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One-loop vertex function in Yennie gauge +ED
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In this paper we give a convenient expression for the one-loop vertex correction in Yennie gauge
+ED. We use dimensional regularization to regulate ultraviolet and potential intrared divergences.
UVe study the infrared behavior of the vertex correction in a class of simple covariant gauges, and
verify that P = 2/(1 —2c) is the appropriate choice for the gauge parameter of the Yennie gauge
(where n = 4 —2s is the dimensionality of spacetime).

PACS number(s): 12.20.Ds, 11.15.Bt

I. INTRODUCTION

Gauge invariance, and the consequent gauge indepen-
dence of physical quantities, is a central feature of /ED.
The effort required for the calculation of physical eH'ects

in /ED is strongly dependent on the choice of gauge,
especially when bound states are involved. The Yennie
gauge [1—3] has been found useful for the calculation of
radiative corrections to bound-state properties because
of its attractive infrared properties [4—7].

The Yen@le gauge is one of the "simple covariant"
gauges, in which the photon propagator has the general
form [8]

Dp"(k) = —(1/k )(g""+Pk"k"/k )

The Yennie gauge is conventionally speci6ed by a value
for the gauge parameter of P = 2. However, when using
dimensional regularization it is necessary to take

the gauge and in&ared dependence of the electron prop-
agator using functional methods. The value of the gauge
parameter which eliminates all gauge-dependent infrared
divergences is given by Eq. (2) [10].

The Yennie gauge has been, and will undoubtedly con-
tinue to be, of great use for the study of bound state
properties in /ED. In particular, the form of the one-loop
vertex correction will be required for many calculations.
In this paper, we obtain a convenient form for the one-
loop vertex function in dimensionally regularized Yennie
gauge /ED. The calculations that we do are mostly ele-
mentary, but there are subtleties in the handling of the
in&ared sensitive terms. We demonstrate that the in-
&ared sensitive terms in fact vanish in the Yennie gauge
specified by Eq. (2). Along the way, we calculate the
one-loop renormalization constant, and show that it is
independent of gauge in this regularization scheme. Our
results should be of use in calculations of radiative cor-
rections to bound-state properties.

P = 2/(1 —2e) (2)

(where n = 4 —2e is the dimension of spacetime) in or-
der to preserve the favorable in&ared properties of the
Yennie gauge [9]. This was demonstrated by a careful
examination of the in&ared behavior of the electron self-
energy function. An independent approach is to look at

II. DERIVATION OF THE UNSUBTRACTED
VERTEX FUNCTION

The one-loop contribution to the vertex function is pic-
tured in Fig. 1. Explicitly, it is

~h~r~ (df)'„= d f/(2z. ) and e(n) = ebs', with y, an arbitrary mass scale. We introduce the fine structure constant
o. = e2/(4z), and rewrite the vertex correction as

d"f. q„[~(p' + f) + m]q" [p(p+ I) + m]q„- „„ I. f"
(') ' 4z im-"& [(p+ p') —m ][(f+ p) —m ]P

A(l)F(p ~p) + PA(1)G(p ~ p)
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We will calculate the "Feynman" and "gauge" parts of A

separately.
We use Fey~man parameters x and u to combine de-

nominators, associating xu with (E+p')2 —m2, x(1 —u)
with (E + p) —m, and 1 —x with P. Integration lirn-
its for the parametric integrals are always from 0 to 1.
The moment»m integrations will be done using the stan-
dard dimensionally regularized integration formulas de-
rived from

P

T k=p' - p

FIG. 1. The one-loop vertex correction. (The external elec-
tron and photon legs are not considered to be part of the
vertex function. )

d"8 1 1 r((c —n/2)
im")'2 ( P+—2EQ+ M2)f r(() b,& "~2 b, = Q'+M' (6)

where
The Feynman part of the vertex correction has the

form

with

A(i)~(p', p) = (
—)(dmin~)'f dzdux(A", +2(1 —e)~p" )

A" = —~ [~(p'+ Q) + m]~" [~(p+ Q) + m]V

Q = x[up'+ —(1,—u)p] = —xq

4 = z2q2+ zu(m2 —p' ) + z(1 —u)(m —p ) = zH
H = zm2 —xu(1 —u)A: + (1 —x) u(m —p' ) + (1 —u)(m —p )

(7)

(8a)

(Sb)

(Sc)

(8d)

The gauge part of the vertex correction is

d"E pl[7(p'+ E) + m]p" [p(p+ E) +m]pE,
4m im~/2 [(/+ p') —m ][(/+ p) —m ]g

(9)

The lower index on the B"quantities indicates the number of contractions. The zero-contraction term is

B() = qQ[q(p'+ Q) + m]q" [q(p+ Q) + m]qQ

The one-contraction term is

B~ = —A" —2(1 —e)pQp"pQ
+ (4 —2e)p" [p(p+ Q) + m]pQ+ (4 —2e)pQ[p(p'+ Q) + m]p
+ p-[&(p'+ Q) + m]~"~.~Q+ ~Q~ ~"[~(p+ Q) + m]~-

and the two-contraction term is

B2 = 4(2 —e)(3 —e)p"

(1O)

(12)

A parametric form for the imsubtracted one-loop vertex correction is obtained as the sum of Eqs. (7) and (9). It is

A(i)(p', p) =
]
—i(4xp )' dxduz P(1 —x)B() +

i
A ——(1 —x)BiI „r(2+a) f „p „i r(1+e)

&4~& 62+' ( 2 ' ] b, '+'

+ [2(1 —c) +)9(2 —e)(3 —e)(l —x) p
2 „r(.)

III. THE ONE-LOOP RENORMALIZATION
CONSTANT

r"(p', p) = ~" + A" (p', p) (14)

The full vertex function I'"(p', p) is related to the ver-
tex correction A"(p', p) by

where A" (p', p) includes vertex corrections of all orders.
The full vertex function contains a divergent part de-
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scribed by the renormalization constant Zz, which is de-
fined through the zero moment»m transfer limit of I'" for
electrons on the mass shell [11]:

-(p)r" (J,p) (p) = (z,)-'-(p)~" (p)

then one has

gA( I )~L A

Zi ——(1+L)

The &ee Dirac spinors satisfy

u(p)(pp —m) = 0 = (pp —m)u(p)

so one has

We will calculate the one-loop contribution L~q~ to L.
It is convenient to start with an evaluation of the zero

momentum transfer, mass-shell limits of the factors A",
Bo, and Bz. They are easily seen to be

r (p p)~(z)
where the arrow indicates the limit that k = p' —p ~ 0,
p2 —+ m2, and pp ~ m on the right or left. If, in this
limit,

A" m A" = -4(l —z) +2(1 —e)z m p"
B" iB"=z (2 —z) m p"

B," m B," = 4[1 —(3 —c)z(2 —z) m'p"

Then one has

(20a)

(20b)

(20c)

A(, )(p', p) = {—) (4m @~)' dzdux P(1 —z) (BD —80 }
l4'

+ (A —A )
——(1 —z) (Bi —Bi ) + p(1 —z)z (2 —z) m p

r(1+ e) , , „r(2+.)

+ ( —4(1 —z) + 2(1 —e)z —2P(l —z) [1 —(3 —e)z(2 —z)]) m p
2 2 ~r(1+&)

+ 2(1 —e)'+P(2 —e)(3 —e)(1 —z) p"
-

), r(e)l

In this form, it is clear that only the last three terms contribute to L.
The renormalization constant L(i} is obtained &om A(i}(p,p) by taking the limit shown in Eq. (18). In this limit

4 =xH m x2m2, so

L(g)
—— —

2
dxx 1 —x x 2 —x

I'(2+ e)

+ ( —4(1 —z) + 2(1 —e)z —2P(1 —z) [1 —(3 —e)z(2 —z)])
I'(1+ e)

+ 2(1 —e) + P(2 —e)(3 —e)(1 —x)
r(e) )
(z2)'

(22)

The quantity L~q~ is a dimensionless number which di-
verges like 1/e as e -+ 0. It is independent of the gauge
parameter P. The renormalization constant Zi calcu-
lated &om Eq. (19) agrees to one loop with the wave-
function renorinalization constant Z2 [12],as required by
the Ward identity [11].

It is interesting to note that both ultraviolet and
in&ared divergences are regulated by the dimensional
method. Consequently, the 1/e divergence in Eq. (22) has
dHFerent meanings in diferent gauges. In the ultraviolet
finite Landau gauge (P = —1), the whole 1/c divergence
is due to the inf'rared. In the ia&ared safe Yennie gauge,
the 1/e represents an ultraviolet divergence. In the Feyn-
man gauge (P = 0), both ultraviolet and in&ared diver-
gences contribute to the 1/~. A demonstration that Zi is

gauge independent to all orders when using dimensional
regularization is given in Ref. [13].

IV. THE YENNIE GAUGE PARAMETER

The requirement that P = 2/(1 —2e) in the Yennie
gauge was shown in [9] by a study of the electron self-

energy function, and in [10] on more general grounds.
We will arrive at this conclusion again by careful ex-
amination of the inh. ared behavior of the vertex correc-
tion. The subtracted one-loop vertex correction function
A~(i}s(p', p), defined through

~(i}(p ) p) L(1}Y + A(1}s(p & p)

is finite in the limit that the number of dimensions n =
4 —2e approaches 4. By its definition we know that

A(1}s(p ~ p) ~ 0

where the arrow represents the "mass-shell" limit as used
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in Eq. (17). The e ~ 0 limit of A&~&&(p', p) is the renor-

malized one-loop vertex correction function, and it also
must go to zero in the mass-shell limit:

bm~~(i)s p J -+0

This seemingly self-evident requirement leads to the re-
striction on p.

The subtracted one-loop vertex correction function,
&om Eqs. (21) and (22), has the form

Ai), ()',))=(—'I( ", 'I'f«d *(()(1—*) ', (8," —a,")( )"r(2+.)
( m2 '+'

-(m ) 2+6 ( 1 't 2+6-
+P(1-*)*'(2-*)'~"

~ I

—
I

—
I

I'(2+ ). izH) iz2)
+ ([—4(1 —z) + 2(1 —e)2: ]

—2P(1 —x) [1 —(3 —e)z(2 —x)])
m2 ~

1+a 1 y 1+
I'(1+ e)

(1+ 2(~ )'+—))(2 — )(3 — )() —*) ~"
I, ~,I

—
I, —,.) r())

The third term of A~&i &(p', p) can be rewritten using the integral identity

f ( m y
2+' ( 1 y

2+'
dzdux 1 —x x 2 —x — — I' 2+~

2~ 2+~
d d 1 — 2 —,1 — I'2+

-(m2 i+g ( 1 i+
+ p[4(1 —e) —8(2 —e)x + 5(3 —e)x' —(4 —e)* ] r() +.)).EzH Ez2

where

H = Hp+ @Hi

II() ——u(m —p'2) + (1 —u)(mz —p )

IIi ——m —u(1 —u)k —u(m —p' ) —(1 —u)(m —p )

Using Eq. (27) in Eq. (26), one has

4~ 2&+
)))»~()')) =

I,—, ,II. . .I
««*{@()-*)

H m +'

m2& i+'

+ ([-4+2P(I —2e)](1-*)+ [2(1 —e) -P(3- )]~e'+ P(2 - e)~')

(27)

(28a)

(28b)

(28c)

+ 2(1 —E) +))(2 —e)(3 —e)() —x) p ( )
—

(
—

) r(e))

The only part of Eq. (29) that does not satisfy condition (25) is the term proportional to

IiR = 4 —2p(1 —2e) KiR,

where
m2)1+a 1 )1+

KrR = dzduz

(29)

(31)

In the zero moment»rr) transfer mass-shell limit clearly Kl~ ~ 0. However, in the small e limit KiR has a I/e
divergence which does not vanish on shell. The choice P = 2 would render IiR finite but nonzero in the e ~ 0 limit.
The choice p = 2 + 4e + O(e ) would cause IiR to vanish in the e -+ 0 limit. However, the in&ared divergence in KiR
would still be present, just concealed. Only when P = 2/(1 —2e) does the in&ared divergence completely disappear.
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V. EQUIVALENT EXPRESSIONS FOR THE SUBTRACTED VERTEX FUNCTION

The subtracted vertex function in the Ye~nie gauge [with )9 = 2/(1 —2e)] can be expressed in various equivalent
ways. We will quantify some aspects of this freedom by introducing three parameters, which multiply three identities.
Two of these are given by

0 = dxdux —x" — — F 1+ ~

yx" x — F ly~ y~x" — — F ~

for n = 2 and 3, which hold point by point in z, u space. Another is the integral identity [akin to Eq. (27)]

(32)

0= dxdux —1 —x x — — F 1+&

+ (1 —T)x (1 — ') ( ) I'(1+ e) y [(2 —e) —(3 —e)x] ( )
—

(
—

) I'(e))

On multiplying Eq (32.) with n = 2 by a, Eq. (32) with n = 3 by b, and Eq. (33) by c, and adding to Eq. (29), one
obtains the form

where

B"= —
q (B() —B()) y (2 —z) m (m —Hg) p"

&" = (A" —A") ——(1 —z)(B~ —B~) + (a+ bz)z(zm —H)p" + c(1 —z)z (m —Hq)p"
2

Qy = [2(1 —e) —)9(3 —e) —a —c]z + [P(2 —e) —b+ c]z
(x = [2(l —e) + P(2 —e) (3 —e) + ea + (2 —e)c]z + [—P(2 —e) (3 —e) p eb —(3 —~)c]z

(35a)

(36a)
(36b)

The difFerence terms (m~/H)"+' —(1/z)"+' are awkward to use in actual calculations. They can be replaced by
more tractable forms. One approach is to introduce an extra parameter through

F2+,

dz F 1+a

(37a)

(37b)

where

H = zm' y z(H —zm')
= zm —zzu(1 —u)k y (1. —z)z[u(m —p )+ (1 —u)(m —p )] (38)

Alternatively, one could integrate by parts over x using

where

D = m —zu(1 —u)k~

which hold for n = 2, 3 and n = 1, 2, respectively.
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Finally, it is often convenient to expand A" and B" in terms of elementary p matrix factors like p" (pp —m) and
(pp' —m)p" [14]. One has

and

B"= Lg(pp' —m) p"(pp —m) —2mq" (pp' —m) (pp —m) + (pp' —m) Mz + Mz (pp —m) + Ngp"

A" = L~(pp' —m)p" (pp —m) + (pp' —m)M& + Mz (pp —m) + N~p"
—2z 1+ (1 —e)z (1 —2u)ml(:" + 2z 1 —(1 —e)z mio""k„

(41)

(42)

where v = 1 —u, q = up'+ vp, q = Hi, and

L~ = (1 —z)q2

Mz ——(2pq —zq )m7" —2v(m —p )q" —2v(2pq —zq )p"
Mz ——(2p'q —zq )mp" —2u(m —p' )q" —2u(2p'q —zq )p'"
Ng = (2p'q —zq )(2pq —zq ) —(2 —z) m q

+u(m —p' ) (2pq —zq ) + v (m —p ) (2p'q —zq )

(43a)
(43b)

(43c)

(43d)

L~ = —2(1+ e)(1 —z) + p(l —z) —(1 + e) + (3 —e)z

MA —— —2+ 2ex+2 1 —e z + 1 —z —1+ 3 —c x mp" + —4 1 —e zu 1 —zu p'

+ 41 —x +41 —ez uv+ 1 —x 2 —23 —ezv p"

MA —— —2+2~x+21 —~z + 1 —z —1+ 3 —~z mp

+ 41 —z +41 —ez uv+ 1 —z 2 —23 —exu p'"+ —41 —exv 1 —zv p"

Na = (1 —z)(2 —]2(1 —c) + a]za —(b —c)z v+(2 1 —(3 —c)z(1+ a) +2(3 —c)z a )(m —bt' )

+ (1 —z)(2 —(2(1 —c) + a]zv —(b —c)z v+P 1 —(3 —c)z(1+v) + 2(3 —c)z v )(m —bt )

+ 2 1 —z + 2 1 —t +a+ex uv+ b —c x uv+ 1 —x 1 —3 —e z+2 3 —e z uv k

Additional &eedom in the exact expression for the vertex correction is implied by the identity

(44a)

(44b)

(44c)

(44d)

q2 (m2 2+@ (m &
i+&

d (1 — )
'

i
I'(2+ )= d ( — ) —( +1— ) *" 'i

i
I'(1+ ), (45)

which allows contributions to be shifted back and forth between B" and A". Equation (45) can be used to simplify
the expressions for L, M", M'", and N. The alternative expressions are [15]

L~ ——2q

M~ ——2pq mp —2v (m —p )q" —4vpq p"
M& ——2p'q mp" —2u(m —p' )q" —4up'q p'"

N~ = 4(p'q pq —m q ) + 2upq (m —p' ) + 2vp'q (m —p )
L~ ———2(1 + e) (1 —z) —2)9(1 —2z)

MA —— —2+ 2~z + 2 1 —~ x — 1 —2x mp"

+ —41 —exu1 —xu p'"+ 41 —x +41 —ex uv+2 1 —x1+v p"

MA" —— —2+ 2t'z+ 2 1 —~ x — 1 —2x mp"

(46a)

(46b)

(46c)

(46d)

(47a)

(47b)

+ 41 —x +41 —ex uv+2 1 —x 1+u p'"+ —41 —exv 1 —xv p", 47c

NA —— 1 —x 2 —21 —e +axu —b —cxu + 1 —x2+u + 3 —ezu —2 —~xu m —p'

+ 1 —x 2 —21 —e +axv —b —cxv + 1 —x2+v + 3 —exv —2 —exv m —p

+ 2 1 —x + 2 1 —e + a+ c x uv+ b —c x uv+ 1 —2x+ 3 —e x uv —2 —e x uv k . 47d
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Perhaps the simplest form of all is achieved when a = 2(l —e) —P, 6 = 0, and c = —P(2 —e). In that case one has
(tr = 0, (~ = 2(l —e)(1+P)z, and

N~ —— 21 —x 1 —21 —emu + 1 —2x m —p' + 21 —x 1 —21 —exv + 1 —2x m —p

+ 21 —x+21 —ez uv + 1 —2x k (48)

VI. CONCLUSION

Our main goal was to present a form of the one-loop
vertex correction in the Yennie gauge that is useful for
calculations. That form is given in Eq. (34) along with
the accompanying de6n~tions. Vfe give explicit expres-
sions for the terms B",A", (tr, and g~ that occur in the
vertex correction, and discuss the lack of uniqueness in
their de6nitions. Along the way, we have rederived the
gauge invariant one-loop contribution to the renormal-
ization constant Zq, and have provided a new demon-
stration that the gauge parameter must take the value

P = 2/(I —2e) in order to eliminate all infrared diver-
gences.
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