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We present the general ansatz, the energy density, and the Chem-Simons charge for static axially
symmetric con6gurations in the bosonic sector of the electroweak theory. Containing the sphaleron,
the multisphalerons, and the sphaleron-antisphaleron pair at Rnite mixing angle, the ansatz further
allows the construction of the sphaleron and multisphaleron barriers and of the bisphalerons at Snite

ixing angle. We conjecture that further solutions exist.
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I. INTRODUCTION

In the electroweak theory several types of classical so-
lutions are known. A decade ago the sphaleron solution
of the electroweak theory was discovered [1] and con-
structed in the limit of vanishing mixing angle [2]. In this
hmit the sphaleron is spherically symmetric and parity
reBection symmetric. Much later the sphaleron was con-
structed for the full electroweak theory with gauge group
SU(2)U(l) [3,4]. At finite mixing angle the sphaleron is
only axially symmetric, but it retains its parity re6ection
symmetry. At the physical mixing angle the spherical
approximation for the sphaleron is excellent [3,4].

Recently further solutions of the electroweak theory
have been constructed, which are axially symmetric and
symmetric under parity re6ections. These are, on the one
hand, the multisphaleron solutions [5] and, on the other
hand, the sphaleron-antisphaleron pair [6,7]. The mul-
tisphaleron solutions carry Chem-Simons charge Ncs ——

n/2, where n is an integer counting the winding of the
fields in the azimuthal angle P. The sphaleron has
winding number n = 1. Like the sphaleron the multi-
sphalerons are thus associated with fermion number vi-
olation [5]. In contrast the sphaleron-antisphaleron pair
carries Chem-Simous charge Ncs = 0 [7]. The ansatz
for the sphaleron-antisphaleron pair can be generalized
by realizing that it involves a winding of the fields in the
angle 8. Denoting the corresponding winding nuxnber

m, the sphaleron-antisphaleron pair has winding number
m = 2, while the sphaleron has m = 1.

When constructing noncontractible loops in configura-
tion space, the intermediate con6gurations between the
vacua and the sphaleron, representing the sphaleron bar-
rier, have fewer symmetries than the sphaleron, even for
vanishing mixing angle [1,8]. Indeed in the limit of van-
ishing ~ixing angle the construction of the sphaleron bar-
rier involves con6gurations which do not retain the dis-
crete symmetry of the sphaleron, parity re8ection sym-
metry. For 6nite xnixing angle the sphaleron barrier has
not yet been constructed.

Furthermore, for high values of the Higgs boson mass
new classical solutions appear in the electroweak theory,
the bisphalerons [9,10]. These solutions, constructed so
far only for vanishing mixing angle, where they are spher-
ically symmetric, are not invariant under parity, but oc-
cur as parity doublets. Like the sphaleron, at finite mix-

ing angle they will retain only axial symmetry. The bi-
sphalerons are lower in energy than the sphaleron [9,10].
This was demonstrated also in a perturbative analysis for
finite mixing angle [ll]. Therefore at large Higgs boson
masses the lowest bisphalerons represent the top of the
energy barrier between neighboring topologically distinct
vacua. The construction of the bisphalerons at finite mix-

ing angle is an outstanding problem.
In this paper we develop the formalism for the con-

struction of general classical static con6gurations of the
electroweak theory with axial symmetry. In Sec. II we

present the general ansatz for the fields and the energy
density obtained with this ansatz. Further we discuss the
four residual gauge symxnetries of the energy density and
several choices of gauge. In Sec. III we discuss the clas-
sical solutions obtainable with this ansatz, the sphaleron
and multisphalerons, the sphaleron-antisphaleron pair
and their generalizations, as well as the bisphalerons and
the barriers. In Sec. IV we present the Chem-Simons
charge for the general ansatz. Further we evaluate the
Chem-Simons charge for the multisphalerons and for the
solutions which may be obtained with the generalized
sphaleron-antisphaleron pair ansatz. We present our con-
clusions in Sec. V.

II. ANSATZ AND ENERGY DENSITY

Let us consider the bosonic sector of the Weinberg-
Salam theory:
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with the SU(2) field strength tensor

I'„„=B„W„—O„S'„+ge O'„TV„,

with the U(1) field strength tensor

and the covariant derivative for the Higgs field

a aD e = Ia —-gr W — 8'~ -c.
2 P, 2 P

(2)

(s)

where r are the Pauli matrices and P is the azimuthal
angle defined via

(x, y, z) = (pcosg, psing, z)

= (r sin8cosg, r sin 8sing, r cos8) .

The static axially symmetric ansatz for the SU(2) gauge
fields, the U(1) gauge field, and the Higgs field is then
given by

The gauge symmetry is spontaneously broken due to the
nonvanishing vacuum expectation value v of the Higgs
field,

t'0l
(4') = ~ I 1 I

leading to the boson masses

1 1
M~ = —gv, Mz = —g(g2+g'2)v, M~ = vV2A .

2 '
2

W;(r) = W, (r)r = u', (P)G„" (P)iv,"(p, z),
Wo(r) = Wo(r)r = 0, (10)

&'(r) = ~,"'(&)o.(p z)-
Ao(r) = 0,

4(r ) = Iis(p, z) + ih~ (p, z) G,.
"v - . (). /0'I

The mixing angle 8~ is determined by the relation
tan8~ = g'/g and the electric charge is e = g sin 8gr.

A. Axially symmetric ansatz

Let us introduce the set of orthonormal vectors
[i2,is,5]

u~i" l
(P) = (cos nP, sin nP, 0),

where the indices i, j,k, and a run &om 1 to 3.
This ansatz contains 16 arbitrary real functions of the

variables p and z. The ansatz is axially symmetric; i.e., a
rotation around the z axis can be compensated by a
gauge transformation. [For the Higgs field the compen-
sating gauge transformation is an element of the diagonal
group U(1)U(l), the first U(1) being the subgroup of

SU(2) generated by the matrix G2" .]

B. Energy functional

u" (&) = (o o 1) The resulting axially symmetric energy functional E,

u3~"l(P) = (sinn/, —cosn$, 0)
E = — (E + E + v Es) dg pdpdz,

2
(is)

and the matrices then has the contributions

2 2

E- —
I &.~3+-(~~1+~3)-g(~3~1-~3~1)

I
+

I
& ~3+-~ 8(~ ~ -~-~ ) I

( i 1 3 1 2 3 3 2 2 2 1 3 1

p ) ( P 3 1 3 3 1

2 3 231311212~1~22332+
I
~.~3+ (~3 ~~1) —8(~3~1 —~1~3)

I
+

I
~.~3+ ~ —8(~3~2 ~3~2)

I

P

~1 2

+9&~3 8(~3~2 ~2~3)] +
I
~.~3 ~ ~(~2~3 ~3~2) I

+ 9~~2 —&.~i 8(~1~2 —~1~2)—]
p

+[~&~1 ~P~2 9(~1~2 ~1~2)] + [~&~l ~P~2 8(~2~1 ~2~1)]

( 1E. =
I a,o3 + -u3

I
+ (a.o3)' + (a,o2 - a,o,)',

)
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Eg =
~

8&ho + —(h1to1 + hstpt + hstp1) ——(hsa1)
~

+
~

8&ht + —(hstpt —hstpt —hptpt) + —(hsa1)

I $
2

——(h1a1) I

2 )
g'

+ —(hsa2)
~2 )

g'——(h1a2)
~2 )

nh1) '

nhs &

I 2

+
~

8 h2 + —(http —hstp —hoto ) + —(hoa1) l
+

~

8 hs + —(hstp —http —hotp )
( g 3 1 2 g l / g 1 2 3

)

+
~

8 hp + —(http2 + h2tp2 + hstp2) ——(hsa2)
~

+
~

B,h1 + —(hstp2 —h2to2 —hpto2)
g 1 2 3 g' l & g

2 2 2 2 )
I 2

+
l

B,hs+ —(htm2 —hsm2 —hom2) + (—hoa2) l
+

I
B,hs+ —(hsm2 —htm2 —ho~2)g 3 1 2 9 ~ g 1 2 3

2 2 ) ( 2

+
~

—(httos —hotps —hstps) + —hoas
l

+
~

—(hptps —hstps + https) + —h1as-g 3 2 1 g ~ ~g 3 1 2

(2 2 ) (2 2

+
~

—(—https —hstps —hstos) + —hsas
~

+
~

—(hstps —hptps —hstps) + —hsas~g 1 2 3 g ~ ~g 2 1 3

(2 3 2
2

+ (hp+ h1+ h2+ hs —1)
2

(16)

C. Residual gauge symmetries

The energy functional is invariant under a large class
of gauge transformations, which keep the ansatz form
invariant. These gauge transformations are given by

Up(r ) = exp[il'p(p, z)],
U1(r) = exp[iI'1(p, z)G," (P)],
U2(r) = exp[iI'2(p, z)G2" (P)],
.(r) =exp[iT3(~ ) '"'(&)].

1. Troneforrnation propertiee of the fielde

Considering first the transformation Up, the compo-
nents of the Abelian gauge field a; transform as

The Higgs field components

fh, l
(22)

transform as doublets with angle F3.
Analogously, under the transformations U~

exp(iF1G1 ) and U2 ——exp(ir2G2" ) similar schemes oc-
cur with

& tp,2'l ( tp22 & f to32 —,—",l, (tp,'&

(23)

and the two remaining components (tot, tpz) transform
as a two-dimensional gauge field

2 81 i ' 2 BI'= ~1+ — ~2 I
= ~2+ — (»)

E gBp '
& gBz

2 BFp I 2 |9Pp
a1 = a1+ —, , a2 = a2+ —, , as ——as (18)

g Op g Bz

and the Higgs field components

and

tp)st

y to2

(24)
h1) " (h2)

respectively, for the SU(2) gauge field components, and

transform as doublets with angle I'p, and the SU(2) fields
are invariant under Up.

Considering next the three Abelian transformations U;

generated by G;, the Abelian gauge field is invariant
under these transformations, while the components of the
non-Abelian gauge fields xu and of the Higgs field hp and
h; form various multiplets.

Under the transformation Us —— exp(iT'3G3" ) the
SU(2) gauge field components

t' h1 l t' h2 l
&h) '

and

t' h2 l ( hs l

respectively, for the Higgs Geld components.

(25)

(26)

& tp,' l (tp21 l
) (20)

Choices of gauge

transform as doublets with angle 2I'3, ma is invariant,
In order to construct classical solutions, the four resid-

ual gauge degrees of &eedom need to be Gxed. There
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appear to be many different ways to 6x these four gauge
degrees of &eedom. However, &om our experience in con-
structing the sphaleron at finite mixing angle, we know
that care must be taken to choose a gauge where the
classical solutions are regular [3,4,14].

(a) Coulomb gauges. For the single residual gauge de-

gree of freedom present for the sphaleron at 6nite mixing
angle Uq [15], we chose the Coulomb gauge for the two-

dimensional gauge 6eld

ing angle. Since they involve parity-violating configura-

tions, the general axially symmetric ansatz must be taken
to obtain such paths at 6nite mixing angle. The general

ansatz is also necessary to obtain the barriers associated
with multisphalerons, as well as for the construction of
bisphalerons at 6nite mixing angle.

Parometrizatioa of the generol ansatz

OQJy Dt02+
BP BZ

(27)

since it lead to regular classical solutions [3,4,14]. We
therefore suggest as a probably good choice of gauge the
Coulomb gauge for all four two-dimensional gauge fields,
i.e., in addition to Eq. (27),

OtUg BQJg

Bp Bz
|9tUg OQ12

BP BZ

Bay t9G2+
t9p BZ

(28)

III. CLASSICAL SOLUTIONS

All known static (three-dimensional) classical solutions
can be obtained &om the general static ansatz. This
ansatz further allows us to construct the sphaleron bar-
rier at finite mixing angle, to generalize the bisphalerons,
known at vanishing mixing angle, to finite mixing angle,
and to possibly construct new solutions.

A. Barriers and bisphalerons

In the general case such a choice of gauge leaves 16 un-

known functions to be determined numerically.

(b) Other gauges An. other way of fixing the gauge
consists of eliminating one or more functions, leaving a
smaller number of unknown functions to be determined
numerically. Appearing attractive at Grst sight, such
gauge choices may prove to be singular [14].

Let us nevertheless consider such choices brieBy. For
instance, setting the angular part of the Higgs field in
a canonical position, we could obtain the physical gauge
or the hedgehog gauge. In the physical gauge the Higgs
field is specified only by hp, while h~ ——h2 ——h3
In the hedgehog gauge the Higgs field is speci6ed only by
the function h, de6ned via hq ——hsin8, h2 ——hcos8,
while ho ——h3 ——0. Fixing three of the four degrees of
&eedom, both these gauges are known to be singular for
the sphaleron at finite mixing angle [14].

Another possibly better choice could be to only as-

sume h3 ——0 and supplement this gauge choice with the
Coulomb gauge for the remaining three degrees of free-

dom. Note that h3 vanishes in all known classical solu-

tions.

In order to compare with the known spherical barrier
and to take out the trivial angular dependence (on the
angle 8) we parainetrize the axial functions in spherical
coordinates as follows:

3 2
IUI = Fi (r, 8) cos 8

gr
2n

IUs = ——Fs (T, 8) cos 8,
gr

3= 2
IUg = F2—(r—, 8) sin8,

gr

2= 2n
IUs = F4(r,—8) sin8,

gT

—Hi (T, 8) S1I18 COS 82=2
gr

IU2 = H2(r—, 8) sin 8 cos 8,1 2

gT

u11 — [H3(r) 8) siI1 8 + H4(r, 8)]
gT

IU2 = —[Hs(r, 8) cos 8+ H4(r, 8)],
gT

(29)
3= 2n

IUs = Hs(r, 8)—,
gr

hi ——Fs (r, 8) sin 8,
hs ——Hs(r, 8) sin8,

2
G 1 = Hs (r, 8) siI1 8 cos 8

g T

2
as ——

, Fr(r, 8) sin 8 .
g T

h2 ——Fs(r, 8) cos 8,
hp ——Hr(r, 8),

2
a2 ——

, Hg(r, 8),
g T

2. Recoee&ng epherical eymnaet~

In the limit 0~ ——0 the sphaleron, the con6gura-
tions along the sphaleron barrier, and the bisphalerons
are spherically symmetric. The Abelian gauge potential
can consistently be set to zero, i.e., in terms of the above

parametrization (29),

This par ametrization is a generalization of the
parametrization used for the sphaleron at finite mix-

ing angle, containing in addition to the seven functions

F;(r, 8) the nine functions H;(r, 8). The factors of sin 8
and cos 8 in the above parametrization are chosen in ac-
cordance with the known spherical configurations, the

sphaleron, the sphaleron barrier, and the bisphalerons,
where the functions F;(r, 8) and H; (r, 8) reduce to func-

tions of the radial coordinate r alone, as shown below.

F7(r, 8) = 0, Hs(t, 8) = 0, Hg(r '8) = 0 (30)
Until now, vacuum to vacuum paths passing the

sphaleron have been constructed only at vanishing mix- The general spherically symmetric ansatz, necessary
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Wp ——0,
I = [H(r) + i~ . r"K(r)]

~

Q (01
2

(31)

(32)

Comparing with the general axially symmetric ansatz we
6nd n= 1 and

Fq(r, e) = F2(r, e) = Fs(r, e) = F4(r, e) = 1 —f~(r)
2

Fs(r, e) = Fs(r, e) = K(r),

H~ (r, 8) = H2(r, 8) = Hs(r, 8) = fc(r) —fa(r)
2

(33)

H4(r, e) = Hs(r, e) = f~(r)
2

Hs(r, e) = 0, Hr(r, e) = H(r) .

The functions f~(r), fc(r), and (in the usual
parametrization) H(r) represent the parity-violating
terms, present in the con6gurations along the sphaleron
barrier and the bisphalerons, which generalize to seven
functions H;(r, e) in the axially symmetric ansatz. The
spherically symmetric ansatz has a residual gauge sym-
metry, which can be 6xed, for instance, by requiring
fc(r) = 0. The spherically symmetric parity conserv
ing sphaleron solution has f~(r) = fc(r) = H(r) = 0,
corresponding to the vanishing of all functions H; (r, 8).

B. Solutions arith mirror symmetry

to obtain the sphaleron barrier and the bisphalerons, is
given by

1 —f~(r) fa(r) fc(r)
aijrj + ~ia —rira + r";r"~,

gr gr gr

X. Sphaleron and multisphalev'ons

The sphaleron at 6nite mixing angle and the multi-
sphalerons are described by the seven axial functions
F;(r, e) of Eqs. (29) [3—5]. The sphaleron and multi-
sphaleron functions satisfy

F (r, e) = F (r, vr —8) . (39)

e, = U, (~) ~, ~

v fo)

= i [sineGl, "l(P) + coseG," (P)] ~
(4o)

The gauge fields become pure gauge con6gurations at
in6nity:

W;(oo) = ——8;Us(oo)Us(oo) .2i t
g

(41)

Thus the boundary conditions for the functions F;(r, e)
are [3—5]

r=0 ~

TABOO:

8=0:
e=z/2:

F,( re)~„, = ,0i=1, . . . , 7
F;(r, e)~„=1, t=1, . . . , 6,
F,(r, e)~„=O,
BsF;(r, e)~s 0 ——0, i = 1, . . . , 7,
BsF;(r, e)~s /2 ——O, i = 1, . . . , 7

(42)

The solutions are invariant under P —X,„,~ g; l, where
the second factor is necessary because the classical Higgs
field is parity odd in the gauge used.

The Higgs fields of the sphaleron and of the multi-
sphalerons (S) assn~e the asymptotic forms

Besides being axially symmetric, the sphaleron at 6-
nite mixing angle [3,4], the multisphalerons [5], and the
sphaleron-antisphaleron pair [6,7] have discrete symme-
tries. Supplementing the axial invariance of the fields by
the discrete mirror symmetry

2. Sphale~n-antisphaleron pair

The sphaleron-antisphaleron pair [6,7] is also axiaQy
symmetric and parity invariant. But in contrast with
the sphaleron the Higgs field is even under parity.

Klinkhamer denoted the field components as

Maz + ( )custodial ) (34) Cky
tU 1

P

O.p
tU 2 z 3tU

P

where the 6rst factor represents re6ection through the zz
plane and the second factor denotes charge conjugation

W„' = —W„, 4 = O', A'„= —A„,

4 =Pa,
g A4

a3 =
g p

h2 = —p2,

leads to the simplifying conditions [1,13,3,4]

2 3
tUg =tUg =tU2 =tU2 =tU3=0 ~

h3 ——hp ——0,

(36)

(37)

He parametrized the gauge Beld components in terms of
the angle 8 analogous to Eqs. (29), leading to the rela-
tions for the gauge 6eld functions

2 2

Fi=2—
f& F2=2—fo

Kl r Kl
a a

(44)

a~ ——a2 ——0, (38)

corresponding to H; (r, e) = 0, i = 1, . . . , 9. The known
axially symmetric solutions are additionally invariant un-
der parity.

2 2T Kl T KlFs ——2 f2, F4 ——2——fsa a

with a = r + r2 and r an arbitrary scale parameter,
while he parametrized the Higgs field components differ-
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ently:

r2
h~ ———h& sin 28,

a
h =h Kl (45)

This parametrization lead to 8-dependent boundary con-
jtjoas for the functions fKI fKI and hKI

The Higgs field of the sphaleron-antisphaleron pair
(8') assumes the asymptotic form

'U (olU'(-) I, I1)
= i [sin 28GI (p) + cos 28G&~ ~(p)]

I

2 &') '

(46)

while the gauge fields become pure gauge configurations:

W, (~) = 'a;U—&—.(~)U,'.(~) . (47)

4
ws = — F3 (T, 8)—cos 8 cos 28,

gr

4
ws = F4 (T,—8) cos 8 sin 28,

gr
(48)

h1 ——Fs(T, H) sin 28, h2 —Fs(T, 8) cos 28 .

In terms of this par ametriz ation the functions
F, (T, H), i = 1, . . . , 6, approach one at infinity [16].

Therefore another parametrization appears to be natural:

4 4
WI = FI (T) 8) COS 8) 'W2 = ——F2(T) 8) SIII 8

gr gr

3 2m- 3 2m-
WI = FI(T, 8) COS Hi W2 = — F2(T, 8) Sla 8

gr gr

gr
' m san 8

2 2m- sinm8
w32 = F4(T, H) siamH,

gr
' msin8

h1 ——Fs(T, H) sinmH, h2 = Fs(T, H) cosmH .

In terms of this parametrization the
functions F;(T, H), i = 1, . . . , 6, approach one at inan-
ity [17]. One further step is to include both integers n
and m in the ansatz; i.e., use the gauge transformation

Ug„ for the fields at infinity:

4's„, = Us„(oo) I

'U (o)
&1)

= i [siamHG&~"~(P) + cosmHG&~" (P)] I

2

(52)

W;(oo) = ——8;Us„(oo)US (oo) .2i. t
g

IV. CHERN-SIMONS CHARGE

The Chem-Simons current K„ is not conserved; its
divergence 8"K„represents the U(1) anomaly of the
baryon current. Classical configurations are character-
ized by their Chem-Simons charge. The SU(2) part of
the Chem-Simons charge is given by

~cs= d rK

8. GeaeTolisatioa of the epholeToa aatiepho-leron
pair aneats

Generalizing the ansatz for the sphaleron-
antisphaleron pair to arbitrary integers m, we require
for the Higgs field the asymptotic form

'
U (ol

C's- = Us„. (oo) I

= i [sinmHG~~ (P) + cosmHG~& ~(P)]
I

2

(49)

and for the gauge fields the pure gauge configurations

d r~;~g'I}; F;~Wg+i —W;6'~WI,

(54)

The proper gauge for evaluating the Chem-Simons
charge is the gauge where the gauge field is given by

W;(oo) = ——8;U(oo) Ut(oo),
2i

(55)

with U(oo) = 1. Thea this Chem-Simons charge of
the configurations corresponds to their baryonic charge,
when the U(1) field does not contribute to the baryon
number [5].

leading to the general parametrization

A. Ceneral axially symmetric ansatr

The general axially symmetric ansatz leads to a Chern-
Simons charge characterized by

——,Q(S, 2) = w1w2w3+ w1w2w. + w1w2
I

w. ——
I

—w1w.
I
w. ——1 2 3 2 3 1 3 1 2 I 3 ( 2 3 2 I 2 1 3

gP

1 1 1 2 i 2 2 3 3 3
w3(~& 1 ~Pw2) +

I w3
I

(~* 1 ~P 2) + 3(~&wl ~Pw2)
g He)

(56)
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This expression must be supplemented by the appropriate gauge transformation to obtain the Chem-Simons charge of
the configurations forming the sphaleron barrier at finite mixing angle and the multisphaleron barriers and to obtain
the Chem-Simons charge of the bisphalerons.

B. Sphaleron and multisphalerons

For the sphaleron and multisphalerog. s the Chem-Simons density is proportional to

sin 080 8 z . i ~8(p cos 8 8
q(p, z) = n + n —Fj sin(20)

~
+ ——

~

F2sin(20) + —[Fs sin(20)]
Br Bz 4rs ) p Bp E4rs 4r2 Br

sl11 8 8 (Zp 80 1 8 pzpz 80
+ —

I
F4»n(20) + ——

I (F.—F4) ———I, (F. —F4)4r~ gr E 2p8z E r3 Bp 2pBp E r Bz (57)

where, analogous to Ref. [2], we incorporated the effect
of a gauge transformation of the form

I

to their baryonic charge q~ = n/2 since the U(1) field
does not contribute to their baryon nn~ber [5].

Us (r ) =
exp [iO(r, 8) (sin 8G&" + cos 8G&~" )] (58) C. Generalisation of the sphaleron-antisphaleron

pair ansats
and kept all derivative terms. The proper boundary
conditions are 0(0) = 0 and 0(oo) = m/2 [2]. Only
the first term of q(p, z) determines the Chem-Simons
charge since the derivative terms do not contribute due
to the boundary conditions for the functions F; (r, 8) [see
Eqs. (42) [3—5]] and for 0(r, 8).

We find, for the multisphalerons the Chem-Simons
charge,

Ncs = n/2, (59)

independently of the Higgs boson mass and of the mixing
angle, reproducing the well-known Chem-Simons charge
of the sphaleron, Ncs = 1/2. This Chem-Simons charge
of the sphaleron and of the multisphalerons corresponds

I

For the sphaleron-antisphaleron pair another gauge
transformation must be chosen to evaluate the Chern-
Simons charge:

Us (r) = exp[iO(r, 8)(sin28Gq + cos28Gq )], (60)

with boundary conditions 0(0) = 0 and 0(oo) = m/2,
since this solution approaches infinity differently. In the
following we present the Chem-Simons density directly
for the generalized pair ansatz Eqs. (49)—(51), using the
gauge transformation

Us. (r) = exp[iO(r, 8)(sinm8Gi& l + cosm8G2 )] . (61)

The Chem-Simons density is proportional to

msinm8 sin 080 8 msinm8cos8 - . 1 8 msinm8 sin 8-
r, 8 +- Fy sin 20 + —— E2 sin 20

sin8 r Br Bz sin8 4r p Bp sin8 4r

msmm8 cos m8 8[- .
( ]

sm m8 8[-

1 8 ( - 2 l 1 t9 ( 2 801+
I
cosm8sin m8(Fs —F4) I I

cosm8sin m8(Fs —F4)2p8z & Bp) 2pBp & Bz) (62)

where we kept all derivative terms. With the proper
boundary conditions for the functions E;, and for the
gauge function 0(0) = 0 and 0(oo) = n/2, again only
the first term of Q(p, z) determines the Chem-Simons
charge since the derivative terms do not contribute. We
find the Chem-Simons charge

&as = 1 —cos mm If m odd
0 if m even. (63)

V. CONCLUSIONS

ViTe have presented the general ansatz, the energy den-
sity, and the Chem-Simons charge for static axially sym-

I

metric configurations in the bosonic sector of the elec-
troweak theory. The ansatz contains the known axi-
ally symmetric solutions with parity re8ection symmetry,
the sphaleron, the multisphalerons, and the sphaleron-
antisphaleron pair at finite mixing angle. It further al-
lows for the construction of configurations without par-
ity reQection symmetry, such as the sphaleron and mul-
tisphaleron barriers at finite mixing angle and the bi-
sphalerons at finite mixing angle. The leading correction
to the spherical bisphalerons was obtained in a perturba-
tive calculation in 8w [11].The change of the sphaleron
barrier due to the finite mhcing angle as well as the bar-
riers associated with the multisphalerons have not yet
been obtained. The construction of the multisphaleron
barriers will allow the investigation of the fermion level



YVES SRIHAYE AND JQ l lA KUNZ 50

crossing phenomenon for vacuum to vacuum transitions
via multisphalerons.

The n»clerical construction of these barriers or of the
bisphalerons at 6nite mixing angle now appears to be
straightforward, at least in the Coulomb gauges, but nu-

merically involved, because a large system of up to 16
partial nonlinear cMerential equations must be solved si-
multaneously.

The multisphalerons are characterized by an integer
winding number n, describing the winding the 6elds with
respect to the angle 4t. Their Chem-Simons charge is
given by Ncs = n/2. The sphaleron has winding num-

ber n = 1. Since the bisphalerons bifurcate from the
sphaleron at large Higgs boson masses, we expect that
corresponding n bisphalerons exist, bifurcating &om the
multisphalerons with winding number n. Using the for-
malism derived in this paper, these solutions can numer-
ically be searched for. A stability analysis of the mul-

tisphaleron solutions may be helpful in determining the

critical values of the Higgs boson mass.
Besides the winding in the angle P, a winding in the

angle 0 with winding n»mber m can be considered. The
sphaleron-antisphaleron pair represents a solution with

winding number m = 2. We have generalized the ansatz
for the sphaleron-antisphaleron pair to allow for arbi-

trary integer winding number m. The Chem-Simons
charge of solutions with odd m is Ncs = 1/2, while the
Chem-Simons charge of solutions with even m vanishes,

Ncs = 0. The sphaleron has winding number m = 1. We
conjecture that solutions with winding number m & 2

exist. Further there Inay be solutions with both wind-

ing numbers excited, n ) 1 and m ) 1. The numerical
construction of such solutions may turn out to be com-

plicated, though only seven functions are involved.

Finally, all these solutions may bifurcate and general
bisphalerons with m ) 1 and with n ) 1 and m ) 1 may
exist for large Higgs boson masses. The construction of
such solutions provides a great numerical challenge.
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