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Generalized gauge-invariant regularization of the Schwinger model
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The Schwinger model is studied with a one-parameter class of gauge-invariant regularizations
that may be thought of as generalizing the regularization schemes normally used for this model.
The spectrum is found to be qualitatively unchanged, except for a limiting value of the regularizing
parameter, where free fermions appear in the spectrum.
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I. INTRODUCTION

The Schwinger model [1], namely, the theory of mass-
less quarks interacting with an Abelian gauge field in
two-dimensional spacetime, has been extensively studied
over the years and has provided theorists much insight
into the phenomena of mass generation and con6nement
[2,3]. The quark disappears from the physical spectrum
in this model, leaving only a &ee massive particle associ-
ated with the gauge field. Exact solutions are available
for various operators and Green functions.

The regularization underlying the conventional study
of the Schwinger model is such that the physical mass of
the particle becomes equal to ~ times the bare gauge
coupling constant. This regularization maintains the
gauge invariance of the theory although a mass is gen-
erated for the gauge 6eld. Other regularizations that
give up gauge invariance have recently been studied [4]
and lead to diferent physical results —the quark gets
liberated in that situation, much as in the closely re-
lated chiral Schwinger model [5]. However, even if gauge
invariance is not abandoned, it is possible to make the
regularization more Bexible, for example in the context
of the Fujikawa regularization scheme. The nature of
the solution is not qualitatively changed; only the rela-
tion between the physical mass and the bare coupling is
generalized. In one sense, the theory is not changed at
all, for there is only one physical quantity in the picture,
the mass of the particle, and it is a dimensional object
in two dimensions, so that its value is not relevant. In
another sense, this regularization gives rise to a new rela-
tion between fermionic bilinears and bosons so that one
efFectively has a dHFerent bosonization scheme. This Bex-
ibility allows an unusual limit to be taken, whereby the
physical mass can be made zero. This opens up a new
scenario in this model. It is to the consideration of the
new regularized version of the Schwinger model and the
special limiting case that the present paper is devoted.

The plan of the paper is as follows. We first explain
how the regularization of the Schwinger model aUows
an extra Qexibility in the eHective action of the model.

This implies a generalized expression for the anomaly in
the axial vector current of the theory. It is shown that
the usual form of the fermion operator of the Schwinger
model allows the current to be constructed in such a
way that this generalized expression is obtained for the
anomaly. The gauge field equation of motion is then
satis6ed only if the physical mass is related to the gauge
coupling constant in a specific way depending on the reg-
ularization. This fixes the efFective action of the theory
in terms of the gauge coupling constant and the regu-
larization. The quark-antiquark potential following &om
this effective action is worked out and the behavior of the
propagator in the special limiting case investigated. The
phenomenon of cluster violation is clari6ed.

II. OPERATOR SOLUTION OF EQUATIONS OF
MOTION

The Schwinger model is described by the Lagrangian
density [1]

18 = Q(if+ e$)g — F""F„„, —

where the indices take the values 0,1 corresponding to
a (1+1)-dimensional spacetime and the notation is stan-
dard. In two dimensions we can always set

(2)

where

B„rl(x) = B„rl(x). (4)

with eoq ——+1 and o, g are scalar fields.
In this section we shall restrict ourselves to the Lorentz

gauge, where from (2) we see that the field q can be taken
as a massless field with Og = 0. We can then introduce
its dual through
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These massless fields have to be regularized because in
two dimensions the two point function of a massless scalar
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It is easy to check that this equation is satisfied by

@( )
. i~mpg[cr(z) +q(a)] . ,i, (0)(

j~ (6)

field diverges [2]. We shall not need the explicit form of
the regularization here.

The Dirac equation in the presence of the gauge field
18

(5)

where f( )(z) is a f'ree fermion field satisfying if'(0) (z) =
0.

We can calculate the gauge invariant current using
the point-splitting regularization. While constructing a
gauge invariant bilinear of fermions which in the limit of
zero separation would give the usual fermion current, we
generalize slightly the conventional construction [1). We
take

s(z) = hm @(z+e)p„:e"~* ~" (&"(") 2 ~ &""(u)
em0 (7)

where a is an arbitrary parameter and v is the vacuum ex
pectation value (VEV). The term in the exponent con-

taining this parameter represents our generalization of
Schwinger's regularizing phase factor [1]. A similar gen-

eralization was made earlier [6] in a nongauge context.
Our generalization, which we use in the Schwinger model,
can be obtained by the replacement of the nongauge-
invariant vector A„ in the extra phase factor of [6] by the
gauge invariant vector 8"F„„and hence preserves gauge

F~~ = 6~~ 0 0',
e

(8)

we obtain the current which, up to an overall wave func-
tion renormalization, is equal to

invariance. It also maintains Lorentz invariance and the
linearity of the theory. Now using (2) and (6) together
with

Jp s(z) =:y(o)(z)py@ (z): —iy~hm(0 i
y(0)(z+ ~)pp (ps' 8+ ~.8)(o+ rl)+2a~ 8«y )(z) ( 0)

: @( ) (z)p„@( ) (z): — " " " "8"(o + i)) + 2a " "8" 0 o, (10)

where we have used the identity Note now that Maxwell's equation with sources, viz. ,

(014").(z+~)A(z) I o) = -&2,;
Now we take the symmetric limit, i.e., average over the
point splitting directions e and finaDy obtain

J„"s(z)= — 8„(p+ o + a 0 o + i)),

O„F""+eJ,", = 0,

can be converted to the pair of equations

1+ Q + — 0. =0

(17)

where P is a free massless bosonic field satisfying
Q+g=0.

The second equation relating two massless &ee fields
will be satisfied in a weak sense by imposing a subsidiary
condition

and thus representing the bosonic equivalent of the free
fermionic Beld @(0) [7]. This field too has to be under-
stood to be regularized. We Bnd

(4+9)'+'
I phys) = o (20)

Jts (*) = ~i J. s(*)
1

8„(P+@+o. + a Clo),

so that the anomaly is

8"J„"ss = — U (Q + g + o + a H o ).

(15)

(16)

to select out a physical subspace of states. %e shaD also
ensure that P + g creates only states with zero norm by
taking q to be a negative metric field, i.e., by taking its
commutators to have the "wrong" sign. The subsidiary
condition then also serves to separate out a subspace with
non-negative metric as usual.

We see from (18) that o is a massive free Beld, as ex-
pected. The only difFerence &om the usual case is the

presence of the factor (1+ ' ). Consequently, the spec-
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trum of the theory as regularized here is the same as
in the usual case with the mass scaled down by a fac-

tor 1+ . This is reminiscent of the vector meson

model of [6], where the mass of the physical particle gets
altered because of the change of regularization. Note that
in the limit when a tends to infinity, this massive particle
becomes massless. Since massless scalars in two dimen-
sions can be regarded as bosonized versions of fermions,
it follows that there is a massless fermion in the spectrum
in this limit.

17@17@= J 17/~17/~,

viz. )

gb zi~» f d'» tr p, h»(»)
reg

is regularized to

g8 2 ~ Tr pgbcr(a)e'(+ ~

reg

(29)

III. EFFECTIVE ACTIQN QF QEDs

'r(aj + +—;g' y yy

where D„=8„—ieA„. Notice that by virtue of (2) and
the identity

(22)

which holds in two dimensions, we can write

P = P+i~~grl+i~m7, Po.

It is easy to see that the transformations

(23)

i~a(f pgn) y— (24)

(25)

decouple the gauge field from the fermions and the clas-
sical action becomes &ee, i.e.,

@iPvP = QiPg', (26)

but in the quantum theory this decoupling &om the ac-
tion leads to a nontrivial change in the fermionic measure,
which is related to the chiral anomaly. To calculate the
Jacobian we must proceed through infinitesimal transfor-
mations of the fermionic fields in the path integral. So
we define

In the previous section we regularized the current di-
rectly as an operator product of fermion fields. The same
regularized current will now be obtained from an effec-
tive action which we shall construct through a Fujikawa
regularization.

The efFective action is defined by the following func-
tional of the Abelian gauge field A„:

where D„ is a regularizing anti-Hermitian differential op-
erator, Tr stands for the full trace, and the limit t -+ 0+
is to be taken. Fujikawa chose the operator D"„ to be the
Euclidean Dirac operator [8]. Other choices, e.g. , in [9],
correspond to difFerent regularizations. To calculate the
trace, it is convenient to take a plane wave basis. Then
the exponent in (31) simply gets multiplied by a factor
~4, which is defined as follows. First the Dirac operator
is continued to the Euclidean space; after evaluating the
trace it is finally continued back to the Minkowski space.
Hence in the following calculation, we have to use Eu-
clidean p matrices (although the same notation is used
as for Minkowski gamma matrices). ai is given by

ai = (0")' —(D")'.

We choose the regularizing Dirac operator to be

D"„=c)„—ieA„+ iaeB„F„„.

(32)

a, = ~alps O (o + a O o). (34)

The calculation of the effective action goes as follows.
By the transformations (27) we can write (21) as

(35)

Thus,

bI'[o] = —ln J„[o]= 2v z d z trpsbo (x)— (36)
4m'

We shall see that the anomaly obtained in this regular-
ization matches the one obtained in the point-splitting
regularization of Sec. 2. That is the justification for
using the same symbol a as before to parametrize the
regularizing Dirac operator.

On continuation back to Minkowski spacetime, this
gives

gs = (1+i~+br) —i~i.psbo)g,

gb ——vP(1 —i ~mbrl i ~n.psbo), —

leading to

sr—= 0.
n

Using (34) and finally integrating to a finite cr(2:), we get

@4@= @h[P+ iV~P(f —b~) + &~~»P(o —b&)]@a.

(28)
I'[o] = — d x [o 0 o y a U o CI o] .

2
(38)

The Jacobian corresponding to this transformation, de-
fined by

Finally, using the inverse of (2) and (8), we obtain the
efFective action
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2

~I&l = f0** —»—8 & —"s„„s".
2~ 0 4~

The consistency of (44) under time evolution by this
Hamiltonian requires a secondary constraint

This effective action can be used to calculate the
fermionic currents eJ~ = &&„F[A]and

e
G —= a, ll' — II, = O.

7r
(48)

e 1+ aB~Fp„——0„8.A
Ã

from which we find the anomaly equation to be

B„Js"= e„„—[F""+ a 2 F""]
gl 5 2~ g v

1
Cl (0 + a C7 0 ),

(41)

(42)

IV. THE BOSONIZATION OF QEDs

which, as mentioned above, is consistent with (16) when
the subsidiary condition (20) is imposed.

There are no further constraints, and it can be checked
that the Poisson brackets of (44) and (48) with one an-
other vanish, so that the constraints are first class. This
is natural, as we have taken care to maintain gauge in-

variance in the effective action. As usual, then, we have

to 6x a gauge to remove gauge degrees of freedom. It is
convenient here to consider the physical gauge conditions

Z =Ap ——0. (49)

which may be converted to the familiar form

(In the next section we shall use a different kind of gauge
fixing. ) In the present gauge, the Hamiltonian simplifies
to

II' ' e'

2(1+ ~~
) 27I' 2e

If we make the above efI'ective action local by intro-
ducing an auxiliary Geld E and insert the kinetic energy
term for the gauge Beld, we obtain the bosonized action
of two-dimensional /ED (QED2) generalized as above:

2 2

S~ = d x —— 1+ I" + —A + —O„EB"Z1 Ge 2 e 2 1

4 2x 2"
A"B„Z . (48)'r

1 2 1 I2 1 eZ=-II, +-e +-
27l +Qe

by the rede6nitions

C = II, II@=— A, .~sr, e

e 7r

(51)

(52)

The eHective action leads to a Hamiltonian through
standard constraint analysis as follows. First, the canon-
ical momenta have to be defined. The momenta corre-
sponding to Ap, A», and Z are, respectively,

II. =O,

Ge
II = 1 + pAg —BgAp,x )

This shows that the physical spectrum of the model con-
tains just a massive boson with mass ', . As men-/~+ac~ '

tioned before, this mass vanishes in the limit of large a,
and a massless fermion emerges. The vanishing of the
mass can be seen directly from Eq. (43), where the scal-

ing of A by the factor 1+ ' shows that the mass and

interaction terms vanish in the limit, leaving the free-Geld
theory.

ll, =Z — '
A, .

7r
(46) V. QUARK POTENTIAL) PROPAGATORS, AND

CLUSTERING
(44) is recognized to be a constraint. Using all these
equations, we obtain the Hamiltonian

e
~Z Ag. (47)

'R=, + —Iig+ Aollz+ BiAoll + —Ay
(II')2 1 2 e 1 e 2

2(1+ ~~
) 2 vr 2'

&2+—Z
2

Let us investigate the nature of the force mediated by
the gauge 6eld of this theory between two quarks. First,
in the presence of two static external quarks (qq pair) of
charge q at + ~, the charge density is modified to

Q f'
~ Llt ( ~

Ll. e eBq aeJ (t, x') = —8
~

x' ——
~

—h
~

x'+ —
I + —Ao ———&.A+ —&xFoz = J

e q 2J I 2J. s 7rCI n ~z
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where The term - aB„F""has been included to xnaintain the
identity

So the Lagrangian density in the presence of these exter-
nal quarks can be written as

J,", (x) = —lim tr p" [T(x, x + e) —v].e~o

The detailed calculation yields

(61)

ae e
~Q =

I
1 + F'+ —A'+ —B„gg&g

4E m 2m 2"
B„ZA"— 8 Ay. {55)

From a constraint analysis similar to the one in Sec.
IV, we get the corresponding Haxniltonian density in the
physical gauge to be

1- 1- 1 e2

x~ = -n', +-o"+- (o —x),2 2 2~+ ae2 (56)

1
Eq —E = — dx

2

e2 (' 2

n + ae2 I, n + ae2),x'+I, x

( e'
n+ ae (57)

Hence the potential between the quark-antiquark pair is

where II@, ——II@, and 4 = 4 + 2y.
The difference in ground state energies between 'Rg

and 'R can be calculated to be

GF (z, y) = exp i—nGr

27r 2

2 (z —y)'
[p . (*—y)]'

m2 (1-e "' "') SF(*y) (62)
p2 —m2

@I( )
. i~a(»[n(a)+v(m))+v(e)) . @(o)( ) (63)

A =-~a..P

which shows that in the limit ae2 ~ oo, GFG~ ~ SF.
There is a deeper way to appreciate why the spectr»m

changes drastically when a becomes infinite. The con-
finement of quarks in the usual Schwinger model is un-
derstood by imposing the subsidiary condition. Since the
operator solutions (6) and (2) for g and A do not com-
mute with the operator P+ g, they create both physical
and unphysical states Rom the vacu»m. It is more con-
venient to make a gauge transformation and pass to the
new set of solutions

1 Q2 e eL

V(L) =— 1 e gw+ee&
2 e2/n' gm' + ae2

Now, according to [12],

y(o)(z) ~ . eiV~ »&(~)+&(*) (65)
which is constant for large L, indicating the screening
of the charges as in the usual version of the Schwinger
model. However, in the limit of massless gauge fields
ae2 m oo, V(L) = 0; i.e., the (external) quarks be-
coxne free. This is to be contrasted with the limit e + 0
of the usual version of the Schwinger model or simply
the free electromagnetic theory, where V(L) = 2Q2L, so
that there is a linearly rising confining potential. This
is consistent with the occurrence of deconfinement in the
limit ae2 -+ oo.

The bosonized action can be used to calculate the two
point correlation function of the fermions [10] with a
gauge-fixing term —

2 J d2x (8 A) 2 added to the action.
This yields

d p KYA"'*"'='""
(2-) "("--)+

x(1 —e '"( ")) SF(x, y), (59)

where S~ is the Bee fermion Green function. It is also
possible to calculate the gauge-invariant two-point func-
tion [ll]. The gauge-invariant two-point function is the
vacu»m expectation value of the gauge-invariant bilocal
operator

so that, by virtue of the subsidiary condition (20), g'(x)
is essentially: e'~~' ~ ~:, apart &om cluster-violating
operators which reduce to c numbers in irreducible sec-
tors [2]. These expressions clarify why there is no fermion
in the spectr»m for finite a.

Por infinite a, on the other hand, o'(x) is a massless
field. One can then introduce its dual o (z) through

(66)

and perforxn a gauge transformation with it to construct
new operator solutions of the equations of motion:

y11( ) . i~~ »[n(a)-tv(a)]+(r(a)+v(a) . g(o) ( ) (67)

(68)

Clearly, after the unphysical fields present in the expres-
sion for @"are replaced by c numbers, what is left is a
representation of a &ee massless fermion in terms of cr

and its dual; i.e., the analogue of (65) with ()) replaced by
cr. This is how a ferxnion appears in the limit of infinite
a.

VI. CONCLUSION

T(z y) = vp(x)Q(y) . eie J~+ v (A&(s)—as Fu (w))I
(60)

In this paper we have looked at the Schwinger model
with a somewhat generalized regularization. First we
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point split the current which is formally defined as the
product of two fermionic operators. Schwinger has pre-
scribed the insertion of an exponential of a line integral
of the gauge field to make the product gauge invari-
ant. However, his choice was only one of many possible
choices; see, e.g. , [6]. We have inserted an extra factor
which involves the field strength of the gauge field and
therefore does not interfere with the gauge invariance of
the product. It is here that our parameter a enters. Ob-
viously, this is not the most general gauge-invariant regu-
larization possible in this approach, but the introduction
of more complicated factors makes the theory difBcult
to solve. With our regularization, the equations of mo-
tion of the Schwinger model can be converted to free field
equations exactly as in the usual case, with only the mass
of the scalar field altered by a factor involving the new
parameter. The conventional inde6nite metric treatment
has been used and a subsidiary condition imposed to sep-
arate out a physical space.

There is one question which may arise in the reader' s
mind. Have we, in changing the regularization, changed
the model? To be more speci6c, the introduction of A„—
aB"I'„„instead of just A„ in the phase factor entering the
point-split current may be suspected to amount to the
addition of an extra interaction of the form aj "8"F-„„
This is not really the case, as the equations of motion
of the Schwinger model itself are satis6ed. The change
is only in the definition of fermion bilinears as composite
operators and this is well known to have a lot of Bexibility.
Formally, in the limit e ~ 0, the phase factor does reduce
to unity, so that the de6nition of the bilinears adopted
in this paper is by no means unnatural.

After the operator treatment, a Fujikawa regulariza-
tion is constructed in such a way that it gives the same

result as the generalized point splitting procedure. This
is used to 6nd the effective action of the theory. The non-
local terms present here can be recast in a local form as
usual by the introduction of a new scalar field, viz. , the
bosonized equivalent of the fermion 6eld. A Hamiltonian
analysis is carried out to establish the physical content of
the theory, which is not always clear &om the operator
solution in an indefinite metric space.

Some properties of the new version of the theory have
been studied for the purpose of comparison with the usual
version. The potential between external quarks has been
calculated. A gauge-invariant propagator has been pre-
sented. Last but not least, the operator solution itself has
been scrutinized for clustering violation. All these stud-
ies point in one direction: there is nothing qualitatively
different for finite values of the parameter a, but when
this parameter goes to in6nity, the fermion reappears.

This paper is limited to the Schwinger model, but it is
clear that the ambiguity in regularization that has been
exploited here exists in many other models as well. While
four-dimensional models may be dificult to handle, we

hope to deal with other Abelian and non-Abelian models
in two dimensions in a separate publication.

We hope that investigations of this kind will throw
more light on the not too well understood phenomenon
of quark confinement and its connection with details of
regularization. Hand waving arguments about con6ne-
ment and deconfinement are almost all that there is in
four dimensions. The dependence of these phenomena on
regularization schemes clearly indicates the need for more
quantitative investigations. Much work has of course
been done on the lattice, but that is only one regular-
ization. It must be generalized.
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