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Higher order 1/rn corrections at zero recoil
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The general structure of the 1/m corrections at zero recoil is studied. The relevant matrix elements
are forward matrix elements of local higher dimensional operators and their time ordered products
with higher order terms &om the Lagrangian. These matrix elements may be classi6ed in a simple
way and the analysis at the nonrecoil point for the form factor of heavy quark currents simplifies
drastically. The second-order recoil corrections to the form factor hzz of the axial vector current,
relevant for the ~V, q~ determination from B ~ D' decays, are estimated to be —5'%%uo ( h~y —1 & 0.

PACS number(s): 13.20.He, 12.39.Hg

I. INTRODUCTION

Heavy quark efFective theory is by now the standard
description for systems with one heavy quark [1—9]. The
additional symmetries appearing in the limit of in6nite
heavy quark mass yield model independent relations be-
tween form factors appearing in the description of heavy
hadron exclusive weak decays. Aside f'rom that, heavy
quark symmetries also yield statements about the nor-
malization of some form factors at zero recoil, i.e., the
point where the velocities of the initial and final hadrons
are equal. This fact has a very large phenomenological
impact; e.g. , it allows one to perform a model indepen-
dent determination of [V,s[ by extrapolating to the end
point of the lepton spectrum in the decay B ~ O'Ev.

QCD radiative corrections as well as recoil corrections
have been studied already to next-to-leading order [10].
While QCD radiative corrections may be studied system-
atically, the recoil corrections in general need new, non-
perturbative input, which may be supplied, for instance,
by model estimates. For the case of the determination of
[V,s~ from 8 ~ D'Ev, the leading recoil corrections van-
ish at the nonrecoil point due to Lukes theorem [11]and
the next-to-leading ones have been considered by Falk
and Neubert [12], who parametrized the form factors to
order 1/mzq, also ofF the point of equal velocities.

However, as will be discussed below, the analysis of
the 1/mq corrections at zero recoil simplifies enormously,
since then only forward matrix elements (matrix elements
of operators between mesons moving with the same ve-

locity) appear. In addition, the algebra of Dirac matri-
ces simpli6es and one may obtain a simple expression
for the next-to-leading recoil corrections at the point of
equal velocity. This expression involves forward matrix
elements of operators of higher dimension and also time
ordered products with higher order recoil terms &om the
Lagrangian. The expressions we obtain have a simple in-
terpretation, but their numerical evaluation needs input
beyond heavy quark efFective theory.

Recently, the methods of the heavy mass expansion
have been applied also to inclusive decays by combining
the method of operator product expansion with heavy
quark effective theory [13—17]. This approach yields the

heavy mass expansion for decay rates and also for de-
cay distributions; the leading term in this expansion is
the &ee quark decay rate and the corrections may be
studied systematically. Of course, the higher order cor-
rections need nonperturbative input, which is again for-
ward matrix elements of higher dimensional operators
and time ordered products of such operators with higher
order terms &om the Lagrangian. Thus the same matrix
elements appear as in the model independent determina-
tion of Vg.

Finally, the relation of the heavy hadron mass to the
mass of the heavy quark is also given in terms of a 1/mq
expansion. Higher orders are again given by forward ma-
trix elements of higher dimensional operators needed as
nonperturbative input to relate the heavy quark mass
with the heavy hadron mass.

In the present paper, a systematic study is performed
for these forward matrix elements appearing in all higher
order calculations at zero recoil, including the relevant
time ordered products with higher order terms of the
Lagrangian. It turns out that all the forward matrix
elements may be classified very simply and. the relevant
matrix elements for calculations up to order 1/m& are
given explicitly.

The classi6cation performed here allows one to simplify
the analysis of the recoil corrections to heavy quark weak
decay form factors at v = v' enormously, compared to
the case where v g v'. As an application, the analysis
for weak decay form factors is performed at the nonrecoil
point up to second order in the heavy mass expansion for
the case of b ~ c transitions and our results are compared
with the ones obtained by Falk and Neubert [12].

In the next section, a general discussion of the
parametrization of the generic forward matrix element
is given. It is split into three subsections. First, we con-
sider local higher dimensional operators in some detail
and give nu~erica1 estimates for the matrix elements of
operators up to dimension seven. In the second subsec-
tion, we shall consider time ordered products with higher
order terms &om the Lagrangian. Finally, in the third
subsection we consider the relation between the mass of
the heavy meson and the mass of the heavy quark as a
toy example, where the forward matrix elements play a
role.
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The general discussion of the forward matrix elements
is then applied in Sec. III to the 1/m2& corrections of
the normalization of the weak decay form factors in the
decays B m D/v and B ~ D'Zv. The relevant form
factors h+ for B ~ D/v and h~q for B ~ D'Zv decays
are discussed at the nonrecoil point up to second order in
the heavy mass expansion. %e include also a semiquan-
titative analysis and estimate the size of the corrections
relevant for the V,s determination to order 1/m&.

II. HIGHER DIMENSIONAL OPERATORS AND
THEIR FORWARD MATRIX ELEMENTS

Higher order terms in the heavy mass expansion of
weak transition matrix elements originate in general &om
two sources. The first source is the heavy mass expansion
of the operators for a heavy quark Q appearing in the
weak transition Hamiltonian. At the matching scale mq,
this amounts to the replacement [9]

g 2m' ) 2m')

the heavy mass anymore. The time ordered products ac-
count for correct mass dependence of the full /CD state,
and the matrix elements then have to be evaluated using
the "static," mass independent state.

A. Local operators of higher dimension

The generic operator of dimension n + 3 appearing in
the contexts mentioned above is of the form

O~",I„, „=Q„(iD„,)(iD„,) (iD„„)I'Q„,(6)

where I' is an arbitrary Dirac matrix.
The Dirac matrix appearing in (6) may be expanded

into the 16 basis Dirac matrices 1, p5, p„,p5p„,and 0„„.
However, the matrix I is sandwiched between projectors

1
P+ ———(1 + 'll),

which are contained in the heavy quark fields Q . This
projection amounts to the replacements

1+=-( +8): + += + ()2

: P+Wp&5P+ = s~ &5 :P+»P+ = o, (8)
where v is the velocity of the heavy hadron and Q„is the
operator of a static heavy quark moving with velocity v.
Furthermore, it is convenient to define

D„=(g„„—v„v„)D",vD = 0. (2)

These terms in general lead to contributions, which are
matrix elements of local operators.

Second, the Lagrangian of full /CD is also expanded
in 1/mq and the higher orders in 1/mq are treated as
perturbations. This leads to time ordered products in-
volving these higher order terms of the Lagrangian and
the weak transition operator. The corrections of higher
orders in the 1/mq expansion to the Lagrangian are given
at tree level by [9]

&r =):&r' =). l

2 l Q. (—iP )(i»)' '
(2mq)

x(iP )Q .

In every order j it is convenient to split 81 into a gener-
alized kinetic energy operator KU~ and chromomagnetic
moment operator gUl defined as

KUl =Q„(iD )(—ieD)~ '(iD )Q„, (4)

g&'& = —iQ„(iD )(—ivD)' '(i')o PQ .

The interpretation of these time ordered product terms
is obvious. The heavy hadron states of full /CD still
depend on the heavy quark mass, and this dependence
is also treated in a 1/mg expansion. The leading term
is the state taken in the infinite mass limit, the "static
state, " which is the convenient one for a heavy quark
efFective theory calculation, since it does not depend on

( 4) 0'~~ r P+ ( l)o'p~P+: zv e~~~ps )
P (9)

where we have defined the spin matrices s„,which are
the generalizations of the Pauli matrices for the frame
moving with velocity v. They satisfy the relations

8~8~ = (—g~~ + v~'U)))P+ + 'N~p~p5 8 ) v ' 8 = 0p

(10)

Consequently, the Dirac matrix I' sandwiched between
the projectors Inay be expanded into the four matrices 1
and s„

1 1P I'P = PTr(P I') ———s„Tr{a"I'), (ll)

and it is suKcient to consider only the two operators

Q~,I„,„=Q„(iD„,)(iD„,) . . (iD„„)Q„(12)
0„'„„.q ——Q„(iD„g)(iD„2) . (iD„„)spQ„. (13)

In the following, we shall consider the matrix ele-
ments between the ground state pseudoscalar and vector
mesons. There are two difFerent cases to be studied. In
the first case the initial and the final state are both ei-
ther 0 or 1; in the second case the initial state is 0
and the final state is 1 or vice versa. All these difFerent
cases are related by heavy quark spin symmetry, which
implies the relations

Q-IH(~)) = »N-IH*(~ e))
(14)

H'(v, e)) = »CQ„IH(v))
where lH(v)) and lH'(v, e)) denotes the 0 and 1
ground state meson, respectively.

Further restrictions on the structure of the matrix ele-
ments may be obtained from the equations of motion for
the heavy quark and the gluons
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ivDQ- = o [(&D") [(iD~) (iD-)]].~ = 4~~.). g~~, g- —
N ~-og~~~g~

where the sum runs over all quark Bavors and a, b, d are color indices.
We shall start the discussion with the case where both initial and final states are either 0 or 1 . Spin symmetry

relates the matrix elements of 0 mesons with the ones of the 1 case in the following way

(H(v)IO,", ,. ,„IH(v))= &H'(v ~)IO„",,„„.. . ,„.IH*(v ~)) ~

&H(v) IO„'„„„,„„,i IH(v)) = ——&H" (v ~)IO„'„„„,„„,~IH*(v, e) &,

and we shall consider in the following only the 0 case.
The equations of motions for the heavy quark imply that the matrix elements of both 0!il and O!'l have to vanish,

if the 6rst or the last index, i.e., pq or p„,is contracted with the velocity v. Furthermore, the spin vector 8 is also
orthogonal to the velocity and thus the matrix elements have to satisfy

(H(v)IOp, p, p„lH(v))= "(H(v)IOp p . . . y, I ( )) =

v"'(H(v)IO~', „,„

IH(v)) = v""(H(v)IO„'„„.IH(v)) = 0,
v" (H(v)IO„",„,„~IH(v))= o.

Note that contractions with any other index may be related to a gluon field strength [(iD&), (iD„)]= igG„„,e.g. ,

(ivD)(iD, .)Q-IH(v)) = ig v &.-,„Q.IH(v)), (i9)
and are thus in general nonzero.

Combining the information &om the spin structure and the restrictions &om the equation of motion of the heavy
quark, one obtains for the forward matrix element of 0( ) the general expression

&H(v)IQ„(iD~)(iD„,) .(iD„,)(iDp)Q„IH(v)) = 2M~[gap —v~vp]A„,...~ (20)

The tensor A is constructed &om g„,„,and v„,. It is a simple combinatorical exercise to show that the number N of
independent scalar parameters is

!!/—
N(n) = 1+ (n —2)! )

A:=1

(21)

where n ) 2 and [n] = n for n even and [n] = n —1 for n odd. The number of independent parameters grows rapidly,
the first few are N(4) = 2, N(5 = 4, N(6) = 13, N(7) = 41, and N(8) = 196.

The matrix elements of 0(' are parity odd quantities. The general form of these matrix elements, which is
compatible with the restrictions (18), is given by

(H(v)IO~vi" v ~p;glH(v)) = 2M~dHis„pzv" B„,.. .„,+ 2Made[g p
—v vp]C„

+2MHdH[g q —v vq]C, &+ 2MHdH[gpq —vpvq]C„,.. .„..
(2) (3) (22)

where d~ ——3 for a pseudoscalar meson and d~ ———1
for a vector meson. The tensors C(") are parity odd and
vanish, if the last index is contracted with v.

Up to dimension seven the number of parameters is
still manageable, and some of them are more or less well
known numerically. The only nonvanishing matrix ele-
ment between heavy meson states of the dimension three
operators is

(H(v) IQ„Q„IH(v))= 2M~

and its value is given by the choice of the normalization.
Here MH is the mass of the heavy meson in the static
limit.

All matrix elements of the dimension four operators
vanish due to the equations of motion; all matrix ele-
ments of the dimension 6ve operators are given in terms
of two parameters Aq and A2

(H(v)IQ„(iD )(lDp)Q„IH(v))'

1= 2M~[g p
—v vp] —Ai, (24)3

&H(v) IQ„(iD ) (iDp) spQ„IH(v))

2MIrdrr2sgp~ppv A2 ) (25)
6

where the prefactors are chosen to comply with the de6ni-
tion in [12]. The parameter A2 corresponds to the leading
term in 1/mg for the mass splitting between the ground
state 1 and 0 mesons [18], while the kinetic energy
parameter Aq is not related in an easy way to a measur-
able quantity. From /CD sum rule analyses, one obtains
values of Ai ———0.54 + 0.12 GeV [19], but these cal-
culations have been criticized recently and a much lower



50 HIGHER ORDER 1/m CORRECTIONS AT ZERO RECOIL 431

1= 2MH [g~p —v~vp]v„—pq, (27)P3

(H(v)IQ„(iD )(iD„)(iDp)spQ„IH(v))

1= 2M~dry s„ppv"v„—p2. (28)"6
In order to estimate pq, we may employ the equations of
motion for the gluon fields and relate this parameter to
a forward matrix element of a four-fermion operator:

—4MH p& ——4s'n ) H(v) (Q„Q s) (qs]q )
e

1—
H (Q...Q. ,)(qvi)qv) H(v)), (29)

where a and b are color indices. Using the Fierz theorem
we rearrange the quark fields in order to apply vacuum
insertion, after which one is left with matrix elements of

value of Aq has been suggested using an improved sum
rule technique [20]. On the other hand, bounds have been
derived in a quantum mechanical framework indicating
that Aq ( —0.18 GeV2 [21). In the numerical studies pre-
sented below, we shall vary A~ in some range and hence
we shall use the values

—0.3 GeV ( Aq ( —0.1 GeV, A2 ——0.12 GeV .

(26)

The parameter A2 is scale dependent and we define A2 ——

A2(ms).
The matrix elements of the dimension six operators are

also given in terms of only two parameters pq and p2

(H(v) I&-(iD ) (iDp)(iDp) &.IH(v))

heavy light operators between the heavy meson and vac-
uum. These matrix elements are all related to the heavy
meson decay constant fH due to heavy quark spin sym-
metry. The estimate for the parameter pq reads under
these assumptions

1 N2 —1
p, = pro(,— ' fIrM~

2

A similar estimate has been performed in [21].
However, (30) has the usual problem of a matrix el-

ement after factorization. The original matrix element
defining pq is expected to have a different behavior un-
der renormalization group transformations as the result
after factorization. In other words, one has to define at
which scale factorization is performed. We shall factor-
ize the matrix elements at the scale mg and thus use
the following set of parameters: o., = o., (mg) = 0.2 and
MH ——5.28 GeV. Varying the heavy meson decay con-
stant between 150 and 200 MeV, we obtain

(p~) ~ = (300 —450) MeV. (31)

This number is of the same size as A2
——350 MeV.X/2

Finally, the forward matrix elements of the dimension
seven operators 0( ) may be written in terms of two pa-
rameters g and v.:

(H(v) I&."„',„,p IH(v))

1= 2M~ [g~p —v~v —
]p(g 4„2&2—v„,v„~) (32)

3

while the general form of the dimension seven operator
0(') is more complicated:

(H(v) IG„„,pal H(v)) = 2M~d~is~pp—„v"(g„2„,Bg —v„,v„,B2) + 2M~d~C [g~p —v~vp]sp„2„2p

+2M~d~C [giga vqgvp]ED~2 ~2p + 2MJrd~C [gyp vpvp]E)2)42~242
(2) (3) (33)

One may apply again the equations of motion for the gluon Geld to relate this to a matrix element involving the
light quark current. In this way one obtains a relation of the form

2Mg(4q+v)(g g —v vg) = —4vn, ) H(v) [(iD Q„)Q„v](qvqgq )
— [(iD Q„)Q„](qvqqv) H(v)) .

(34)

(H(v) I(iD~&~)p~psql0) = 3Af~MH [g~p —v~vp] 2

(35)
A =M~ —mg,

one obtains

N, —1—
4(q+ ~ = 67ra, '

Af AM~¹ (36)

With the same set of parameters and under the same

This may again be estimated by using the Fierz theorem
and vacuum insertion. After factorization, using

]

assumptions as above, one obtains the estimate

(4rj+w) ~ = (700—950) MeV, (37)

where A has been varied between 400 and 600 MeV.
From these estimates it seems that the heavy mass ex-

pansion works quite well, at least at the nonrecoil point.
All the parameters up to dimension seven behave like the
appropriate power of some small scale A 200—500 MeV,
which means that the expansion in powers of A jmg in-
deed has coef6cients of order unity.

The second case to be studied are matrix elements with
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a 0 meson in the initial state and a 1 in the final
state, or vice versa. These matrix elements do not in-
troduce any new parameters, since they are related to
the ones considered above by heavy quark spin symme-
try. However, one should be a little more careful in this
case, because one has to rotate the spin of only one of the
heavy quarks. The forward matrix elements, which are
considered here, involve only one velocity sector of heavy

quark effective theory, and spin symmetry is a symmetry
holding separately in each velocity sector. In order to
rotate only the initial or the final state heavy quark spin,
one has to choose in a first step two different velocities
for initial and Gnal states, perform the spin rotation of
one of the states using (16) in the corresponding velocity
sector, and afterwards take the limit v' ~ e. In this way
one obtains the relations

(H(v) IQ„(iD„,) (iD„„)Q„IH(v))= (H(v—) IQ„(xD(,) . (iD„„)(se)Q„IH'(v,@)),
(H(v)IQ. (iD~ )" (»~.)Q-IH'(v e)) = —(H(v)IQ-(iD~. )" (&D~.)(s&)Q-IH(v))

(»)
(39)

relating the matrix elements of 0( ) between two 0 or
two 1 states to the ones of 0(') between 0 and a 1
state, and vice versa.

M(v)

(]+ 1)7s pseudoscalar meson,
—(g + l)$ vector meson, polarization e,

B. The time ordered products arith the Lagrangian

The second type of matrix element appearing in an
analysis of higher order 1/mg corrections at zero recoil
are time ordered products of the local operators discussed
above and the terms appearing in the heavy mass expan-
sion of the Lagrangian.

We shall consider 6rst the case of two different Qavors
q„and Q„.The simplest terms are the two-point matrix
elements

(
—~) J ~'v(&v(v)l& ~. (~Dv, ) (~Dv. )().):~'(v)

gi'i = iv„e"~"Q„(iD )(ivD)'(iDp)sgQ„

and we write for the second equation of (42)

(—v) f d'v(S, (v)l& q. &Q. ()~'(v) lHg(v))

(44)

where the normalization is chosen according to (23).
The matrix o. p in the expression for the chromomag-

netic moment operator appears only between projection
operators P+, and it is convenient to switch to a repre-
sentation using the Pauli matrices (9). In this represen-
tation, one has

x i'(v)),
(
—)f d'*(H, ( )i~ v.(&„)"('~ .)().()q'(*)

(40)

aT (&„&,M-(v)rs"M(v)) .

x i'(v)), (41)

where the operators without argument have to be taken
at z = 0. iCg and gq are the kinetic and chromomagnetic
terms for the quark Q as defined above.

The spin structure of the simplest two-point matrix
elements may be analyzed in the trace formalism

(—') jd'*(&.(")l~ a~(). )(:"(*) l&Q("))

The representation in terms of the Pauli matrices is very
useful, as soon as more than one insertion of a chromo-
magnetic moment operator appears, since the spin struc-
ture of products of chromomagnetic operators correspond
to products of the spin matrices 8 which may be reduced
using the relation (10). For example, the product of two
chromomagnetic moment operator insertion may be writ-
ten as

(
—*)*fd'v~'V(&v(v)l& S().()~"(v)&g'(~) 1&~( ))v

= -XT (M(v)rM(v)),

(42)

(
—v) f d'v (Hv(v)1& a)'(). (lg '(v) IaV(v))

= —Tr (7 „M(v)s s"M(v) )
= —Tr (7 "( g„+v v„)M(v—)M(v))

—Tr (7 "imp „„v~M(v)s"M(v))

where 7 parametrizes the light degrees of freedom

(45)

BTr ((—i)o pM(v—)I'P+(—i)o PM(v)),
2

where I' is a general Dirac matrix, which is a linear combi-
nation of 1 and s„,and M(v) are the usual representation
matrices for the heavy ground state mesons

and one obtains

(—*)*/~'v~'V(H, (v)I& a& &"'(v)()q'(V) (H. a("))

=2M (r~'~+d r(')).
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In this way, one may easily identify the spin symmetry
conserving and spin symmetry violating contributions of
such products.

The equations of motion also imply restrictions on the
matrix elements of time ordered products [16, 22]. In
principle, one obtains the same relations as for the local
terms, for example

(~.(v)l~ ~.(~»)Q-&q'(*) III~(v)) = o.

However, there may be an ambiguity depending whether
the derivative acts on the T symbol or not. If one also
takes the derivative of the step functions coming &om
the T symbol, then one obtains a local contribution of
the form

g p 1 s2

I

I'&c&'&+gU& +
I I

I'&c&'&+gU&
&2m~)

and then consider the case q = Q. In this case one has
insertions in both lines, the one corresponding to q and
to Q. When the masses are equal, both insertions are
parametrized by the same form factor. However, the spin
structure is different; in particular, the insertion of the
chromomagnetic moment operator yields a Pauli matrix
s to the right of I' for Q, while s occurs to the left of I'
for q. Thus one obtains for the examples studied above

(-*)f d'*(H0(v)lT q.pq. }C"(*) IH0( ))

= —2A Tr {M(v)I'M(v) ), (47)

(H.(v)IT ~.(iD~)Q-&c" (~) l&~(v))

- b'( ),(II,( )le.(D )( D)'(D )Q.I&q( ))

which may in general be reabsorbed into a redefinition
of the T product. However, in the applications discussed
below only the perpendicular components of the deriva-
tives defined in (2) enter the expressions as

(
—') f d'*(Kg(")IT q.pq. g"(*) IK0("))

= —a T {~~ M(v){r, s")M(v)), (48)

where {,) denotes the anticommutator of the two Dirac
matrices.

C. Simple application: The heavy meson mass

(e,(v)lr +('0')Q„g~'(*) laq(v)) = 0,

and hence there will be no contribution &om such terms.
Finally, the Savor diagonal case may be discussed by

inserting first the correction terms for the Lagrangian of
the quark q

The mass of a heavy hadron may be expanded in in-
verse powers of the heavy quark mass. The lowest order
terms of this expansion have been considered and one
may extend this analysis to higher orders using the above
discussion of the forward matrix elements.

The relation between the heavy meson mass m~ and
the mass of the heavy quark is given by

1
mra = Mrr — K(v} T r( C)e 0pl r—ai d vgr(v)

~ H(v))2M~ j (49)

where M~ ——mg + A is the mass of the heavy hadron in the limit mg ~ oo.
The 1/mq expansion of the hadron mass is obtained by inserting expression (3) into the time ordered product. Up

to order 1/mq2 one finds

mIr ™q+ ~ — ). I I
(~(v) I&"'(o)l~(v)) + (~(v) I&"(o) I~(v))2M' . - (2m@]

2

"-(~( )I~ I'~&'&(o)+ ~"(o)'I I'~'&(-)+ ~&'&(*)'I I~( ))+ o(1/-;)2M' q 2m' ) ) ). (50)

The matrix elements appearing here are exactly of the type considered above. To order 1/mq there are the two
parameters Aq and A2, while to order 1/m2& one has not only local operators, but also time ordered products to
consider. The two local matrix elements are given in terms of pq and p2, while the time ordered products are
parametrized according to

(—a) f d v(H(v)~T lCl'l(0)lCl'l(v) }H(v)) = —2TaTr(M(v)M(v))

(—i)f d v(H'(v))T lCl l(0)gl l(v) )H'(v)} = 2TaTr (2 7aM(v)s M(—v)}

(—a) f d'v(H(v)(T g"(0)g"(v) (H(v)) = —Tr(T PM(v)(s, srr)M(v)&
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where

(~) (2) pT~p = Ts (vnvp gc p) + Ts &p~pAv 7''Ys
3 2

Using this parametrization one obtains

m~ ——M~ — (Ai + d~A2) —
I I [pi + 2T, + 2Ts + d~(p2 + 2T2)] + 0(l/m~),(~) 3

2m@ (2m' ) (»)

where the spins symmetry breaking contribution of the
double insertion of the chromomagnetic moment operator
does not contribute, since we are dealing with the Bavor
diagonal case.

The parameter pq has been estimated above; this term
contributes only about 0.5 MeV to the mass of the B
meson. The parameter p2 is more diflicult to estimate,
but a reasonable guess is certainly

I p2 I I pi I, motivated
by the fact that

The time ordered products are much harder to esti-
mate. They require in general a model describing the
dynamics of the light degrees of &eedom. We shall not
consider this here, but it seems reasonable t;hat the time
ordered products are of similar magnitude as the local
terms.

III. HICHER ORDER CORRECTIONS TO THE
V,g DETERMINATION

As the main application, we consider the higher order
corrections to the semileptonic decay of a B meson into
a D or D' meson. In this case we have to deal with two
heavy fiavors b and c, and the corresponding static oper-
ators are denoted b and c„,respectively. These higher
order terms have been considered already in [12] also oK
the nonrecoil point; however at the point v = v' the
analysis simpli6es drastically compared to the one ofF the
nonrecoil point.

The form factors to be considered are the ones of the
vector and the axial vector current, de6ned by

(B(p) I6+ clD(p )) = Qm+mD h+('vv )2v„
+ 4 ~ ~ (56)

(B(p)I+„psclD'(p', e)} = i/m~mg). hei(vv')(1+ vv')e„
+ 0 ~ ~ (57)

where the ellipses denote terms which vanish as v —+ v'

due to their kinematic prefactors. Here b and c are the
fields of full /CD and IB(p)} and ID(p')) are the full

/CD states Bo.th form factors h+ and h~i are normal-
ized at the nonrecoil point v = v' in the heavy quark
limit such that h+ ——h~i ——l. In addition to these, we

also consider the matrix element

(B (p e)lbp„clD'(p', e')) = i/mg. mrs. hi(vv')( —ee')v„
+ 0 4 ~ (5&)

which we shall need to derive normalization conditions.
Using the 1/mq expansion (1) for both operators 6

and c, the contributions to the matrix element at the
nonrecoil point may be classi6ed into three species

(H, (p)l~l. lH. (p')}I„„=L, + T+ M+O(1/ .'),
where I' = p„,p„g5and Hg and H, are B, B* or D, D*,
respectively.

The contribution L are all local terms, i.e., the ones
which do not contain any time ordered product. They
originate from the expansion of the operators (1) and
read

L=(»( )ll-1".IH ( )}+I I(H( )I&-l'(0 ) -IH. ( )) —
I l(H ( )l~. (9 ) 1'-IH. ( )}(2m, ) (2m', )

1 1
I (»( )I&-f'( D)('0 ) -ID( )) —

I I
(H ( )l~-(0 )( D) 1'-IH. ( ))(2m, ) (2mb)

I
(»(v) l~- (iP ) 1'(iP')c-IH-(v)) + O(1/m')

(4m, m. ) («)

where now IHi, (v)} and IH, (v)) are the states in the infinite mass limit.
From the discussion of the forward matrix elements, it follows that only the last term does not vanish. The terms

of first order in 1/mg are forward matrix elements of a dimension four operator and hence zero; the terms of order

1/m& and 1/m knish after a partial integration, which for the forward matrix elements does not yield a surface

term. Only the mixed term of order 1/(mi, m, ) yields a contribution, which may be related to Ai and Aq.

The second class of terms are the time ordered products of the current to leading order with the terms of order

1/m and 1/m of the Lagrangian. One obtains
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(-')
I I

d'*(H. ( )IT b.&.&."(*) IH. ( ))
)I,2mc j

+(—) I
I

d' (H~( )IT &"'( )b-1'- IH. ( )}(2m')
2

+(-)
I I

d' (H ( )IT b-1'-~."(*) IH.(.)}(2m, )
2

+(-')
I I

d'*(H s( )IT ~"( )5.1' ~ IH. ( )}(2m s)

d z d y (Hs(v) IT b„rc„e(z)r, (y) IH, (v))
—i'( 1 ')'

2 2mc)

d zd y(Hs(v)IT E.
'

(z)C
' (y)b„I'c„IH, (v)}

2 (2m')

+ (—i) I I

d zd y (Hs(v)IT Z&~ l(z)b„Fc„d~l(y) IH, (v)}, (61)
(4mbm j

where here and in the following we suppress the argument of the current 6 I c which is z = 0.
Finally, there are the mixed contributions M containing a first-order term of the expansion of the operators (1)

and a 6rst-order term of the Lagrangian

M= (—i)

—(—i)

+ (-')

—(—i)

2

d'*(Hs( )IT b f'(P ) &."'(*) IH. ( )}(2mc j
2

d' (H, ( )IT l:,"(*)b„(ly")r.
„ IH. ( ))(2m')

d' (»( ) IT &"'(*)b.l'( 4' ) ~ IH. ( ))(4mcms )
d' (»( )IT b. (P ) f'-&."(*) IH. ( )).(4m, mc)

(62)

As discussed in Sec. IIB, these mixed terms all vanish due to the equations of motion.
In order to proceed further with the time ordered products, one has to split the Lagrangians l'.

&&,
into its kinetic

and magnetic terms. In this way one may analyze the spin structure of terms involving products of chromomagnetic
moment operators by employing the trace formalism, and by using the fact that all products of Dirac matrices may
be reduced using the algebra of the Pauli matrices, Eq. (10). The trace formalism gives for the terms of order 1/m

(—') f d (H ( )iT b IIII'I( ) iH, ( )') = —y Tr(M( )I'M( )j,
(-*)fd*(H,(.))T b„r.gi'I(*) (H.(.)) =. „,T („&,M-(.)F."M(.)),

(—) J d (H (v)iT b„F„K'
( ) iH, ( )) = —y, Tr(M( )I'M( )),

(—') f d *(H ( )(T b„I„gi'I(.) (H.(.)) ='-II,T (~,~,M(.)."FM(.)) .

Here only two parameters gz and y3 appear, since the matrix element has to be symmetric under the exchange of 6
and c and the corresponding exchange of initial and 6nal state. The spin structure of the second-order terms of the
Lagrangian is the same and one may write in a similar fashion

(—i) f d'v(Hv(v))T

(—i)f dvv (Hv(v)(T

(—r) f d v(Hv(v)iT

(
—') f d'*(Hv(v)IT

b„F„iC&l(*) IH, ( )) = —:-Tr (M( )I'M( )),
b„Fc„g~l( ) IH, ( )) = —:"Tr(p p M(v)F "M(v)},

b.r.„~~"(*) IH.(.)) = -=-,T (M(.)rM(.)),
b„rc.g,'"(z) IH.(v)} = =,T (~„-~,-M(v)."rM(v))

(64)
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Finally, the double insertions of the first-order terms are parametrized by

X2
d ed y (Hg(v)IT b„i'c„K~'~(x)iC~'i(y) IH, (v)) = —ATr (M(v)I'M(v)),

(
—')

/
d *d y(H ( )~T I I „KI,„'i(*)IIII(y) ~H. ( )) = R—T (q,y, M( )I'M'( ))

' 2
d'*d'y (H (v)l»-I' -&."'( )&.'"(y) IH. ( )) = -T (C M(v)1' - pM(v) l

(65)

where we have defined

= —C) Tr (M(v)I'M(v) ) —Cs Tr (pppsM(v)I's"M(v) j

1
p,

CryP — Cl( giyP + vryvP) + —CStbbryPPV 7 75.3 2
(66)

A similar expression is obtained for the double insertion of the first-order Lagrangian of the b quark, involving the
same parameters A, B, Cq, and Cs due to the exchange symmetry b m c.

Finally, the mixed double insertions need another set of parameters

(—i) f d zd y(Hs(v)~T Kii, I(z)b„I'c„KII(y) (H, (v)) = DTr (M—(v)I'M(v))

(—i) f d cd y ( (Hv)s~T Ki i( )b Tzgi „cI(y) (H(v)) = ETi(psy—sM(v)Is"M(v))'

(
—i)'f dds'z( y(Hv)s~ gTi I(z)b Tc KI'I( „)(Hy.(v)) = —RTr(ysysbzrM(v)ssTM(v)),

(
—i) f d zd"y( (vH)~sT gs (z)b Ic()I I(„y)'(H, (v)) = —Tr[R yM(v)s IsyM(v) j'

where 8 is given in terms of two parameters

1 p A
RyyP = —R) (—giyP + v~vP) + R2eM~Pgv—

3 2

(67)

(68)

A. The 0 ~ 0 and 1 -+ 1 vector current at aero recoil

In order to obtain the vector current, i.e., the two form factors h+ and hq, we set I' = p„.%e shall discuss the
case of two 0 states keeping the parameter d~ ——3 explicit. The form factor hq may then be obtained by setting
d~ ———1 and by replacing the masses ma ~ m~. and mD ~ mD. .

The matrix element of the local term originating &om the expansion of the current is

(B(v)Ib„(ip ) pM(iy )c„ID(v))= 2v„/M~Mg7{A + dJIA ).
The traces become trivial and one obtains for (56)

( 1
(B(p)lb~vclD(p'))I = ' = 2y M~MD vM 1+

I
+

I (xx+ daxs)
&2m. 2m&)

(69)

+
I I

(=-, + A+c, +d„[=-,+B+c,l)(2mc) (2m') )

+I
~

(D + Ri —br + dy(2R + R* —br]) )
.

(4mcmg )
(70)

In order to extract the form factor 6+ from this, one
has to take into account another trivial source of 1/m cor-
rections, which is the normalization of the states. The
right-hand side of (56) is expressed in terms of the phys-

ical meson masses m~ and mL). In (70) only the masses
of the static limit appear which dier &om the physical
masses at the order 1/m2. To this end, one has to take
into account a factor
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mmmm~ g2m, 2m& j 2

when extracting h+ &oui (70).
The parameters appearing in (70) are not all indepen-

dent. The normalization of the Qavor diagonal current is
known in full /CD for both matrix elements 0 ~ 0
and 1 ~ 1

(B(&)~gwb~B(&)) = 2m&v„=(B'(p, e) ~b7„b(B'(p)e)).

(72)

This may be employed to obtain relations between the
parameters. Setting ms = m„(72)implies the relations

yg =ps —0 (73)

2(:-i + A + Ci + Ai) = (D +—Ri —Ai) )

(74)
2(:-s + B + Cs + A2) = —(2E + R2 —Az).

The first of these equations is Lukes theorem, stating
that there are no first-order corrections at the nonrecoil

I

point [11]. Taking the relations between the parameters
of the second order into account, one obtains for the form
factor h+ at the non-recoil point

1 1 ) 1
h+(1) = 1— (D—+ Ri —Ai

(2m 2m') 2

+3[2E+Rz —Aq]) + O(1/m ). (75)

Similarly, by the appropriate replacements one obtains

1 1 ) 1
h, (1) =1—

I

—
~

-(D+R, —A,
(2m, 2m') 2

—[2E + R2 —Aq]) + O(1/m ) . (76)

Looking at the de6nition of the parameters entering
the 1/m2 corrections, it turns out that to order 1/m2 the
only input needed are the two parameters Aq and A2 &om
the local dimension Bve operators and the time ordered

product involving insertions of both 8& and t'.. . which
is given in terms of four parameters. The results for h+
and hq may also be written as

( 1 1 l 1 ~ 2 1
h+(1) = 1 —

~

—
~

— -A, -3A, + (-i)'
(2m 2m/) 2 ( 2/My)MD

x dxdy Bv T 8& xb„cZ~~y Dv ~+01m (77)

( 1 1 l 1 I . 2 1"i(1)= 1 —
l

—
l

— —Ai+Az+ (—i)'
q2m. 2m, y 2

~ 2v M~Mg)

x d4zd4y B' v 6 T Zb" zb„cr.(1) y D' v 6 +01m3 (78)

These relations have a simple intuitive interpretation.
The contributions Rom the local dimension 6ve opera-
tors (Ai and Aq) originate &om the matching of the field
operators of full @CD to the ones of the efFective the-
ory to order 1/m, and 1/ms, respectively. However, the
states also receive corrections and the matrix element
involving the time ordered product corresponds to the
corrections to the states to order 1/ms and 1/m„respec-
tively. The local and the nonlocal contributions are of or-
der 1/(4m, ms), but due to the normalization of the nia-
trix element for the Savor diagonal case, all other terms
of order 1/m&2 and 1/m2 have to be related to these such
that the normalization is preserved in the case m = mg.
This fact leads to the prefactor (1/m, —1/ms)z in &ont
of the correction terms in (77) and (78).

This result agrees with the one found in [12]. In par-
ticular, one may see that at the nonrecoil point the form
factors may be expressed in terms of the parameters Dq,
Dq, D4, Ds, and Ds defined in [12]. However, the repre-
sentation in terms of the Pauli matrices reveals a relation
between the parameters of [12], at least at the nonrecoil
point. In total, there are six independent parameters Aq,

D E) R& y and R2 at v = v' and one may show that
Ri ——3(D4+ Ds) and R2 ——2(Ds + Ds).

The 1/m& corrections to h+ and hi depend on the
spin symmetry conserving contribution X = D+ Rq —Aq

and on the spin symmetry breaking combination Y =
2E+R2 —A2. If one considers in addition the form factor
h~q, then a third combination of the six parameters, Aq,

A2, D, E, Rg, and R2, is needed.
In order to perform a model independent extraction

of V,p &om the decay B -+ D/v, one has to take into
account also the second form factor h of the vector cur-
rent. However, considering only forward matrix elements,
one cannot say anything about this form factor, and one
has to consider difFerent velocities along the lines of [12).

B. The 0 -+ 1 axial vector current at sero recoil

For a model independent extraction of V,g, the process
B -+ D'ev is much more interesting than B ~ DEv.
The relevant form factor is h~i as defined in (56). To
leading order we have at the nonrecoil point due to spin
symmetry
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(B(v) Ib„c„ID(v))= 2/M~MD

and thus h~q is normalized in the same way as h+ and
hq. To subleading order h~~ will differ &om both h+
and hq due to spin symmetry breaking. This is, however,
calculable in terms of the parameters which have been
introduced above.

The local dimension five terms may be expressed in
terms of Aq and A2.

(B( )It-(0 ) ~ ~ ('0 ) -ID'( ))
( 1

(so)

while the contributions &om the T products are evalu-
ated by replacing I' —+ p„p5and using the representation
matrix for the vector meson in the final state. Taking
into account the contributions from the normalization of
the states, one obtains for the form factor h~q at zero
recoil

1 5 1
h~g(1) = 1 —

I I

—(D+ Rg —Ag + 3[2E+R2 —Ag]) —
I I

—(D+ Rg —Ag —[2E+ R2 —A2])
(2m' j 2 (2m. j 2

1 ) ( 1 1
+

I I I
D+2E ——Rg —R2+ —Ag+ A2

I
+0(1/ms).

(4msm, j 3 3
(s1)

1 1 I 1
h+ —1 —

I

—
I

-(X + 3Y),
&2m, 2m j 2

h, , = I —
I

—
I

-(X —I'),| 2m' 2m, ) 2

(1 )'I
I

-(X+») —
I I

-(X —&)
(2m' j 2 (2m~ j 2

I

—-x —Y+z I,)4msm, ( 3

(s2)

(s3)

(84)

where

X = D + R& —A&, Y = 2E + R3 —A2, and

Z = -D+4E,4
3

where X corresponds to the spin symmetry conserving in-
teractions, Y to the spin symmetry breaking ones, while
Z is a mixture of spin symmetry conserving and spin
symmetry breaking terms.

C. Discussion of the results and quantitative
estimates

Finally, we shall discuss the results and try to give a
numerical estimate of the corrections. In general, this

The structure of this result may be understood &om spin
symmetry. In the heavy quark limit, spin symmetry re-
lates all the form factors h+, hq and h~q. If one would
take into account only the corrections of order 1/m&,
then the spin symmetry of the c quark would still be un-
broken and one may rotate the D' meson into a D meson.
Hence the I/m& corrections to h~q have to be the same as
the 1/m&2 corrections to h+. Similarly, and more impor-
tantly, the 1/m, corrections to h~q have to be the same
as the 1/m, corrections to hq since we may now use the
spin symmetry of the b quark to rotate the B meson into
a B' meson. Finally, the mixed insertions break both
spin symmetries and thus cannot be expressed in terms
ofh~ or h+.

In total, the three form factors may be reexpressed in
terms of three parameters X, Y, and Z:

K+ —— dxbc„, K = dxcb
(s6)

Kp —— d x b„b„—c„c„
are generators of the heavy Bavor symmetry satisfying
[K+, K ] = Kp, and hence one derives in the symmetry
hmit (B(v)]K+ID(v)) = v M~M~ and a similar relation
for two vector mesons, implying that h+(1) = hq(1) = l.

In the presence of explicit symmetry breaking, one
splits the Hamiltonian in a symmetry conserving piece
Hp and a symmetry breaking term AHsp, such that
[Kz, Hp] = O. Since now [K~, H] = A[K~, Hsn] g O

the generators K~ become time dependent and one has
at ~o =0

(B(v)IK+ ID(v))
2/M~M~

&
'

' (B(v)IK+ IX(v))
(EB —Ex j 24MaMx

(87)

where X(v) is a hadronic state in which the c quark
moves with velocity v. In obtaining (87) we have ne-

glected matrix elements of the form

(B(v)Ic„c„]B(v))and

(B( ) I .(*)4(*)b-(o)&-(o)IB( ))

which do not contribute at scales, where the c quark is

heavy.
Relation (87) is the standard derivation of the

Ademollo-Gatto theorem [23, 24], and it allows two ob-
servations. The state X is not in the lowest spin symme-

I

needs input beyond heavy quark effective theory, e.g. , a
model. A few things, however, may be said with two
plausible assumptions.

The form factors h+ and hq are form factors which are
in the heavy quark limit related to matrix elements of
conserved currents, which generate heavy aavor symme-
try. The operators
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try doublet and hence the energy difference E~ —E~ is
not of the order A, but of the order 1. Hence the correc-
tions due to symmetry breaking are of second order in the
symmetry breaking interaction, which is the well-known
Ademollo-Gatto theorem [23).

Secondly, and more importantly for the present discus-
sion, it shows that one expects that

(&(u) lit+ ID(u))
2M))MD

since the sum on the right-hand side of (87) is positive.
This means that h+ —1 & 0 and hq —1 & 0.

However, it is known that short distance contributions
may change this conclusion. For instance, the full one-
loop /CD calculation yields for h+(1) [3]

(88)

which yields a positive contribution to the normalization.
This may be traced back to the matrix elements, which
we have neglected when obtaining (87). We shall assume
in the following that the positive short distance contri-
bution (88) is compensated by the long distance one, for
which (87) holds.

From this requirement one obtains two constraints for
the parameters

(D+ RI) —AI + 3(2E+ R2) —3A2 )0,
(D+ RI) —AI —(2E+ R2) + A2 ) 0)

(89)
(90)

which are equivalent to (D+ RI) ) Aq and (D+ RI ——
AL)/3 & (2E+ R2A2) & (D+ Rg —Ag).

In Fig. 1, we plot the spin symmetry conserving con-
tribution of the time ordered products (D + RI ) versus
the spin symmetry breaking part (2E+R2). The allowed
region is the one below the dashed and above the solid
line, where hq —1 & 0 and h+ —1 ( 0.

In order to obtain some numerical estimate, we shall
assume that (D + RI) & —Aq which should be a reason-
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FIG. l. Allowed region for the spin symmetry conserving
(D+ Rz) and spin symmetry breaking terms (2E+ R2) of
the time ordered product. The solid (dashed) line is from the
constraint h+(1) & 1 (hq(1) & 1), while the vertical dotted
line is the assumed upper limit for (D + Rq).

able order of magnitude for the spin symmetry conserving
terms of the time ordered products. Thus the parameters
for the time ordered product terms should lie within the
shaded triangular region in Fig. 1.

We shall estimate the contributions to h~q(1) by ob-
serving that, numerically, the contributions of the order
1/m2 are by far the largest. As argued above, spin sym-
metry enforces that these contributions are the same as
the ones to the form factor hq. Maximizing the form
factor hq in the shaded triangle of Fig. 1, we have for
h~i(1)

&1)'( 4
I

—-A~
I

& h»(1) —1
E 3 (91)

Using Aq —0.3, corresponding to the minimal value
assumed here, one obtains corrections to h~q —1 ranging
between 0 and —

5%%uo . This is consistent with the estimate
performed in [12]based on a simple wave function overlap
model, once updated values for the parameters are used
[25].

A different estimate, based on chiral perturbation the-
ory, has been performed by Randall and Wise [26]. The
result obtained in this way exhibits a nonanalytic depen-
dence of the 1/m2 corrections on the pion mass. Numer-
ically Randall and Wise obtain for the 1/m~ corrections
the results

h+(1) —1 = —1.2'%%uo, hgI (1) —1 = —2.7'%%uP, (92)

which agrees with the present estimate From. (92) we
may also extract values for the spin symmetry conserving
and spin symmetry breaking terms of the time ordered
products

D+ Rq 0.51 GeV, 2E+ B2 0.09 GeV .

(93)

This yields a large value for the spin symmetry conserving
term, which lies slightly outside the shaded region in Fig.
1. This indicates that (D + Rq) & —Aq is only a rough
estimate. Varying the upper bound, such that the time
ordered products satisfy Aq & (D + RI) & —cIAI with
n 1 shows that the dependence on a is not very strong.
For instance, if a = 2, one obtains h~q —1 ) —6'%%uo and
1/m&2 corrections to h~q exceeding 8% in magnitude are
very unlikely.

IV. CONCLUSIONS

In this paper we have considered forward matrix ele-
ments of local operators of higher dimension and their
time ordered products with terms originating from the
heavy mass expansion of the Lagrangian. Due to the
projection P+ ——(g + 1)/2 appearing in heavy quark ef-
fective theory, the Dirac algebra simpli6es and only two
types of matrix elements of local operators appear. In
addition, the spin structure of the time ordered prod-
ucts of these operators with higher order terms &om the
Lagrangian may be analyzed in a simple way.

Matrix elements of this type appear in two important
applications. Performing a heavy mass expansion for in-
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elusive decays along the lines of Bigi et al. [14], these
matrix elements parametrize the nonperturbative input
required beyond the leading order in the I/mg expansion
of total rates as well as for inclusive decay spectra.

The second application are the form factors for weak
transitions at the nonrecoil point. The symmetries of the
heavy quark limit yield the normalization of the weak
transitions between heavy quarks; this fact may be em-
played to perform a model independent determination
of [V,s]. The recoil corrections to the normalization are
given in terms of the forward matrix elements consid-
ered here. At the nonrecoil point the analysis simplifies
drastically, mainly due to the simplification of the Dirac
algebra, as compared to the general analysis.

As an example, we have reconsidered the second or-
der corrections to the semileptonic transition 8 m D~'~.

]

These corrections have been studied already in [12] for
the general case. At the nonrecoil point, the present anal-
ysis agrees with the one performed in [12]. However, it
turns out that at v = v' some of the parameters given in
[12] are in fact not independent.

The second-order corrections of the weak decay form
factors are all parametrized in terms of five matrix ele-
ments:

(H(v)[Q„(tD) Q„[H(v)),
2 Q

(H(v) [q„(tD.) (tD~) (-t~ t') q„[H(v))
2 Q

and the matrix elements of double insertions of the first-
order correction to Lagrangian:

(—i) d zd y(B(v)[T iCs(')(z)b„c„K(')(y)[D(v)),
2 B D

( j) d4z d4y (B(v)]T gs( ) (z)b„c„K(')(y) [D(v)),
2 Mg Mg)

(—i) d zd y( B(v)[ Tgs(')(z)b„c„g(')(y) [D(v)).
2 MgMg)

All other matrix elements of time ordered products are
related to these by the normalization condition for the
vector current in the full theory.

All these matrix elements are nonperturbative. In
principle they may be measured on the lattice and first
results have been reported [27]. However, in the mean-
time one has to rely on some model to estimate their size.
In the present paper, we have used a reasonable guess for
the spin symmetry conserving contributions of the time
ordered products to get some upper limit for the I/mq
corrections to h~i at the nonrecoil point. The main re-
sult of this analysis is that the corrections to h~z(1) are
small, ranging between —

5%%up and 0.

h~y(1) = 0.96 + 0.03,

and thus the corrections at zero recoil are small.

(94)
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Including also the leading and subleading /CD radia-
tive corrections [10] to the normalization of h~q, one con-
cludes that
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