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Canonical quantization in n ~ A =0 gauges
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We give a united derivation of the propagator in the gauges n A =0 for n timelike, spacelike, or
lightlike. We discuss the physical states and other physical questions.
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I. I%1.RODUC=1 ION

Gauges of the type n A =0 are widely used, with n ei-
ther timelike, spacelike, or lightlike. They often simplify
calculations, and give a more direct physical interpreta-
tion to Feynman diagrams. An example is the derivation
of the Altarelli-Parisi equation for deep inelastic scatter-
ing [1], where the ladder graphs without crossed rungs
dominate, or finite-temperature field theory where the
heat bath already breaks the Lorentz invariance [2]. It is
useful also to use an axial gauge for the renormalization
of composite operators, to avoid mixing with nongauge-
invariant operators (which in general contain ghosts) [3].
But it has been surprisingly diScult to derive correct per-
turbation theory for these gauges [4,5]. This is because
the Feynman propagator naively is'

k„n +nqk„q k„k„
(n k) k +le

and one must decide how to integrate the pole and double
pole at n-k =0. In this note we shall show that, in the
gauges AD+A, A3=0, for all k and so regardless of
whether n is timelike, spacelike, or lightlike, straightfor-
ward canonical quantization leads to

We derive this result in Sec. II. In Sec. III we con-
struct the physical states, and in Sec. IV we discuss vari-
ous physical questions.

II. DERIVATION OF THE PROPAGATOR

These equations are easy to solve if one assumes that the
solution may be written as a four-dimensional Fourier in-—&kot+ik. x
tegral, with e '"'"=e . Eliminating k A(k)
gives

(kp+Ak3) (kp —k )A3(k)=0 (2.2a)

or

To derive the propagator it is suScient to consider the
interaction-free case. That is, we work with the asymp-
totic in or out field, described by the Lagrangian

,'F„„F""—, w—here F„„=B„A„—B,A„. Rather than add-

ing a gauge-fixing term, we fix the gauge by eliminating
Ap and replacing it with —11,A3. The resulting three
field equations read

A„+At), A —B.B.A, +B,(B.A. )=0 (r =1,2;j=1,2,3),
A +At) A +(A, —1)B.B.A +t) (B.A. )+At), (B.A. )=0.

(2.1)

CC~ ~ I %% 1— 1

kp+Ak3+l elk3

with e an infinitesimally small positive quantity.

(1.2)

(a, +ca, )'(a,'—a,.a, ) A, (t,x)=0 . (2.2b)

(We always use i and j to range over the values 1,2,3, and
r and s to range over 1,2). The general real solution of
this equation may be written

d k
A3(t, x)=J 8(k3)[itp3(k)+q3(k)]e ' + a3(k)e ' "' "" +H. c. (2.3)

The frequencies —A,k3 in the first term range from —00 to + ~, and so when we add on the Hermitian conjugate we
have to include the 8(k3 ) to avoid double counting.

~Our metric is (+,—,—,—), so that k =k2 —~k~, n2=1 —i(, , k x= —k,x' —k2x —k3x3, and n k=ko+Xk3. Furthermore,
k-x=k x and a,a,-=a', +a', +a .
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By making a similar decomposition of A, (t,x), but with functions p„(k),q„(k), and a, (k), and substituting these ex-
pressions for A 3 and A„back into the field equations (2.1), one finds the general solution of the classical field equations:

d k i (A,k3t+k.x)
A, (t,x)= f 8(k3)k„[it(A, —1)p(k)+q(k)]e ' + a (k)e '(k' "*' +H. c.

(2m. }
(2.4a)

d k
A3(t, x)= f 3 8(k3)([it()(, —1)k3+A, ]p(k)+k3q(k))e ' —,e ' "' "'"' +H.c.

(2m. )

To quantise, we construct the canonically conjugate momenta m; = A; —A,B; A 3.

(2.4b)

+d k i(A,k3 t+ k.x) ],

(2n. )
" 2 k

kk, k,
lkl5 — a, (k)e ""' "'*' +H. c.

A, k+k, (2.5a)

m3(t, x)=if 3 8(k3)k3p(k)()(, —l)e ' +. . . , k„a,(k)e '(")' ""' +H. c.
(2n ) 2~k~ A, ~k~+k3

(2.5b)

With these solutions, the equal-time commutators involve terms with t, t, and 8(k3). In order to obtain the canonical
form, the t and t terms should vanish, whereas the 8(k3) should combine with 8( —k3) to yield unity. The solution to
all these conditions is

[a,(k),a, (k')] =(2n ) 5(k —k')2lkl ~ 5„+()(, —1)
(lkl+~k, )'

[p(k),p (k')]=0,

[q(k), qt(k')]=(2m) 5(k —k')A(A, —1)2k3
1

'2 (2.6)

[q(k),p t(k') ]= (2m ) 5(k —k') 1

Further, the a„sector commutes with the p, q sector.
In order to derive the Feynman propagator, we must define the vacuum. The issue of what vacua are allowed, and

how to define the other physical states in the gauges n A =0, is considered in detail in the next section. Meanwhile, we
choose one of the allowed vacua, defined by

a„(k)l0)=0, p(k)l0)=0, q(k}l0)=0.

Then, forx &y,

(OlTA (x,x)A, (yo, y)l0)= eik(x y) 5
—+ e i(k((x —y )

(A 1)k k 1 o ()

(2m) ( lkl +A,k3 ) 21k l

(2.7}

ikk (x — ) k„k,+e ' 8(k3) ~ i(x — )(A, —1)

2k„k,k3A(A, —1)

( lkl2 —)(~k~ P
(2.8a)

(OlTA„(x, x)A3(y, y}l0)=f e'"'*ik(x — )

(2m )

—k„(~lkl+k, )

(lkl+) k, )'

~„(„o o) k„k3 2k, k3A(A, —1)
+e ' 8(k3) i(x y)(A, 1) —

2 2
—~+

k —
A, k3 ( k —

A, k3)

(2.8b}
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(0~T'A, (xo,x)A, (y', y}~0)=f d3k

(2m )

kks s 1 —i(k[(x —y )

(fkl+~k }'

nk, (»' y—') 0 0 2 k3 2k3A(A, —1)
+e ' 8(k3) ~ i(xo —yo)(A2 —1) +

2A,k3+ (2.8c)

For y )x we simply interchange the four-vectors x and y.
For Feynman diagrams, we must convert the three-dimensional momentum integral into a four-dimensional integral.

Consider first the (x —y }term in (2.8a}. If we make the replacement

[k[ —g k2 2~ (ko+Ak3+ie/k3) (ko —(k~ }+ie
(2.9)

with e an infinitesimal positive quantity, the ie/k3
correctly reproduces the 8(k3 ) when we close the contour
of the kp integration. The residue of the double pole
reproduces the left-hand side of (2.9}, together with
another term obtained by difFerentiating the last factor
with respect to kp ~ This latter term agrees with the last
term in (2.8a}. There are also the poles at ko=+~k~,
whose residue reproduces terms involving the other ex-
ponential in (2.8a}. We could proceed by combining them
with a similar term obtained by replacing the factor

I

I

1/2~k~ in the first term of (2.8a} by a contour integral
over ko involving again (ko —

~k~ )+ie) '. However, at
this point it is faster to note that the denominator
(ko+Ak3+ie/k3) is just one of the two possible forms
of "(n k}" as given in (1.2). This suggests that all

propagators in (2.8) are given by four-dimensional
Fourier transforms of (1.1) with this interpretation of the
denominators. This may be verified explicitly. To obtain
also the propagators involving Ao we write it as —

A, A 3.
Hence, finally (for the vacuum defined in (2.7))

d4k
(O~TA„(x,x)A„(y,y)~0)=i f e ' '" "' —g„„+ " "

. " ' n--
(2n) "" n'k+&& k3 (n k+ie/k3) k +ie

(2.10}

For A, (0 Wick rotation is possible; for A, )0 see Sec. IV.

IH. DEFINil ION OF PHYSICAL STATES Q=fd x[B,c' ,'b, gfs, cbc—']—. (3.3a)

Adding —c' times the field equation of A „' to the Noeth-
er current, the BRST charge becomes

A general approach to the definition of the physical
states is in terms of the Becchi-Rouet-Stora-Tyutin
(BRST) operator. When, as we have done, one of the
fields has been eliminated, an alternative is to use the lost
field equation (here the Gauss law) as a constraint that
helps to pick out the physical states. To derive the BRST
operator we write the full Lagrangian in terms of the
Heisenberg fields, with a gauge-fixing term involving an
auxiliary field B and with ghost fields:

There is also a conserved ghost charge

Q,„=fd'x[b, c'] .

Redefining the auxiliary field B, by

d, =B,+bbgf~~c'

the fields d„b„and c' all satisfy free-field equations

n Bd, =n db, =n Bc'=0 .

(3.4}

(3.5)

(3.6}

X= —4F, g '&"+B,n ~ A '+ b, n "(D„c)', (3.1)

5A' =(D„c)'A, 5b'=AB',
5e'= ,'gfs c c'A, 5B'=0— (3.2)

leads to the 9RST charge as the space integral of the
time component of the corresponding Noether current.

where (D„e)'=d„e'+gfb, A„c' We take the. auxiliary
field B and the ghost c to be Hermitian; then the an-
tighost b must be anti-Hermitian in order to make X
Hermitian. The rigid BRST symmetry of X under the
transformations

The BRST charge becomes

Q= fd x[d,c'+ ,'b, gff, c e']— (3.3b)

d k
(2n )

d k

(2m )

d k

(2m )
(3.7)

and in this form Q and Qg& are manifestly conserved.
The fields d„b„and c' can be expanded as
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Using Dirac brackets [6], the canonical equal-time com-
mutation relations yield

Ic'(k), bi, (k')] = —i5i, (2') 5(k—k'),

[c'(k),c (k')] =0= [b, (k), bit(k')] . (3.8)

The field equation for d, is just our gauge condition
A 0 +A A 3

=0, and the field equation for A 0 reads
d, =(DJFJO), . Further, because the ghosts decouple, we
may work in a subspace of the Fock space where the kets
contain only the ghost vacuum:

&
= ~nonghost &S ~0 ghost) where b, (k) ~0 ghost) =c'(k) ~0 ghost) =0 . (3.9)

We shall later consider other possible ghost vacua. In
this subspace we may omit the last term in Q, because
when we express it in terms of creation and annihilation
operators each term contains at least one ghost or an-
tighost annihilation operator. Hence

Q= f d xc'(x)(D;Fo), = —fd xc'(x)(D;m;), . (3.3c)

Notice that the missing field equation (the Gauss law) is
(D;F;0)'=0, so if this equation were satisfied Q would
vanish. In fact, the Gauss law will be satisfied only as a
weak condition, as we now discuss.

As has been first proposed by Kugo and Ojima [7] we
require that physical states be annihilated by Q. This
generalizes the Gupta-Bleuler condition of QED to gen-
eral gauges and to non-Abelian fields. As in the previous
section, we now pass from the Heisenberg field to the
asymptotic in or out field. We shall omit the color index
on the field. In the BRST operator only the terms quad-
ratic in the fields remain, and the terms involving g disap-
pear [7]. So now, using (2.5), up to an overall renormal-
ization [7],

d kQ= f i e(ki)c (k)(ski —
A, ki)p(k)+H. c. (3.3d)

(2n )

The terms involving a„cancel. When we apply Q to a ket
in our subspace (3.9), the term with c(k) in (3.3d) van-
ishes. The kets that are annihilated by Q are those that
are annihilated by p(k), for all k (except when k =A, k i ).
It follows that the Gauss law holds in the weak sense:
( A ~B;F;0~8 & =0 whenever the kets A and 8 are annihi-
lated by Q.

In general it may be shown [7] that the solutions to
Q~ &=0 have either positive norm, or zero norm. The
physical states have positive norm, whereas the zero
norm states have a vanishing inner product with the
physical states and with each other. There may be other
conditions required for a state to be physical, for example
in QCD it must have zero color. Further, given any ket
that represents a physical state, there are an infinite num-
ber of other kets, di8ering from it by a piece that is an-
nihilated by Q and has zero norm, all of which represent
the same physical state. In our case, an example of a zero
norm state that satisfied Q~ & =0 is p ~0&, while states
created by the at have positive norm. The standard
representative kets for the physical states are obtained by
applying a product of a, to the vacuum, and adding fur-
ther pieces where one or more p is applied to such kets
represents the same physics. The proof that the norm in
the subspace Q ~ & =0 is semipositive-definite relies on the
quartet mechanism of Kugo and Ojima [7]. A quartet

consists of two BRST doublets with opposite ghost num-
ber. In our case, the quartet modes are given by
c(k},b(k},p(k), and q(k). Indeed, under BRST transfor-
mations of the in or out field 5q(k)-c(k) and 5c(k)=0
since 5A =8 c, and 5b(k)-B(k)=d(k)-p(k} and
5p(k) =0, while c(k) and b(k) have opposite ghost num-
ber. All kets in the asymptotic-field Pock space satisfying
Q~ &=0 and Qsh~ &=0 consist then of 'the set with the
ghost vacuum (which we have been discussing so far), and
further zero norm states with ghost number zero con-
structed from the quartet modes. An example is the ket

[c'b —i(lkl' —~'k3)q p']lnonghost& I0 gho st& .

IV. DISCUSSION

(1) We require that the Fock vacuum ~0& is a physical
state. One allowed vacuum was defined in (2.7) and (3.9).
An obvious alternative [8], which is also annihilated by
Q, is to replace p, q, b, and c in the definition with their
Hermitian conjugates. This has the e8ect of changing
ie/ki in the propagator (2.10) to ie/k3 —If A, (.0 the
first choice is more convenient, and if A, & 0 the second,
because then Wick rotation is possible.

(2) We require the vacuum also to have unit norm. We
have seen in Sec. III that if we define the ghost vacuum to
be annihilated by b and c, the nonghost vacuum must be
annihilated by p. It is not consistent to require that it be
annihilated also by p (k), since this would confiict with
the vacuutn expectation value of [p,q ]. It is not possible
to impose the condition that the whole of the Gauss-law
operator D, F;o annihilates the vacuum (or, indeed, other
physical states) because its equal-time commutator with

A; is a c number.
(3) Physical states should have positive energy. The

free-field Hamiltonian 00, which governs the time varia-
tion of the asymptotic fields according to 4=i[HO, 4],
consists of a nonghost part Hop+Hopq and a ghost part.
The former is given by

Ho, = f ~ —a, (k)a, (k)
(2n. )

(1/2)(1 —
A, )k,k,+ at(k)a, (k} (4.1a)

(A, k +k3)

and
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Hp =f 8(k3)[(1—
A, )((k~2 —3A2kz3)pt(k)p(k) —i&3(~k~ —

A, k3)[qt(k)p(k)+pt(k)q(k)]Id k
(4.1b)

while the ghost part is

Hps, =f,g(k, )iAk, [b t(k)c(k) —ct(k)b(k)] .
(2m. )

(4.1c)

As a check, one may verify that Q in (3.3d) commutes
with Hp. If we define the vacuum ~0) to be annihilated
by Q, so that p(k)~0) =0, and also to be an eigenket of
Hp with eigenvalue 0, then we need also q{k)~0) =0 as
we have required in {2.7). As we have already argued, the
ket ~0)p+(k)~physical) represents the same physics as
~0). However, it is not an eigenstate of Hp, although it
gives the same expectation value for Hp as does ~0). The
same remarks apply to all physical states. The standard
representative kets for the physical states are annihilated
by q(k} and are eigenvectors of Hp. One may verify that
their eigenvalues are all positive, whatever the value of A,.
For example, the state of a t(k) ~0) has energy ~k~.

(4} If we use the expansion (2.4) of A;, together with
Ap= —

A, A3, we see that the terms involving q(k) may be
removed by a gauge transformation A„~A„+B„Qwith
(t},+At}3)Q=O. Nevertheless we must retain these q(k)
modes in the formalism, just as one must keep the longi-
tudinal polarizations of @ED in the Feynman gauge.

(5) In our unified treatment, we have seen no basic
difference between the cases when n is positive, zero, or
negative. For example, in all cases one can perform a
Wick rotation. Note, however, that our treatment does
not apply to the gauge A3 =0, though an alternative ap-
proach exists for this [9].

(6) It would be interesting to construct the Poincare
generators and investigate how Lorentz boosts relate the
results for different A, . At first sight it is not clear how
propagators with t'e/k'3 are related to our propagators
with t'e/k3. Perhaps such a relation could extend our
analysis to the case A 3 =0.

(7) In the case of the temporal gauge Ap =0 our results
agree with previous work [8,10]. But for the light-cone
gauge, A, =+1, we have not retrieved the Leibbrandt-
Mandelstam prescription [11] for the propagator: we
have ie/k3 rather than ie/(k3 —kp). Bassetto et al. [12]
have given a derivation of the light-cone gauge propaga-

I

tor which is very similar to ours (when A, =1); at a cer-
tain point, however, we each have to make an assumption
that certain poles whose residues are of order e may be
omitted, and we choose different ones. In our analysis,
when we pass from (2.8) to (2.10) we have dropped some
terms which, superficially, are of order e. Bassetto et al.
replace

1 ko+k3
kp k3 + le'sgnk3 kp k3 +t e

(4.2)
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Such replacements are usually valid when a Wick rota-
tion can be used, but in a delicate calculation such as that
of the Wilson loop by Andrasi and Taylor [13] the
difference may be important. It is this subtlety [5] which
has so far made it impossible to produce a reliable deriva-
tion of perturbation theory in n A =0 gauges.

Note added It ma. y be useful to repeat that our result
for the propagator in n A =0 gauges (except the case
A 3 =0 which is not covered), although derived in a total-
ly straightforward way without any assumptions, differs
from that of other authors by terms of order e (the
e in k ie)in —the 'numerator. As usual there is some
freedom at the free-field level, and usually such e terms
can be omitted, but one has to be careful because the
propagator has several poles, and an explicit higher loop
calculation in some interacting theory would be welcome.
We have identified the subsection of physical states using
minimal BRST methods (for example, we do not add a
kinetic term for the auxiliary field), but we note that also
difFerent vacua can lead to different propagators. Fur-
thermore, we want to make it clear that the canonical
formulation of the BRST symmetry has been investigated
by many people. The form (3.3c) of the BRST charge is
standard (first class constraints times ghosts + more),
and in general the BRST charge does not depend on the
choice of gauge, as confirmed (3.3c). Also the BRST
cohomology for (3.3c) and the crucial role played by the
quartet mechanism is well appreciated by workers in the
field.
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