weak
decay channels in analyzing the acceptance for B pro-
duction at the Z peak. Figure 22 shows the results of
this analysis; again, the e8ects of the quark mass are not
very large.

At moderate z, the 6 quark is heavy compared to the
scale of hadronization but light enough that its weak de-
cay products are collimated in the direction of its mo-
tion. This is an ideal situation, as is reBected in the
wide and high plateaus of P(z, yq) shown in Fig. 22. At
large z, when the mass of the hadronizing system is not
much larger than mg, this situation deteriorates rapidly.
However, at z 0.95 the recoil system still has a mass
of more than 20 GeV, so that the end-point region can
be excluded with great accuracy. Thus the rates which
we will predict for semiexclusive B production are ex-
tremely insensitive to physics at any scale softer than
min(z, zy, (z) )m2.
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FIG. 20. The acceptance P(z, yq) at Q = mz, with the
cuts of Eq (7.9): (a) is. a semilog plot, (h) a contour plot.
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FIG. 22. The acceptance P(z, yq) for semiexclusive produc-
tion of B mesons at the Z peak. Here yq

——yq is the back
momentum of the 6 quark in the hadronizing system.



SEMIEXCLUSIVE PRODUCTION IN ELECTRON-POSITRON. . .

VIII. RESULTS

We can now combine the results of the previous sec-
tions to obtain predictions for observable cross sections

at realistic energies. We first perform the convolution of
hard-scattering amplitudes and distribution amplitudes;
using Eqs. (2.6) and (2.7) and the definitions of Eq. (2.4),
we obtain, after some rearrangement [3],

16' Ao.'s . ( y2&= C'» ' 2sce '
( q Bgy2/yl —q, Bgyl/y2 [ + l/zs e '

(
q, B —q„[B+zA(z)] —

)zQ2

—~zc
~
q„B—q, [B+zA(z)]"—'

~

y2)

for K or longitudinally polarized K', and

~+l 16lr2aa, 2 q, A(z) q„A(z)=C'y c z
Q . y2 yl

for transversely polarized K' mesons. Again, the same result holds for any light fiavored meson.
The argument of o,, depends on the diagram; in general, we can use the substitutions

q.a. ~ q, a.(~zy2Q')

and

q„a, m q„a,(xzylQ ).2

(8 1)

(8.2)

We will not exhibit the explicit dependence of a, on the momentum transfer in the equations which follow. However,
the final results we present are obtained by a numerical integration procedure which takes into account the running
of o., for each model wave function and for each value of z and y;.

Squaring the amplitude and summing over polarizations, we obtain the differential cross section

Iz y, ')
do = ' dzdyl dco—s8dp —(1+cos 8) q, B —q„[B+zA(z)] — + q„B—q, [B+zA(z)]-

97r2 Q4 z y. y2

- 2
+2sin 8 q, B/yl/y2 —q„B/y2/yl —4l/zcos8sin8cosg

B + y, zA(z) B + y2zA(z)
X q, ~yl y2 —q gy2 yl q

gg gz

-2
+zsin 8cos2$~ q, B/yl/y2 —q„B/y2/yl —z q„q,A(z)A(z) + z q, B/yl/y2 —q„B/y2/yl

(8.3)

for helicity-0, and

4 a2a2
2 q, A(z) q„A(z)'

do = — 'zz dz ' — " dyl(1+cos 8)dcos8
9lr Q y2 yl

(8 4)

for helicity-1 mesons; in the latter case, we have inte-
grated out the trivial P dependence.

To make use of the portion of the cross section propor-
tional to (1+cos 8), we must be able to discern it above
the direct fragmentation contribution to Eq. (6.4). We
must caution the reader that the results of [3] are entirely
misleading at this juncture. The neglect of hadronization
in the naive treatment of [3] led to the conclusion that,
as z -+ 1, the end points y ~ 0, 1 would become ex-
perimentally accessible. As a result, the 1/y behavior of

the cross section of Eq. (8.3) was claimed to lead to a
substantial signal at large z.

In practice, the reverse holds. As z grows, the small-y
growth of the cross section is curtailed not by an ex-
perimental cut but through the multiple-scattering pro-
cess described in Sec. V. Meanwhile, the energy in the
hadronizing system decreases, so that our ability to iso-
late the region where y is not small is lost. To prevent un-
acceptable contamination of the signal, we must impose
the harsh cut of Eq. (7.8); as a result, the cross section
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15—
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TABLE II. The sexniexclusive production cross sections for
each of the model meson distribution amplitudes under con-
sideration.

o~~ 0

0
0 0.2 0.4 0.6

FIG. 23. The differential cross section do /dzdyi at
v s = 10 GeV for several values of z, for {a) the ZZC model
of the K and {b) the asymptotic model of the K {or m ).
As z increases, the cross section comes to be dominated by
end-point contributions, for which perturbative predictions
are untrustworthy.

Meson
K

PI.
PT
Kl

Distribution
amplitude

ZZC
Toy

asymptotic
ZZC

asymptotic
ZZC
ZZC
ZZC
ZZC

Cross section cr,„{fb)
Charged Neutral

1.46 0.40
0.55 0.23
0.62 0.10
1.56 0.88
0.36 0.15
0.87 0.20
0.34 0.09
0.89 0.19
0.42 0.09

Ratio
3.6
2.4
5.9
1.8
2.4
4.3
3.9
4.8
4.8

for large z is controlled by the z factor in Eq. (2.1), and
almost no signal can be measured in the region z & 0.9.

Numerically, it happens that the signal is actually
cleaner at small z. This is because the signal of Eq. (8.3)
grows more slowly as y ~ 0 than the background; thus
the ability to reject events with small y is paramount.
Since the hadronizing system is more energetic at smaller
z, the event shape cuts we use are more effective, and
we obtain the best results by integrating over the region
0.5 & z & z „.We should choose the upper bound z
on z to maximize the ratio S/~N, where S is the signal of
Eq. (8.3) and N the noise from Eq. (6.2) [50]. Examina-
tion of the numerical results (using the symmetric wave
function, so that our cuts will not depend on a remodel

wave function) shows that the ratio S/~N is maximized
if we use the upper bound z „=0.8.

To estimate the reliability of our perturbative meth-
ods, it is useful to examine the difFerential cross section
do/dzdyq, as in Fig. 23. For moderate values of z, the
hadronizing system is suKciently energetic to allow excel-
lent rejection of the endpoint region; as z increases, the
cross section do/dz comes to be dominated by small mo-
mentum transfers q2 = zy; Q . This problem is more
severe for neutral mesons with symmetric wave functions,
as shown in Fig. 23(b), where the amplitude in the central
region is suppressed by cancellations between couplings
to the two separate quarks. (Naturally, the Dirac form
factors of these mesons vanish altogether. )

Table II shows the total cross sections expected for
semiexclusive production, based on the model wave func-
tions of Table I. What else can we 1earn kom the cross
section of Eq. (8.3)? We first consider the term propor-
tional to sin~0:

16 o.2o.2 z 2

dz q, B—/yy/y2 q„B—gy2/y] dy]sin edcose.
9~ Q' z

(8.5)

Since this term depends on the distribution amplitude
only through the constant B, it will grow more slowly
than da,„at large z. Also, the y dependence is less pro-
nounced, so that the integral over yq will not gain large
contributions from terms like y~

As a result, this contribution to the total cross section
is numerically small, amounting to no more than 30% of
the total semiexclusive contribution. Since the angular
distribution of background events is not precisely 1 +
cos 8 due to hadronization eKects, a clean separation of
this term seems unfeasible.

The existence of an energetic meson introduces a pre-
ferred axis into the computation, so that there is no rea-
son to expect the backgrounds to have trivial P depen-
dence. Since the sign of cosP cannot be determined with-
out successfully tagging the primary quark Bavors in the
two recoil jets, we are left with only the part of Eq. (8.3)
proportional to cos2$, which is numerically much smaller
than the dominant 1+cos28 term. Thus, isolation of the
+dependent terms in the cross section appears impossi-
ble.

A. Glueball production

From the amplitude of Eq. (2.11), we obtain the un-

polarized differential cross section for semiexclusive pro-
duction of 0+ mesons:

2 2 2

24Q z yyy2
2zB ~ ~ sin 8+z

~

—
2 + —

~ ~
(2 —z)iB&z+ (1 + cos ii)I,zf„' . , (1 11 fsg

2~3 (9y y2 ) 2V 3
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where we have integrated over d4. Here qz is the /ED
coupling of the recoil quark, which should be summed
over aQ quark fIavors. However, we should not make the
substitution 3g q2 ~ R + -(zQ2), since production of
a gg state recoiling against a resonance is suppressed by
final-state interactions (see Sec. IIE). Instead, we con-
sider only the light quarks u, d, and s; our events shape
cuts will strongly suppress the signal &om events like
e+e ~ focc, where the thrust of the recoil system is
unlikely to be large.

The gluons are produced collinearly, and are nominally
on shell (up to corrections of order the meson mass). We
use the fixed coupling a, = 0.4, refIecting our belief that
the small size of the meson will limit the growth of the
running coupling.

To estimate the semiexclusive cross section, we first
use the asymptotic wave function Pss(z) = y5fsszz.
Then Bss = fss~3/2, and the semiexclusive cross sec-
tion scales as fz With . the cuts of Eqs. (7.7) and (7.8),
we obtain an observed integrated cross section of 71fM
fboeV 2.

Figure 24 shows the resulting differential cross section
do/dz. It falls off rapidly with increasing z, refiecting
the fact that glueball production is forbidden at leading
twist in the exclusive limit. The behavior of do /dz is well
approximated by exp( —7z) for scalar or longitudinally
polarized states and by exp( —10.5z) for transversely po-
larized states.

The angular distribution arising from our ansatz for
the two-gluon distribution amplitude is also noteworthy.
The observed distribution, after implementation of our
acceptance cuts, is very closely approximated by

P(z) oc zz(z —z)2

0.5
X
N N

0.1—

0.05
05 0.6 0.7 0.8

2

FIG. 24. The difFerential cross section do/dz for semiex-
clusive production of gg states at the T4 with J = 0 (solid
hne) and &. = 2 (dashed line). We have used the ansatz that
the gluon distribution is proportional to zx, normalized to
fss = 100 MeV. The latter is probably somewhat optimistic.

(x 1 —0 19cos 8
d cos8

over the entire region 0.5 ( z & 0.8. This seems to be a
numerical peculiarity of the asymptotic distribution am-
plitude; using instead the "double-huxnped" distribution
amplitude

predicts an angular distribution which varies Rom 1—
0.20cos 8 at z = 0.5 to 1 —0.08cos 8 at z = 0.8, as well
as increasing the total cross section to 160f fb GeV

Note that fss will not be larger than about 100 MeV,
so these cross sections are commensurate with our pre-
dictions for qq mesons. However, they have the advan-
tage of being peaked at smaller values of z, where the
hadronizing system is more energetic and PQCD predic-
tions less subject to soft corrections. The primary the-
oretical drawback is the a2 dependence of the cross sec-
tion, which introduces substantial uncertainty into the
predicted normalization of the semiexclusive cross sec-
tion.

We can similarly compute the total cross section for
production of 2+ mesons. With the additional assump-
tion that Pss/I,

—
Pss/T, we obtain after all experimental

cuts the result dn, „=103f fb/GeV, again using the
asymptotic form of the distribution.

B. Direct photon production

Using the kinematics of Sec. II, we can easily compute
the amplitude for direct-photon production. The result
1s

M&++) = ' '(c~yg+ se 4'hazy~)z
z

Qi ge

gyzy2 ~zsce*&

when the photon, electron, and antiquark share the same
helicity; the results for other helicities are obtained by
8 ~ c and y1 ~ y2. In this case the color factor C~ ——

The direct photon production cross section is much
less well behaved at the end points, since the mechanisms
described in Sec. VI do not acct its collinear divergences.
Thus our methods do not sufn. ce to accurately estimate
the cross section for direct photon production in these
regions. To gain some feel for the comparative size of
these cross sections, however, we may consider the ratio
of amplitudes away &om the collinear region.

We must consider the possibility that p-K or p-
misidentification could represent a substantial back-

ground to the semiexclusive signal. We find that at
~s = 10 GeV, direct photon cross sections are typically
20—50 times the semiexclusive cross sections in which we
are interested, so that p rejection must be complete to
less than 1% in order to allow clean extraction of the
semiexclusive signal. At these energies, semiexclusive
events do not constitute a significant background to di-
rect photon production; however, at lower energies where
the Q suppression is less drastic, they must be consid-
ered.

C. Z~ decays

The program implemented to search for semiexclusive
events in Z decays is similar to that above. The experi-
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TABLE III. The resulting cross sections at the g peak.
Note that the differences arising from the choice of distri-
bution amplitude are less pronounced due to the smoothing
efFects of the evolution with Q .

Distribution Branching
Meson amplitude Charged
K ZZC 1.53

Toy 0.98
Asymptotic 0.91
ZZC 1.16
Asymptotic 0.56
ZZC 0.70
ZZC 0.44
ZZC 1.00
ZZC 1.26

PI,
PT
Kl.

ratio I',„(x10 )
Neutral

0.76
0.49
0.41
0.32
0.14
0.18
0.11
0.46
0.39

Ratio
2.0
2.0
2.2
3.7
4.1
3.9
4.0
2.2
3.2

mental cut changes in appearance but not in substance,
as described in Sec. VII C.

The simple substitutions q; ~ Q;, e m g, and Q
m&I'& enable us to compute the cross sections at the Z
peak without further ado. In this case, the wide accep-
tance allowed by Eq. (7.9) means that the predictions of
Ref. [3] were overly pessimistic. On the other hand, the
considerations of Sec. II C show that the D and B wave

functions probed at Q = mz will not be very strongly
peaked, so that the hard-scattering amplitudes them-
selves will not see the wave-function enhancement de-
scribed in Ref. [3]. For light mesons, the consequences
of evolution are even more pronounced, and it will be
impossible to extract information about the distribution
amplitude at such high energies.

We again follow the same program of computing the
acceptance, then integrating the cross section over dy~dz
to obtain observable quantities. The acceptance is shown

in Fig. 20 and the resulting cross sections in Table III.

D. Heavy-quark mesons

4(z) = fh~~ (1 —x) (x —xp) with zp ——2(x) —1.
(1 —zp)'

The analysis of semiexclusive reactions is particularly
rewarding in the study of heavy-quark mesons. This is

largely due to the sensitivity of the production cross sec-
tion to the extent to which the distribution amplitude is

peaked at large momentum fraction z, which is closely
related to the moment (z) of the distribution amplitude.
These moments have been the subject of substantial the-
oretical interest [51,52], but precise experimental deter-
minations have so far been unavailable.

We wish to extract a relation between the moment (x)
and the integrated semiexclusive production cross section

Both of these quantities depend on some compli-
cated dIstribution amplitude, which will introduce model
dependence into the relationship. We estimate this de-
pendence by using three simple models for the distribu-
tion amplitudes of heavy-light mesons.

The first is the toy model of Ref. [3]:

Because this distribution is symmetric about (x) and has
no small-x "tail,"it is less concentrated at very large 2;

than we would expect for a realistic wave function, and
will thus lead to somewhat lower estimates of o.,„.

The second model is simply

P(z) = fi,z"xwith n = —3.(n+ 1)(n+ 2)
2 3 1 —x)

This yields a distribution which is very strongly peaked
at z near 1, and which thus provides an estimate of 0,„for
given (z) which may be unrealistically large. However, it
is more realistic than the toy distribution from Ref. [3]
used above.

The Anal model wave function is derived from the wave
function given in Ref. [51], which is chosen to maximize

(x) subject to the constraints of unitarity and of the val-

ues of the decay constant and quark and meson masses.
Integrating the wave function described in Ref. [51] over
all k~, we obtain the distribution amplitude

3~3 t'1+2z )
!4(z) = f&(1-z) *(1+2*.)ln!

2 (1+2zp j
—2xp(z —zp) (8 6)

with

81 1 + 2zp ( 3
z !ln

64 (1 zp) El+ 2zp)
(2 + zp) (13+ 40zp —38xp + 12zp)

32(1 —zp)s
3+ 2xo —0.0138(1—zp) +

5

Under the assumption that the wave function QLi,~ is
purely real and positive, the methods of Ref. [51] can be
used to obtain the upper bound (z) ( 0.72, in contrast
with the estimate (z) = 0.79 of Ref. [15]. The unitarity-
saturating wave function of Eq. (8.6) is more strongly
peaked toward x = 1 than the toy model, and is still
extremely asymmetric; thus it should not substantially
underestimate the rate of semiexclusive production when
compared to realistic models. The three model distribu-
tion amplitudes are shown in Fig. 25 for (z) = 0.72 and
0.84, which are the unitarity bounds of Ref. [51] for the
D and B mesons respectively.

With the acceptance functions described in Sec. VII D,
it is now a simple matter to compute the cross sections
for semiexclusive production at the T4, resonance. The
dependence of the total cross section on (x) is displayed
in Fig. 26. The error bars shown do not represent data,
but serve to indicate the degree of model dependence in
the prediction. The uncertainty in (x) due to model de-

pendence is on the order of 0.03, which is roughly equal
to the uncertainty introduced by a 60% error in the mea-
surement of 0,„. Since both the charged and neutral
channels can be used in this measurement, the model de-

pendence will probably be the dominant source of error.
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————Power-law model --.-" ~ Toy Model [3]
Unitarity-saturating model [51]
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Power law model — —Toy model [3]
Unitarity-saturating model [51]
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0.6 0.7 0.8 0.6 0.7 0.8
(xb)+ 0.24 In(fsi190 MeV)FIG. 25. Three models of the distribution amplitudes of

the B and D mesons, parametrized to yield (z, ) = 0.72 and

(zq) = 0.84. We assume fa = fo = 190 MeV.

If constraints on the limiting behavior of P(z) as z -+ 1
can be obtained independently, they would serve to elim-
inate the source of most of this model dependence.

At the Zo peak, the prospects for probing D meson
structure are exceedingly dim, largely due to the ero-
sion of nonperturbative wave-function information dur-

ing the evolution to the large momentum scales in ques-
tion. However, there is now sufEcient energy to produce
B mesons in perturbative processes, and we can ask the
same questions about their distribution.

The apparent conflict between /CD sum rules [15,53],
which provide the estimate (z) = 0.90, and unitarity con-
straints which suggest (z) ( 0.84, exists in this case as
well. Though both of the above arguments are predi-
cated on small momentum transfer, it is still of interest
to measure the moment (zs) in semiexclusive production
at the Z, though one must bear in mind the remarks of
Sec. IIC.

The expected cross sections for semiexclusive B pro-
duction at the Z are shown in Fig. 27. Again, the model
dependence is substantial, leading to an uncertainty of

FIG. 27. Semiexclusive branching ratios for B mesons pro-
duced in 2 decay. In (a) the upper curve sums contributions
from B,B,B+, and B mesons while the lower curve gives
the branching fraction B, and B, mesons. The parameter
(z) need not be the same in the two cases. In (b), we have
included the contributions from the first excited states B,
summed over polarizations, so that (z) is not precisely de-
fined.

about 0.03 in the extraction of (z). However, the branch-
ing &actions are suKciently large that at least an ap-
proximate measurement may be possible in the current
experiments at the CERN e+e collider LEP [54]. This
measurement will provide crude but essential information
about the structure of the B meson.

Figure 28 shows the dependence on (z) of the ratio
of semiexclusive neutral to charged B production. Al-

though this is a very difBcult measurement &om an ex-
perimental standpoint, its relative model independence
is striking.

In examining Figs. 27 and 28, one must bear in mind
that the moment (z) being measured does not correspond
directly to that computed in Refs. [15,51,53] due to the
eEects of evolution. Also, the total cross sections shown

~ 10
CO

5
Xa
l

X

1.0

08
X

~CO

~5 0.6

———Power-law model —.—Toy model [3]
Unitarity-saturating model [51]
I

l
I I

I
I

(a) (b)

0.6 0.7
(Xo)

0.8

FIG. 26. The semiexclusive D production cross section at
T4 energies as a function of (z), for the three models shown
in Fig. 25. The error bars shown serve to indicate the extent
of model dependence. The upper curves describe charged D
production; the lower, neutral.

04
0.6

I I I

0.7 0.8 0.6
(Xb)

0.7 0.8

FIG. 28. The ratio of neutral to charged B production as
a function of (z). In (a) only the pseudoscalar B states are
considered; in (b) we sum contributions from B and B' pro-
duction.



THOMAS HYER

in Fig. 27 are proportional to f&, which is itself subject
to substantial uncertainty.

Note that the abscissa of Fig. 27 is (z) +0.24 ln( f~/190
MeV), to compensate for the f~ dependence of the cross
section. Since the cross section does not rise precisely
exponentially with (z), this introduces some imprecision;
however, the resulting errors are negligible. Over the
region of phenomenological interest, 150 & f~ & 250
MeV and 0.6 & (z) & 0.8, they introduce an error of less
than 0.005 into the measurement of (z).

The average momentum fraction (z) is very mildly de-
pendent on (z): d(z)/d(z) 0.1. Since it is unrealistic
to expect that enough events can be gathered to evaluate
(z) with any precision, this does not provide us with an
independent determination of (z).

.. .1
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E. Extraction of moments
of the distribution amplitude

To test the validity of the approach of Ref. [13], in
which the moments j(z —z) "hatt(z)Cz of the distribution
amplitude ttt are extracted from /CD sum rules, we wish
to obtain the same quantities directly from experiment.
As we have shown, the experimentally observable quan-
tities are entirely determined by the iategrals A, A, C,
and. C of Eq. (2.4). Thus, to reconstruct the moments
from experiment without recourse to model calculations,
we must be able to fit the integrand (z —z)" which en-
ters into the computation of moments to a sum of the
inte grands

0 0.2 0.4

(b)
I

I I I I t I I I I I I

0.6 0.8 1.0

FIG. 29. Reconstruction of the integrands (x —x)", re-
quired for calculation of moments of the distribution ampli-
tude, from the integrands in the transforms A(z) and A(z).
The Stted curves sum contributions from A(z) and A(z) at
(a) eight points; (b) 20 points. Note that the scale of x is
distorted to show the metric of integration.

z(1 —zz)

1

z(l —zz)

which determine A(z) and A(z).
Figure 29(a) shows the results of such an attempt.

Here we have assumed that A(z) and A(z) may be mea-
sured in eight bias evenly spaced &om z = 0.5 to 1, and
that B and B are known. We used MINUET to minimize
the difference of the moment and fit integrands under
the Z2 metric with weight zz [55]. Figure 29(a) shows
the moment integrands and the best fits to them: for
example, when attempting to reconstruct the zeroth mo-
ment (the decay constant) from the measured values of
A and A, we end up integrating not P(z), but P(z) mul-
tiplied by the function shown as a solid line in Fig. 29(a).
One could say that the line represents the best available
approximation to 1.

For n = 0 or 1, the fit is tolerably good. However, the
6t for n = 2 is unacceptable; this situation persists even
if we increase the number of bins to 20 [Fig. 29(b)]. Thus
we are forced to conclude that only the erst moment can
be measured model independently with any accuracy in
semiexclusive processes.

F. Conclusions

We have analyzed semiexclusive meson production in
some detail, noting the obstacles to unambiguous the-
oretical calculations and to clean experimental results.
The most dificult remainiag obstacle is the poorly under-
stood behavior of the recoil system during hadronization,
which will make it diKcult to accurately predict the rate
of background events for a given choice of experimental
cuts.

Some progress can be made by appealing to the ex-
pectation [22] that the soft backgrounds should scale as
exp( —2b Y), or equivalently as exp(2Y „j. Since the
semiexclusive events we wish to observe are intrinsically
hard, the cross section do,„/dY „should decrease less
rapidly with decreasing Y „ than the soft background
rate; thus it should be possible to fit separate curves to
the background and signal rates. At the values of Y
proposed here, we find that the behavior of the semiex-
clusive signal is well approximated by exp(1.6Y

The intrinsic hardness of any process producing a
strongly isolated meson is a double-edged sword. On the
one hand, it places us in a region in which Monte Carlo
predictions of the expected background are extremely un-
reliable; however, it also tells us that the scattering pro-
ducing the meson is dominated by short-distance physics.
Thus we have good. reason to believe that the mecha-
nism we have considered will account for the bulk of the
observed cross section. We have obtained several wave-
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function-independent predictions, such as the Y de-
pendence of the observed signal, which can be used to
test the consistency of this view.

Figure 30 shows the difFerential semiexclusive produc-
tion cross section for K mesons as a function of z, for our
three models of the kaon distribution amplitude. Besides
the absolute normalization, which indicates the extent
to which the distribution is concentrated near the end-
points, there are two noteworthy features of Fig. 30.

First, the ratio between charged and neutral produc-
tion cross sections is a sensitive test of the asymmetry
P». A symmetric distribution leads to efficient cancella-
tion between the q, - and qp-dependent parts of the am-
plitude for E production, and hence to a very large pre-
dominance of charged kaons. The extremely asymmetric
toy distribution yields a comparatively small ratio. This
ratio is largely immune to efFects from our treatment of
soft physics, and provides a sensitive test of models for

Predictions from each model distribution are in-
cluded in Table II.

Second, contrary to the conclusions of Ref. [3], we find
that the shape of the cross section depends only weakly
on the distribution amplitude chosen. Thus, comparison
with the observed difFerential cross section will serve more
to test the validity of our picture of semiexclusive produc-
tion than to place constraints on models of the hadron. If
we define the expectation value (z)ooss of z for all mesons
with 0.5 ( z ( 0.8, we obtain (z)os'ss ——0.66 —0.67 for all
three distributions under consideration.

Finally, we have noted that the rate of semiexclusive
production provides a sensitive measurement of the first
moment (x) of the distribution amplitudes of heavy-light
mesons. This will provide welcome experimental input
to a field where comparisons between theory and experi-
ment are often elusive.

We conclude that at integrated luminosities between
10 and 100 fb ~, the analysis of semiexclusive production
has limited but significant applicability to the study of

I

ZZC [15j---- Asympt
— — —Toy [3

mesonic structure. If still larger event samples can be
obtained, several new avenues of exploration will open
within the same framework. Most of these have been
touched upon here. For example, discrimination between
the asymptotic and ZZC models of P» through a precise
measurement of (z)ooss would require a clean samPle of
a few hundred semiexclusive events, as would a model-
independent reconstruction of the first moment of the
distribution amplitude or a precise measurement of the
angular dependence of do /du.
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APPENDIX A: COMPUTATION
OF HARD-SCATTERING AMPLITUDES

Section II defines our frame of reference; for definite-
ness, we will let lq and l2 refer to the momenta of the
outgoing quark and antiquark of the recoil system, re-
spectively.

The method of Ref. [11] takes advantage of the fact
that in the chiral representation of the Dirac algebra,
each of the matrices p" has block-diagonal entries of
zero. Thus we can work with efFective two-component
matrices p+" ——(1,cr)" and p" = (1, —cr)", and corre-
sponding two-element spinors satisfying P~u+(p) = 0
and u+(p)u'+(p) =A(p)

Spinor amplitudes are constructed like ordinary
four-component amplitudes, with the simplifying rules:—0 and p~u~(p):—0 serving to enforce helic-
ity conservation along fermion lines. Since u+(p) is the
correct spinor for a fermion with positive helicity, or an
antifermion with negative helicity, this method serves ad-
mirably for the construction of individual helicity ampli-
tudes.

The algebra is greatly simplified by the Fierz relation

g„„(p~),'(p~)," = 6,'b,",

01
0.5 0.6

r
/r

/
I

0.7

so that all internal Lorentz indices may be efFortlessly
contracted. Subscripts may be Hipped by use of the re-
lation

u'+(p)~+. -.u+(g) = u' + (g) ".Cu+(p)

FIG. &O. The difFerential cross section der, „/dz for semiex-
clusive K production, for three models of P». In each case,
the upper line shows the rate for K, the lower for K . The
unevenness in the lines arises from statistical Buctuations in
our Monte Carlo calculations of the acceptance P(z, yi) near
the end points. It is more pronounced for neutral than for
charged production; see Fig. 23.

where u~ = iver u+. It is convenient, though not neces-
sary, to define spinors to satisfy the additional relation-
ship tc~ = +zt~.

As in Sec. II, we define E = Eb, , s = sin(8/2),
and c = cos(8/2). With these definitions, the explicit
momenta are
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k = E(1,2sccosg, 2sc sing, c —s ) for the incoming electron or photon,
k' = E(1,—2sc cosP, —2sc sing, s —c ) for the incoming positron or photon,
p = E(z, 0, 0, z) for the directly produced meson,

tl = E(yi + zy2, 2/z yz y2, 0, zy2 —yz) for the outgoing quark,

~2 = E(y2 + zygo, —2y zyzy2, 0, zygo
—y2) for the outgoing antiquark.

The corresponding matrices and spinors are

k+ =2E
I

2E r

l
F+=2EIr

2E r

u-(k) = ~2E
I

u (k') = v2E
I

r
P+ ——2E

I

r=2EI

(
A+ =2EI

A
r

r
g2+ =2EI

r
g2 =2E

Il

u +(p) = V'2E

00) roi
0 I u-(p) = ~2E0 ') «')
y zyiy2 yi ) l ~JJi )

yi —gzyiy2 tl, (l ) = I E r ~y—v~yiy2 zy2 ) ' " '
l gzy2 )

y yy ~l ()) gEIr gy—y zyiy2 y2 ) l —~JJi )
y y y y

I
(t ) HEI ~y

Qzy1y2 zyl ) l Qzyl

One useful fact is that amplitudes for negative-helicity
electrons, which contain a factor

ut (k')p~+u (k) = ut~(k)p" u+(k'), and

Ik+) &p+ I
+ lp-) &k-

I

(k- lp+)

can be changed into their positive-helicity counterparts
by the substitutions 8e '~ -+ c and c m se'~. Alterna-
tively, we can multiply the amplitudes with positive e
helicity by a phase factor e '~, so that the positive-
helicity amplitudes are obtained from their negative-
helicity counterparts by the substitution c ++ s.

The hard-scattering amplitudes for the e e annihila-
tion processes considered in this paper are given in the
text for positive-helicity electrons; we do not present the
results for negative-helicity electrons, which can be de-
rived trivially by applying the above observation.

lp+) &k+ I
+ Ik-& O'-

I

&p-Ik+&

v ~y2
sc x u (/i) u~ (k) u (l2) u+ (k)

vu ~y2
u (l2)u+ (k')

X
u (lg)u+(k')

The amplitudes for these processes are generally quite
complicated. However, for p~pg m E s u+, the ampli-
tude factors to

APPENDIX B- PHOTON-PHOTON COLLISIONS

For the calculation of two-photon amplitudes, we must
also 6nd a representation of the polarization vectors.
This is most easily accomplished in axial gauge with ref-
erence vector parallel to p", so that

the amplitude for pgpg is obtained by the replacements
X M X, TH M TH, Qy M g2.

We are unable to obtain such a simpli6cation for the
case in which the photons have opposite helicity. The
hard-scattering amplitude for semiexclusive K produc-
tion &om a ptpg initial state is
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q, se ' z~yl[(1 —zz:)c~y2+ se ' gzyl)]TH-
ZQ2 xx(1 —zx)

+z(cgzy2+ se ' ~yl)(c —yl)
x(cgzy2 + se*4 ~y, )

zgyly2(c/zy2 + se ~yl)
z(c~y2 —se —

'&hazy, )

+ Zq-q. (yz —8')'
[zz(y2 —8 ) —]c~y2 —se*'4'gzyl

~
](cgzy2 + se'&~yz) (c~y2 + se'4'gzyl)

gags Z Q1 JJ2

zz:(yl —8 ) —]c~yq —se'4'gzy2~ (cgzyl —se'&~y2)(cetyl —se'&gzy2)

zgyly2(cgzy2 + se * ~yl) zgyly2(c~y2 + se ' gzyl)
z(c~yq —se'&QZy2) x(c/zyl —se*4'~y2)

(c~y2+ se * lizyl)(cgzy2+ se ' ~yl) q„cz~y2[cgzy2+ (1 —ZX)se * ~yl]
zx ZQ1 zz(1 —ZX)

+z(cgzy2+ se ' ~yl)(8 —y2)

x(c~y, + se'&gzy, )
zgyly2(c~y2 + se gzyl)

x(cy zyl —se i ~gg)

We also consider the semiexclusive production of vec-
tor mesons. The amplitude for pygmy

—+ Kts u is

q.~yl
u (Ll)u+ (k) u (12)u+ (k)

q. ~wi q-~i~
u (ll)u+(k') u (l2)u+(k')

1 zgyly2
TH =

SC ZX

The corresponding amplitude for pgp~ vanishes.
Again, we are unable to find a simple form for the case

of opposite photon helicities. The semiexclusive hard-
scattering amplitude for p~p~ ~ Kts u is extremely
awkward, and to present it here would serve no purpose.

In the sarae-helicity case, however, note that the x de-
pendence of Tii is subsumed into an overall constant [56];
the interplay between the internal momentum &action
x and the kinematic observables y; and z, which is the
major motivation for studying semiexclusive processes, is
absence. As a result, the semiexclusive cross section is no
more valuable than the form factor in studying the meson
wave function; we can predict only an absolute normal-
ization, which experience teaches us is the least reliable
and least valuable type of prediction. Since the normal-
ization also sufFers &om additional uncertainties arising
&om the case l;~ ~k, where PQCD is less important than
vector-meson dominance, we must conclude that two-

photon semiexclusive processes promise no insight into
the structure of hadrons.
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