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Essential to +CD applications of the operator product expansion, etc., is a knowledge of those
operators that ~i@ with gauge-invariant operators. A standard theorem asserts that the renormal-
ization matrix is triangular: Gauge-invariant operators have "alien" gauge-variant operators among
their counterterms, but, with a suitably chosen basis, the necessary alien operators have only them-
selves as counterterms. Moreover, the alien operators are supposed to vanish in physical matrix
elements. A recent calculation by Hamberg and van Neerven apparently contradicts these results.
By explicit calculations with the energy-momentum tensor, we show that the problems arise because
of subtle in&ared singularities that appear when gluonic matrix elements are taken on shell at zero
momentum transfer.

PACS number(s): 11.10.Gh, 11.15.—q, 12.38.Bx

I. HISTORICAL INTRODUCTION

Much phenomenology in /CD requires the use of
the operator product expansion [1—3] and many gener-
alizations such as "factorization theorems" [4]. Among
the ingredients are matrix elements of particular gauge-
invariant operators, which correspond to parton densities
(or distribution functions). The properties of these oper-
ators under renormalization are vital to all /CD calcula-
tions, and one serious complication arises because gauge-
invariant operators mix with certain gauge-variant (non-
gauge-invariant) operators. The renormalization directly
determines the phenomenologically important anomalous
dimensions of the operators —generally used in the form
of Altarelli-Parisi splitting coefficients.

The extra operators that mix with the gauge-invariant
operators are unphysical —we will call them "alien" op-
erators. It has been known since the earliest days of
/CD that one must demonstrate that these alien opera-
tors do not contribute to physics. Three theorems apply
to the decoupling: One is that a basis can be chosen such
that the alien operators are Becchi-Rouet-Stora-Tyutin
(BRST) exact. Next, physical matrix elements of BRST-
exact operators are zero. The last theorem is a trivial
consequence of the second: The renormalization mixing
matrix is triangular —alien operators do not mix with the
physical operators. The theorems to establish this have
been proven in their strongest form by Jogle~r and Lee
[5] and more recently by Henneaux [6].

Unfortunately, recent calculations by Hamberg and
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Multiplicative renorm~&~~ation is not sufBcient to remove

the in6nities &om Green functions of arbitrary composite op-
erators; counterterms corresponding to different operators are
needed.

van Neerven [7,8] contradict these general theorems.
Their results, therefore, throw into doubt the basis of all
higher-order perturbative /CD calculations. Our pur-
pose in this paper is to resolve this contradiction between
the theorem and the calculations. We will show that the
contradiction is only apparent, and that it arises &om
certain subtle infrared (IR) problems that are unluckily
intrinsic to the usual algorithms for doing perturbative
/CD calculations. However, the problem of efficiently
performing practical calculations is left for future work.

The immediate motivation for the calculations by
Hamberg and van Neerven was a long-standing discrep-
ancy between calculations of the two-loop anomalous
dimensions of the twist-2 covariant gluon operators in
Feynman gauge [9—11] and the lightlike axial gauge [12].
Since these anomalous dimensions are measurable, calcu-
lations performed in difFerent gauges should agree, and
this can readily be shown by the methods of [13], pro-
vided that one assumes the Joglekar-Lee theorem.

Hamberg and van Neerven repeated the Feynman
gauge calculation and discovered that the older calcu-
lations [9—ll] are in error because they assumed the ap-
plicability of the theorem that the renormalization ma-
trix is triangular. Hamberg and van Neerven show that
the renormalization matrix appears to be nontriangular.
Their calculation supports the otherwise dubious light-
cone gauge result and is in accord with supersymmetry
arguments [8].

The roots of this failure are already present in the one-
loop part of the calculation. Although Hamberg and van
Neerven do not remark on it, their calculation shows that
the 6nite part of a physical matrix element of their alien
operator is nonzero at one-loop order, contradicting the
second of the Joglekar-Lee results mentioned previously.
They perform their calculation for the whole tower of
twist-2 covariant gluon operators, but the problems are
present for the simplest of these operators, the energy-
momentum tensor 8„„,for which the renormalization the-
ory was worked out by Freed~an, Muzinich, and Wein-
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berg [14,15]. The alien operators in that analysis are not
manifestly the same as those used by Hamberg and van
Neerven. The form of O~„given by Freedman et a/. is in
agreement with the general theorems of Joglekar and Lee
and of Henneaux. However, the gauge-variant operators
used by Hamberg and van Neerven are obtained &om the
analysis of Dixon and Taylor [22]; it is not evident that
these operators are BRST exact.

This is where we start: A sufEciently detailed analy-
sis of the energy-momentum tensor at one-loop order is
enough to locate the source of the contradiction. We will
verify that at one-loop order, the renormalization given
by Freedman et al. is in fact correct. However, the one-
loop gluonic matrix element of the alien operator fails to
vanish at zero momentum transfer. ' We will find that
the source of this incongruity is an in&ared divergence,
but the divergence is not in the calculation of the matrix
element. Rather, it is a quadratic divergence in the proof
that the matrix element vanishes.

The source of the divergence makes it clear that the
proof of the theorem on the vanishing of the alien oper-
ators should be correct when one applies it to physical
states. The problem arises when one considers matrix
elements in an ofF-shell gluon state and then takes the
gluon on-shell.

But this clearly threatens the rationale for the usual
methods of doing perturbative /CD calculations. More-
over, the renormalization matrix that Hamberg and van
Neerven calculated and found to be nontriangular pre-
sumably includes some in&ared renormalization, con-
trary to what should be done.

In Sec. II, we state the Joglekar-Lee theorems. In
Sec. III, we list our conventions for pure-gauge Yang-
Mills theory. In Sec. IV, we give the results of the one-
loop calculation of two-point Green functions with the
energy-momentum tensor operator inserted at zero mo-
mentum transfer and derive the renormalization mixing
matrix. The calculation at nonzero momentum transfer
is currently underway. The off-shell results, as well as the
physical matrix elements, are planned to be reported in
the near future. The Appendix contains a brief discussion
of "right derivatives, " the full Lorentz tensor structure of
the two-gluon Green functions, which are abbreviated in
the text, with a separation into leading-twist and higher
twist pieces, a list of the Fey~man graphs with compos-
ite operator insertions used in the calculations, and the
Feynman rules for the operator vertices considered in this
paper.

II. RENORMALIZATION OF
GAUGE-INVARIANT OPERATORS

gauge-invariant operators. In [13], the theorems are
stated and all the easy parts are proven.

Let G', denote a set of gauge-invariant operators that
mix under renormalization, and let A; denote the set of
alien operators with which they mix under renormaliza-
tion. (We define "alien" to mean "not gauge-invariant. ")
Finally, let E, denote the set of operators that vanish by
use of the equations of motion and with which the pre-
vious two sets of operators mix under renormalization.

The first of the Joglekar-Lee results is that the basis
of the alien operators A; that mix with gauge-invariant
operators can be chosen so that they are all BRST exact;
i.e., they can be written as

~ ~BRST+4

where we will call J3; the "ancestor" of A, .
The second theorem is that physical matrix elements

of the BRST-exact alien operators h»»B; are zero.
The last of the theorems is that the renormalization

mixing matrix is triangular,

( R[G] ) (' Z~G Z~~ Z« 'r

A[A] = 0 Z~~ Z~@ i A

ia[Z]) i 0 0 Z ) iZ)
(2.2)

Of these theorems, the hardest to prove is the first.
It can easily be shown that all counterterms to BRST-
invariant operators are themselves BRST invariant [13].
Then one must prove that any BRST-invariant operator
is a linear combination of gauge-invariant operators and
BRST-exact operators. Up to operators that vanish by
the equations of motion, this is supposed to be proven
by Joglekar and Lee [5], but we find that the proof is

very hard to understand. A simpler proof on the basis of
cohomology theory is presented by Henneaux in [6].

A simple proof of the last two theorems is given in
[13]. The vanishing of physical matrix elements of the
alien operators follows from a simple Ward identity in-
volving the BRST variation (also called a Slavnov-Taylor
identity), once one knows that only BRST-exact opera-
tors are needed. This result trivially generalizes to show
that Green functions of these alien operators with BRST-
invariant operators are zero. BRST-invariant operators
include gauge-invariant operators and the BRST-exact
operators that comprise all our alien operators.

The third theorem, on the tnangularity of the renor-
malization matrix, immediately follows [13]. If any on-

shell, physical matrix element of an unrenormalized op-
erator in class A is to vanish, then its pole piece must
also vanish on shell. Since at least some of the physical

In this section, we state the three theorems that
Joglekar and Lee [5] proved on the renormalization of

The momentum transfer is defined to be the sum of the
momenta Bowing into the inserted operator vertex.

Harris and Smith in a recent report [16] perform the one-

loop energy-momentum tensor calculations at nonzero mo-

mentum transfer and find agreement with Freedman et al.

and with Joglekar and Lee.

Matrix elements of E, must vanish, but Green functions of
E,. do not.

We use the convention of [17], where the wavy equal sign
means that the relation is only true after one or more of the
equations of motions have been used.

"Pole" in this context means a singularity as the dimension
of space-time is varied. We are assuming the use of minimal
subtraction with dimensional regularization to perform the
renormalization (see Sec. III E).
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matrix elements of any gauge-invariant operator are non-
vanishing, it follows that the entry Z~~ must be zero; no
operators in class G can mix with the operator in class A.
Similarly, Z~~ and Z@~ in the bottom row of the mixing
matrix must be zero because an unrenormalized opera-
tor in class E must vanish by the equations of motion;
therefore, its pole part xnust also vanish by the equations
of motion.

Note that at the level of pure Fey~man graph calcu-
lations, a physical matrix elexnent is one with the gluon
polarizations being purely transverse and with the states
being on-shell quarks or on-shell gluons.

Prior to the work of Joglekar and Lee, it was shown by
Freedman, Muzinich, and Weinberg [14,15] how to con-
struct a finite energy-momentum tensor for gauge theo-
ries. Their operator can readily be seen to satisfy the
first Joglekar-Lee theorem, as we will explain later.

The problem we now face is that the calculations by
Hamberg and van Neerven appear to violate all of the
above theorems.

B. Euler-Lagrange equations of motion

0"l'..~ 0"C.„
BC "8(8„4 )

(3.4)

where

4 e (A„ (3.5)

We have

(D„F"") + AB"8.A + gc b,(8"gb)~, = 0, (3.6a)

(D„B"i]) = 0, (3.6b)

8"(D„(i) = 0 . (3.6c)

The Euler-Lagrange equations of motion, using right
derivatives for the Grassmann variables are

III. YANG-MILLS CONVENTIONS

In this section, we list some coxnmon objects in Yang-
Mills theory to exhibit our conventions and notation, but
also because some (such as the energy-momentum tensor)
play a pivotal role throughout this article.

C. BEST symmetry

The gauge-fixed efFective Lagrangian density is not
gauge-invariant but is (quasi)invariant under the follow-
ing global symmetry [18]:

A. Lagrangian density
~BRBTAp a (Dp~)a~(

~BRsT+a 2gCabc~b~c~( )

h'BRBTr]a = M Aah( .

(3.7)

The efFective Lagrangian density of pure-gauge Yang-
Mills theory in general covariant gauge is, in terms of
unrenormalized (bare) fields and parameters (designated
by carets), as follows:

&(*) = 4F."(~)Fv —-(&) —2&[& A-(*)]P A-(&)]

+[~"~-(*)][D.(*) (*)]- (3.1)

where the antisyxnmetric field strength tensor is given by

F""(x)= 8"A"(x) —8"A"(x) —gc b,A~~(2:)A,"(x),
(3.2)

and the covariant derivative acts on fields in the adjoint
representation of the group as follows:

BRST

b
7 (3.8)

in analogy with the right derivatives for Grassmann vari-
ables to mean that b$ is commuted or anticommuted to
the extreme right and then removed. This variation,
called the BRST variation, is a symmetry of the La-
grangian density, Eq. (3.1), since the change in the La-
grangian density is a four divergence, without invoking
the equations of motion

Here, b( is a constant parameter with Grassmann parity
1, that is, it anticommutes with the (anti)ghost field coin-
ponents (and the fermion field components, if there were
any), but commutes with everything else. We introduce
the notation

[D~(~)~(*)]-—= D~ -(*)~.(~) (3.3)
—= [B„b —gc Ab„(xb)] ~(z) .

'"' l: = AB"[(D„~)—B.A ] .
b

(3.9)

We are defining the Grassmann field f7 (x) to be the
antighost and the Grassmann field u (x) to be the ghost.
The parameter g is the coupling strength, c b, are the
structure constants of the underlying Lie algebra SU(N),
and A is the arbitrary gauge-fixing parameter in general
covariant gauge. The color indices in the adjoint repre-
sentation a7 67 c7. . . range kom 1 to N2 —1.

The important property of nilpotence,

See Sec. A1 in the Appendix for a discussion of right
derivatives.
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b»» (anything) = 0, (3.10) [14,15] to have finite Green functions with renormalized
external fields. It is

holds only after using one of the equations of motion,
Eq. (3.6c), which will be called the "trivial equation of
motion" in what follows.

D. Energy-momentum tensor

The symmetric, conserved energy-momentum stress
tensor density can be constructed from the canonical ten-
sor by using Belinfante's procedure [20,21]. This is also
the tensor proven by Freedman, Muzinich, and Weinberg

gpv = —gpv 8 —Fpp aF„—gpv AB (Ap aB . Aa)

+A(A„B„B.A ) + A(A„B„B A )

+(Bp&-)(D-~)-+ (8-&-)(Dp~)- = g-p .

The gauge-invariant piece is

(GI) 1 "pm" " "
p

8&v 4 ggvF~ Fp~ ~ Fpp ~Fv

The gauge-variant piece is everything else,

(3.11)

(3.12)

g(GV) ~ ~(cr)
PV PV PV

g„„A[8—(Ap B.A ) —
—,(8 A )(B.A )] —g„„(8 rl )(Dp~) + A(A„B„B A )+ A(A„B„B A )

+(Bp~-)(D-~)-+ (8 ~-)(Dp~)- . (3.13)

The gauge-variant piece of the energy-momentum ten-
sor is the BRST variation of an "ancestor" operator

transformation of that same field, so any gauge-invariant
quantity is automatically BRST invariant.

X.....,., e(„) = „&.A„.+ a„~. A„.

g„„[2rI 8—A +-(Bprj )Ap], (3.14)

since

E. Renormalisation

We use multiplicative renormalization

&ancestor gpv = g&v 2 gpv'gaB (Dp~) a
b

(3.15)

and the last term vanishes by the trivial equation of mo-
tion, Eq. (3.6c). In Sec. IVD we present the ancestor
operator of the "renormalized BRST variation. "

The BRST variation of the GV piece vanishes (up to
the trivial equation of motion) because of the nilpotence
of the BRST transformation. We say that a gauge-

variant operator such as 8„„ is BRST exact if it has
an ancestor. The BRST variation of the GI piece van-
ishes without using the equations of motion because the
BRST variation of the gluon field is based on the gauge

A„

ga

Z~ A„
1

Z~ caJ~,

(3.16)

Z~A (it is known that Z~ = Z& to all orders),

Zgg p

and dimensional regularization in 4 —2~ space-time di-
mensions with the modified minimal subtraction (MS)
scheme. s (See [13] for a thorough treatinent of the sub-
ject.)

The Lagrangian density, Eq. (3.1), can be written in
terms of renormalized fields and parameters. This is the
same Lagrangian density so the same symbol 8 is used
to represent both quantities

4F""F„„—2A(—8.A )(B.A ) + (8"rl )(D„ur) —4bZ„(B„A„—B„A„)(8"A"—8"A")

+zbZ„,gp'c b, (B„A„—B„A„)A&A," ——bZ, g p, 'c s c g,A„sA„,A&~A,
" —z(ZpZ~ —1)A(8. A )(8 A )

+bZ, (B„rI )8"~ —bZ, gp'c t (B„rI )A~a), , (3.17)

If the Lagrangian formulation with the Nakanishi-Lautrup
field is used, as in [18] and [19], no equations of motion are
needed to demonstrate the nilpotence of the BRST variation.

Hamberg and van Neerven work in 4+ e dimensions.
Some authors use the term "renormahzed Lagrangian den-

sity, " but it is not always clear what is meant.



50 RENORMAI. IZATION OF COMPOSITE OPERATORS IN YANG-. . . 4121

where vergences are all ultraviolet.
We list the multiplicative renormalization constants in

the MS scheme to the order needed for an O(g2) calcu-
lation of the Green functions considered in this paper:

Zrr —Z
S

Zrrr —Z~ Z»
(3.18)

Zs ——1+0(g ),

(3.21)

—,'+-,'(1 —-„') +o(g'
5+ 1 (1 1) +O( 4)

p+ —,
' (1 —-„') +o(g') = z„-',

Notice that the renormalized coupling g is dimension-
less and that we have introduced a parameter p, with
the dimensions of mass. The renormalization constants
bZ; = Z; —1 have been given Roman numeral subscripts
which label the number of gauge fields in the counter-
term vertex.

Since the coupling is universal, the three difFerent inter-
action vertices have associated renormalization constants
related by the following "renormalization constant Ward
identities":

(3.19)

In the minimal subtraction (MS) re normalization
scheme, the counterterms are the negative of the pole
part only, with no finite component. In the MS scheme,
the ubiquitous Euler's constant p~ and the natural log-
arithms of 4m are absorbed into a new renormalization
mass parameter p, defined by

(4~) *
p=—ul „.I

~ (3.20)

Applied under dimensional regularization, the counter-
terms in either scheme are proportional to —.Although
dimensional regularization is able to control both ultra-
violet (UV) and IR divergences, in this paper the —, di-

where C(A) = N for the gauge group SU(N).

F. (ModiSed) LSZ reduction

Z;;„..(p) = (p'g- - p p )ll(p'), (3.22)

noting that the gluon self-energy is purely transverse due
to a Ward identity [13].

In a massless theory, the singularities in propagators,
as a function of p2, are not simple poles after higher order
corrections are included.

The dressed propagators for the gluon and ghost, re-
spectively, are then

The residue of the propagator pole is used in the LSZ
(for Lehmann, Symanzik, and Zimmermann) reduction
formula to derive the S matrix from Green functions.
The basic idea is that the S matrix is obtained from the
asymptotic behavior of Green functions for large times
(t -+ koo), and this behavior is governed by the singu-
larities of the external propagators. We use a modified
version of this procedure to handle the IR-divergent log-
arithms that appear in this massless theory.

Let Z(p) be the self-energy, defined as in Fig. 1. We
isolate the p2 dependence of the gluon self-energy, defin-
ing II(p2) by

and

p'+ i~ 1+II(pz) p2+ i~ g Ay 1+ II(p') p2+ i~ (p2+ ie)2

(3.23a)

ib c2+& ghost

p2 —Zsho, g(p) + i e p2 + ie
(3.23b)

where c2 is the residue of the propagator pole (the coefficient of p2 in the denominator). To one-loop order, the gluon
self-energy is

g 1( 1) f 11 1 f'-p l
~Kg...(p) =,&~(p'g —p p )

——
I

1 ——
I

+
I

1 ——
I

1+-»I
16z2 4 g A) g A) 2 q p2 y

31 5 t
—pl——+-l I, I

+o(g'),
9 3 (p2)j

(3.24)

We do not have a complete justi6cation of our algorithm.
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and the ghost self-energy to one-loop order is

g 1 6 —pl 1( 1& (—p'i
~sh-~(p) = ,&»' 1 —-»

I . I

——
I
' ——

I
'n

I -2 I
+ O(g') .

16~2 2 gP2) 4 g A) (P2) (3.25)

The singularities in the propagators are not simple poles, but the leading power, with logarithmic corrections, is
governed by the large-time behavior of the propagator. So to de6ne the residue we use the following formulas, which
would be valid when the physical masses are nonzero:

p [1+n(p')])
Bp Q=m2

physical

(3.26a)

and

g 1/ 1) ( 11 3 1 f —pl 16 5 f —p)+
I

1 ——
I

—+ —»I, I

——+ —»I, I
+O(g')

16~2 4( A) I, Aj 2 2 (p2) S 3 (p~)J

2
cghQse = &~s) o.a(p)

t9p
physical

g' ( 11 1 1 (' —p') 1 1 ( —p')
C~

/

1 ——
/

—+ —ln/
/

——+ —in/
/

+O(g ).
16m2 i A) 4 4 Ep2) 2 2 (P2) „, 0

(3.26b)

We do not calculate cga„Qn because it is not used in this
paper. It is important to re&ain &om taking the on-shell
limit (p2 ~ 0) until the IR-divergent logarit&ms above
have cancelled algebraically with similar logarithms in
the amputated Green functions which are being con-
verted to 8 matrix elements.

We have generalized the notion of residue to include
the IR-divergent terms that arise in a massless theory.
Note that we are extracting the residue of the propaga-
tor pole by taking the partial derivative of the denomi-
nator with respect to p at p = 0, rather than simply
dividing the denominator by p2. The partial derivative
extracts that piece of the IR-divergent logarithm which is
proportional to p2 in a Laurent expansion. This piece is

necessary to ensure, for example, that the two-gluon ma-
trix element of the energy-momentum tensor, Eq. (4.2),
is IR 6nite on shell and equal to its correct value.

G. Covariant gluon operator

In [8], Hamberg and van Neerven calculate the anoma-
lous dimension of the covariant gluon operator to two-

loop order, that is O(as2), with all free Lorentz indices
contracted with a null vector b, . This selects the highest-
spin part of the operator and eliminates the need to cal-
culate the trace terms.

The covariant gluon operator is

0"'"'" (z) = zi S[F,"'(z)D,"', (z)D"' (z) x x D," ', (z)F ", (z)-] + trace terms, (3.27)

where 8 denotes symmetrization of the Lorentz indices p,.
and the trace terms make the operator traceless under all
possible contractions of the &ee Lorentz indices in pairs.
The c; are color indices in the adjoint representation.

Hamberg and van Neerven's gauge-invariant operator
1S

(3.28)

where A is lightlike. In units such that c = 1 = h, the
mass dimension of this operator grows linearly with m,

twist = mass dimension —spin. (3.30)

pgsv & ~gsp~v ]. gsv~pm~ 1 g(CI} gsv
g 2 a pa 8 a Pma

(3.31)

All operators of the form above, Eq. (3.28), are twist-2.
The simplest case (m = 2) of the covariant gluon op-

erator, Eq. (3.27), gives, up to a multiplicative factor,
the gauge-invariant part of the energy-momentum ten-
sor, Eq. (3.12)

[O~ l] = m+2. (3.29)

Selecting the highest-spin piece is equivalent to selecting
the lowest twist, since

We study this case because of the relative simplicity of
the calculation, but also because the gauge-variant op-
erators which mix with it are supposed to be known

[14,15]; they are the gauge-variant operators in the
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Some examples should clarify the notation. The an-
cestor of the twist-2 GV part of energy-moment»m ten-
sor (second moment of the covariant gluon operator) in
schematic forxn is

FIG. 1. Gluon and ghost self-energies to one-loop order.
The cross-hatched area represents all one-particle irreducible
amputated graphs, including counterterms so that this area
has no UV divergences.

energy-moment»m tensor, Eq. (3.13). No other operators
are required. The gauge-variant operators for our special
case also happen to be those given by the Joglekar-Lee
prescription. We calculate the trace terms m.entioned in
Eq. (3.27) explicitly even though they are higher-twist.

The speci6c case m = 2 of Hamberg and van Neerven's
operator, Eq. (3.28), is

(3.32)

Hamberg and van Neerven use a basis of operators
given by Dixon and Taylor [22] before the BRST sym-
metry was fully developed. For the case m = 2, their
alien operator does not correspond to our GV operator
[Eq. (3.13)]. The basis of operators that they chose to
mix with their GI operator, Eq. (3.32), is

0 ),, ——(Ff "Dp sAs+rj 8"8"~ )b,„b,„+0(g ),
(3.33)

where

0"h, —— [F~"Dp sAs—+F~"Dp sAq]+g 8"8"~

+terms proportional to g"" + 0(g ) . (3.34)

This operator is not BRST exact, in fact its BRST vari-
ation does not vanish.

We can give a schematic form for the operators which
are BRST ancestors to the alien operators of highest twist
that ~ix with the GI operators for all even moments m
simply by counting mass dimension, ghost number, and
twist, and by requiring an SU(N) singlet,

Xancestor (0~]
'"

) = & ~ gaAe 8"* + 0(g),
e e h

i=2

where 8 denotes symmetrization of the Lorentz indices
and the coefficients C( ) are arbitrary (they can be ab-
sorbed into entries of the renormalization mixing matrix
for the mth moment). The derivatives may act on any
combination of the 6elds. The alien operators obtained
&om these ancestors, of course, have vanishing BRST
variation (modulo the trivial equation of motion), be-
cause of the nilpotence of that variation.

X „.t, (0"h,"') = C( ) [ri A"'8"' + ri A"*8"']+ 0(g).
(3.36)

Compare this with the twist-2 part of Eq. (3.14). The
6elds upon which the partial derivatives act are not spec-
ified in the schematic form. The arbitrary constant C~ ~

can be absorbed into entries of the renormalization mix-
ing matrix Eq. (4.19). The 0(g) terms turn out to be
unnecessary.

The dimension-six GI operator (fourth moment of the
covariant gluon operator) is

10"'"'"'"'= S[F~—"'—D"' D"* F "']+ trace terms.
C~ CqCg CgCq P Cg

(3.37)

Our prediction for the BRST ancestor of the GV opera-
tors that mix with the twist-2 (highest-twist) part of the
GI operator above is

(OP 8 P P
) 0( )4g[" Agt ggt gPeggt] + 0(g)

(3.38)

Again, the partial derivatives may act on any combina-
tion of the fields. In this case, the 0(g) terms may be
necessary.

IV. RESULTS OF THE CALCULATION AT ZERO
MOMENTUM TRANSPER

The results in this section were obtained under the
possibly questionable operation of first taking the limit
of zero momentum transfer, before any of the Feynxnan
diagrams are evaluated. The software package used was
the symbolic manipulator, FoRM [23], written by Ver-
maseren. We now evaluate Green functions of various
pieces of the energy-momentum tensor Grst with two
gluon 6elds, then with one ghost field and one antighost
Geld.

The fields in the inserted operators are bare, while the
external gluon and ghost legs are renorxnalized as usual,
since it is the renormalized 6elds that interact and are
loop corrected. This difFers &om Hamberg and van Neer-
ven's calculation in which the external fields as well as the
fields in the inserted operator are bare. The two calcu-
lations, therefore, difFer by factors of some multiplicative
renormalization constants, Eq. (3.21).

One might be suspicious of interchanging the order of the
limit as the momentum transfer goes to zero with the other
limits involved in the renormalization procedure.
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A. Green functions of 8„„arith two gluon Selds

While we give the pole pieces in their entirety, the fi-
nite parts have been simplified for clarity in presentation.
The full tensor structure can be found in the Appendix,
where we also list the twist-2 (spin-2) piece of the oper-
ators. The Feyman graphs for these Green functions are
displayed in Fig. 2. Since we are working at zero momen-
turn transfer, the graph in Fig. 3 vanishes in dimensional
regularization because the loop integral contains no mo-
mentum scale. This graph will, however, contribute at
nonzero momentum transfer.

1. Snttm energy-momentum tensor

FIG. 2. All Feynman diagrams that contribute to the
one-loop amputated gluon two-point function at zero momen-
tum transfer. The symbol I3 represents the inserted composite
operators 8„„,8„„,or 8„„(GI) (GV)

Consider the amputated gluon two-point Green func-
tion with the entire energy-moment»m tensor, Eq. (3.11),
inserted at zero momentum transfer. The external gluon
fields have not been contracted with physical polariza-
tion vectors, we have not multiplied by the modified LSZ
residue of the gluon propagator pole, and the external
momenta have not been put on shell. This is what we
will mean by an oK-shell gluon Green function in the sec-
tions that follow. Explicit calculation gives

g' 1 f 1) ( ll t' —p')(Ol&~~ oe~~&r s[0)amputated = p~p~gcr~&na 2 + 2 C~ 1 ——
[

—
(

1 ——
[ 3 + ln

(16~2 2 g ~j ( A) (p2)
10 (—p' l+———ln

~
~

+ UV-finite terms that vanish on shell+ O(g ) .&~') )
(4.1)

Notice that this object is UV finite. A glance at Eq. (A2)
in the Appendix will satisfy the reader that the terms not
included above are also UV finite, even oK shell. The
UV finiteness supports the results of Freedman et al.
[14,15] on the renormalization of the symmetric energy-
momentnm tensor. Also, since there is no pole, the con-
tribution to the anomalous dimension is zero.

We now do what Hamberg and van Neerven argue,
quite reasonably, in their paper is impossible. We con-
struct a matrix element between massless gluon states,
but to do so we use the modified LSZ prescription de-
scribed in Sec. IIIF.

Contracting with physical polarization vectors, using
the modified LSZ residue of the gluon propagator pole
c i„ in Eq. (3.26a), and putting the external momenta
on shell, we get the relatively simple S matrix element

(.„p,nil..i",p, ~) = p.p.~."', -"—+ O(g'), (4 2)

where we have used the fact that ~; is a physical polar-

ization vector satisfying

p c;=0, i =12. (4 3)

xHp z (4.4)

is the Noether charge. It measures the physical (non-
IR-divergent) energy momentum in a state. A correct
calculation should show that all the higher order correc-
tions to the right-hand side of Eq. (4.2) vanish

In the next two sections, we examine the GI and GV
pieces separately.

The physical state ~e;, p, a) is meant to represent an on-
shell gluon of momentum p, polarization vector e;, and
color a.

The modified LSZ procedure eliminates the IR-
divergent logarithms even before the external momenta
are taken on shell. The result, Eq. (4.2), is not surprising
since 8„„is the conserved Noether current and

2. Gauge-ineamant par t

Consider now the amputated oK-shell gluon two-point Green function with only the gauge-invariant piece of the
energy-momentum tensor, Eq. (3.12), inserted at zero momentum transfer. Explicit calculation gives
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2
(GI) 1 g

(0IT +v agyv +r bl0)amputated 2 +Ahab p ( 2gargpv + gvpgrv + gcrvgrp)
t 16m2

1
(prpvgvp + prpglgtTv + popvgrgl + pcTpglgrv pcTprgjlv)

g' f 1&' / 1& ( p'&
+p.p-g-h-b -2+,&A I1 ——

I

—
I

1 ——
I

6+»I
167r2 ( A) ( A) q P2 )

86 10 (—p i+———ln
I I

+ UV-finite terms that vanish on shell+ O(g ) .
9 3 (p2) (4.5)

There is an UV pole in Eq. (4.5), but this UV divergence vanishes on shell with physical polarizations.
A further clue that we have performed the calculation correctly is the fact that Eq. (A4) satisfies the Ward identity

plJpr(0I&&v agpv &r bl0)amputated = 0(GI) (4.6)

Taking into account Hamberg and van Neerven's different dimensional regularization prescription (dimension 4+ e
instead of 4 —2e) and their use of bare fields instead of renormalized fields for the external legs, our result contracted
with lightlike vectors, Eq. (A5), agrees with theirs.

If we now put this result on mass shell and use the modified LSZ procedure to derive the S-matrix element, we get

g' 1 ( 11' ( l1
(ei,p, aI8„„' Iez, p, 5) = p„p„h be', ez —2 + CA —

I

1 ——
I

—3
I

1 ——
I
+ 6 + O(g ) .16z2 2 g A) g A)

(4.7)

Notice that this physical matrix element of a gauge-invariant operator depends on the gauge-fixing parameter A. Also,
the GI part is not equal to the total, so we must calculate the GV part.

8. Gattge-oartant (aliett) part

Consider the amputated ofF-shell gluon two-point Green function with only the gauge-variant piece of the energy-
momentum tensor, Eq. (3.13), inserted at zero momentum transfer. Explicit calculation gives

2
(Gv) 1 g 2 1(0IT+o ag~v &r bl0)amputated = 2OA&sb p (2gvrg~v gcrpagrv govgr~)e 16~2

1+ 2(prpvgvp+ prppgov + pvpvgrg + pvpg grv —pvprgpv)

g2 1 ( 1) |' l1
+p~p ger Kb OA —

I
1 ——

I
+3

I16~2

+UV-finite terms that vanish on shell+ O(g ) .

(4.8)

The pole terms cancel between the GI and GV parts ofF shell. On shell, each pole piece vanishes individually.
Going on-shell and using the modified LSZ procedure, we get the S-matrix element

(ei p alg„. Iez, p |)=ppp bobei e2, &A ——I1 ——
I

+311——
I

—6 +O(g').(Gv) e g' 1 t 1 l (1'' 2 ( A) ( A)
(4 9)

Notice that the finite part of the physical matrix ele-
ment does not vaxush. But, 8„„ is BRST exact, as we

~ (GV) ~

observed, and there is a general theoeem that BRST-
exact operators have vanishing physical matrix elements.
Thus, we know that we have a contradiction with general
theorems.

Hamberg and van Neerven have a similar result im-
plicit in their formulas (they did not remark on it), but
since their alien operators are not BRST exact, physi-
cal matrix elements of their alien operators would not be
expected to vanish.

B. Green functions of H„„with one ghost Seld and
one antighost Seld

f. Entire energy-momentum tensor

We have just seen that the two-gluon matrix element
of the gauge-variant part of the energy-momentum ten-
sor xs nonzero. Since 8„„ is BRST exact, this contra-(Gv)

diets a crucial part of the theory on the renormalization
of gauge-invariant operators and so we cannot take for
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FIG. 3. The Peynman diagram that vanishes at zero mo-
mentum transfer, but contributes to the one-loop gluon
two-point function at nonzero momentum transfer. The sym-
bol represents the inserted composite operators 8„„,8„„),

(Gv)or 8yv

granted any of the results of this theory, and must verify
the results.

In particular, we need to verify the finiteness at one-
loop order of Green functions of the energy-momentum
tensor. The preceding section has established this for
the gluon two-point Green function and in this section
we verify finiteness for the ghost-antighost Green func-
tion. The Feynman graphs for these Green functions are
displayed in Fig. 4.

All the necessary counterterms are determined by the
formula for 8„„;they are obtained by expanding 8„ in

FIG. 4. All Feynman diagrams that contribute to the
one-loop amputated ghost two-point function. The symbol

represents the inserted composite operators 8„„,8(„),or
8(Gv)

P P ~

terms of renormalized fields by Eq. (3.16).
Consider the amputated ofF-shell ghost two-point

Green function with the entire energy-momentum tensor,
Eq. (3.11), inserted at zero momentutn transfer. Explicit
calculation gives

(0~Tea'gpv'gb~0)amputated —'45(2pppv p gpv)
2

g' ~(+,&~~-~
I

~ ——
I

— ~+»I,
I n,n- —-»I, Is'g,.)16m'

I ( A) 2 (p~) "" 4 (p, )

+ —1+ ln
~ -, I pvp- + 1 —-»

I 2 I
p'g. - + O(g')

( —p'l
Es'). " 2 I ~').

Using the modified I SZ residue of the ghost propagator pole, c2h, t in Eq. (3.26b), and putting the external momenta
on shell, we get the comparatively simple 8-matrix element

(»&lgp l»~) = 2ppp-~-~+ O(g')

which is correct for the expectation value of 8„„in a properly normalized state of momentum p. Here the state vector
~p, a) is meant to represent an on-shell ghost of momentum p and color a. Again, although we only performed the
one-loop calculation, all higher order corrections should vanish.

The twist-2 (spin-2) piece of the amputated Green function, Eq. (4.10) above, in which the free I orentz indices of
the inserted operator, p, and v, are contracted with a null vector 6 is

+o(g ) .

g' 1 ( 11 (—p') (—p'l
«IT~-& g~-&"nsl0). p.t-t.d = (p. &)'~.s

I 2+,&~ —
I

1 —
q i

1+»I, I

—1+»
i )

(4.12)

Gauge-invariant par t

Consider now the amputated o8'-shell ghost two-point Green function with only the gauge-invariant piece of the
energy-momentum tensor, Eq. (3.12), inserted at zero momentutn transfer. Explicit calculation gives
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(GI) g'
(0(+~ag~v rja)0)amputated =

z &A~as
~

p~pv p g~v

+ z+Abos 1 —»
I —, I p~p + -»I —, lp g~ +O(g ) .g (—pI 1 T —pl 4

16z' , ( p' ) " " 4 ( pz )
(4.13)

The twist-2 (spin-2) piece of this amputated Green function in which the f'ree Lorentz indices of the inserted
operator, p and v, are contracted with a null vector 4 is

2 1 2

(0(T(d 6,"ep„b"gs(0) p t t,s = (p &) 2&A&os —+1 —»
~ 2 ~

+&(g ) .
16z' e ( p )

(4.14)

8. Gattge aati-an't (alt'eft) pat t

Consider the amputated off-'shell ghost two-point Green function with only the gauge-variant piece of the energy-
momentt»» tensor, Eq. (3.13), inserted at zero moment»m transfer. Explicit calculation gives

(0~T~ag~v 'gb(0)amputated =
z +A~ah

~
pppv + p tv I

+ ab(2pppv p gpv)(GV) lg( lz
e 16zz g 4

g' ( ( l b 1 ( p''I 1 ( p'l,+,&~&a
I

&
—

q I

2
&+&~l -, I s,J'. —

4 I -, ln'g, .)16z2
~ ( ~) 2 E & ). 4

+2 —1+i ~, ~ p„p + 1 —-l ~, ~

pzg +O(g
3

& ~'). (4.15)

Notice that the pole terms cancel between the GI and GV pieces.
The twist-2 (spin-2) piece of this amputated Green function in which the free Lorentz indices of the inserted

operator, p and v, are contracted with a null vector 6 is

(0)&~a&"8„. &"vs~0)amputated = (p &)'bas 2+,&~ —-+ — 1 —— 1+»
I

(~v& 2 g [ 1 1 l~ ( p
16z.2 e 2

I A) ( P2 )

—2+21n ~, ~

+O(g') .
) )

(4.16)

C. Renormalisation mixing matrix

If we do not require a priori that the matrix be triangular, then the most general form is

(z~~ z~~ z~~ ) ( e„.
Zgg Zgg Zgg g~„ )

0 0 zaE) ( E )
(4.17)

where the operator of class E, which vanishes by the equations of motion Eqs. (3.6) and mixes with the operators in
the energy-moment@~ tensor, is

E„„=A„[(DpF~„) + AB„B A +gc s,(B„re)~ ]+A„[(DpF~„) + AB„B.A +gc s,(B„re)~,]
—zgv„A [(D~Fv") + AB 8 A + gc ~(8 g )u,s] + 2agv„(D~Bvrl) u + z(1 —n)g„„rl 8~(Dvu) . (4.18)

Like the fields in the energy-momentum tensor, the fields
in the operator E~„above are bare. The parameter o. in
the last two terms above is kee to vary since the matrix
elements considered are not sufBcient to distinguish be-

tween the equations of motion for the ghost and antighost
fields.

These are the only dimension-four, SU(N) singlet op-
erators with two &ee Lorentz indices that can be formed
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from the equations of motion. The coe{Bcients are deter-
mined by demanding that the GI and GV operators close
on the set above under renormalization.

We 6nd that the following elements of the mixing ma-
trix are compatible with both the two-gluon and two-
ghost projections:

so we have

~BRSTAp a =

~BRST+a

bBRST ga

(4.21)

(
1 1 1

Z04 Z~ 8»(d44 —ZsZsg gcabcA» b(dc bf,
1—

2 Zg Zsg gCobe(db(dc t)( 4"

ZpZ~Z„'M. A b(,
ZG(- = 1+0(g ),
Z(-~ ———2-,',s, Cw+ O(g ),
ZG@ =

2
-' is, C~ + O(g ),

Z~c = O(g'),
Z~~ ——1+ —,

'-' „",C„+O(g'),

Z~E = —
2 -s is~0 C~ + O(g') 4

Zaa = 1+O(g ) .

(4.19)

D. BEST Ward identity (Slavnov-Taylor identity)

The renormalization mixing matrix is triangular to
O(g2). We do not calculate ZE@ beyond the tree level
explicitly in this paper, but there is a prediction from
theory that Z@@ = 1, with no higher order corrections.
In other words, the operators of class E are finite.

or, in terms of the renormalized BRST variation,

BRST A» a

BRST

b(
$r

BRST

b

= ZpD~CcPa —ZgZpZggCabcA~ b(dc,

1

2 Z&ZpZAgCabc(db(dc y

1

=AO A

(4.22)

$ t' $f' gr
operators BRsT A BRsT ~ and BRsT

g( p, a) $g ay a
are all finite [13].

The ancestor operator of the renormalized BRST vari-
ation is

&ancestor g» ~

= (&»tla)A» o+ (89»go)A~ a
(GV}&
glV )

g»„[—2ig 8 A + (8»g )A»],
(4.23)

where

bf—:Z~'Z„'b(, (4.2O)

We have seen that the gauge-variant part of the energy-
momentum tensor is nonzero in an on-shell matrix ele-
ment. However, the gauge-variant part of the energy-
momentum tensor is BRST exact, in accordance with
general theory and a very simple proof states that phys-
ical matrix elements of such operators vanish [13].

In this section, we resolve the contradiction. The proof
that physical matrix elements of BRST-exact operators
vanish proceeds by using a Ward identity based on the
BRST variation to relate the matrix element under study
to a particular Green function of the ancestor operator
of the BRST-exact operator. This Green function has a
manifest factor of zero when put on shell, but the zero is
compensated by a quadratic IR divergence present only
when the matrix element of the ancestor operator is eval-
uated at zero momentum transfer, as we will now see.

We have veri6ed by explicit calculation of all graphs
that the BRST Ward identity still holds for unampu-
tated Green functions off mass shell, calculated at zero
momentum transfer.

The BRST variations of the bare fields are given in
Eq. (3.7). We need the BRST variation of the renormal-
ized Belds in terms of renormalized 6elds and parameters.
This is sometimes referred to as the "renormalized BRST
variation" and is related to the canonical BRST variation
by factors of the renormalization constants, Eq. (3.21).
The goal in de6ning a renormalized BRST variation is
to obtain UV-finite Green functions with renormalized
Gelds. The renormalized constant Grassmann parameter
which accomplishes this goal [13] is

X ...,.. (8~„~) = 8~ ~ —,'8„0,8 (D )—
(4.24)

Remember that the 6elds in the energy-momentum ten-
sor operator are bare. The ancestor of the unrenormal-
ized BRST variation Eq. (3.14) and the ancestor defined
above are related by

+ancestor g» = Z~ Zr) +ancestor g»44 ~ (4 25)(Gv} (GV}

Now, the BRST variation of any Green function van-
ishes. Consider the particular case

(O~TA X,.„„,(gi, i) X 4~0) = 0. (4.26)

This gives

O= 0 re„,TA. .X.....t., e(„} A. b 0 4.27

+ O +Acr a ~BRST+aacestor ~~v Av b
(GV)

+ 0 TAcr axancestor ~pv ~BRSTA& b
(Gv}

The vanishing of Eq. (4.26) and the chain rule for the
BRST variation can be proven by de6ni~g the variation
in terms of (anti)commutators with the Noether charge
associated with the BRST symmetry [19].

Equation (4.27) becomes
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1
0 = 0 T Zp oua ZgZpZ~gcageA~ gee Xancestor ~~v A~ g

+ OTA 8„„A&0 + pTA ——,g„„&. D,-.g A, p

1

+ 0 TA + to ~~ Zp ~g —ZgZpZ~gC~ g $ 0

(4.28)

The constant Grassmann parameter h( can be factored out of Eq. (4.2S) above if it is anticommuted through the
ancestor operator which has a Grassmann parity of 1 (because each term contains one antighost field). This is
responsible for the relative minus sign below:

1
0= (—l)(0 T Zog pr —ZsZCZdgc d A dor X s )ge )A o 0)

+ 0 TA~ a8(„)A~ g 0 + 0 TA~ a —2g„vgc8 D~~ c A~ g 0

+ 0 TAo aXancestor ~pv Zp ~cog —ZgZpZggc~eA~ gu)e 0(GV)

(4.29)

One must also keep in mind that the order of the Grassmann fields, s) (in the ancestor operator) and u, in the last
two lines above is opposite to the canonical ordering and that

(O~Triu(operator) ~0) = —(0)Tidy(operator) )0) . (4.30)

It is now obvious that there exists an alternate calculation which will provide the two-gluon physical matrix element

f &(GV)

0 TA 8 „A o 0 = 0 T Zog od —ZdZoZdgc d A dtd X 'o- I go. IA. o 0)(GV) ( (GV)l

0 TA, —sg„rt,gd(Dodr), A, o 0)

0 TA X o ~ Bs Zpg oro —ZsZpZdgcod A dld 0)
)' &av)

(4.sx)

The Feynman graphs associated with the Green func-
tions on the right-hand side of the equation above are
displayed in Figs. 5 and 6. The usual proof that the
matrix element (0 TA, B„„A,o 0) vanishes on shell

relies on the assumption that the triangle graphs depicted
in Fig. 6 do not contain quadratic IR singularities. These

SCTSQ

FIG. 5. Born and one-loop diagrams involved in the
BRST Ward identity that vanish in physical matrix elements.
The symbol represents the inserted composite operator

Xastcnntdsg 88ssd ~, the anCeStOr Of the H„„under the renOr-(«)~ (GV)
)

malized BRST variation.

S ~$ +

FIG. 6. The one-loop diagrams involved in the BRST Ward
identity that do not vanish in physical xnatrix elements due to
an in&ared divergence. The symbol represents the inserted

& (av)lCOmpOSSte OperatOr X~«ntmg
~

8„„
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graphs contain an unusual vertex, one gluon and one
ghost at the same space-time point. There is no external
line, therefore nothing to amputate, but the amputation
procedure for other graphs, which have ghost legs, re-
quires that all diagrams be multiplied by the inverse of
a ghost propagator, which, of course, is proportional to
p . If the diagrams contain at worst logarithmic IR diver-
gences, then the additional factor of p2 will cause them to
vanish on shell. The diagrams with an external ghost line
have a derivative acting on the ghost field. In momentum
space, the derivative becomes a factor of p which gives
zero when contracted with the physical polarization vec-
tor e associated with the gluon leg. Only the graphs in
Fig. 6 contribute to on-shell matrix elements.

Explicit calculation of the graphs in Fig. 6, with the
result Eq. (AQ), shows that there are, in fact, ~ diver-

gences which cancel against the inverse of the ghost prop-
agators introduced in the amputation procedure, as we
claimed at the beginning of this section. These IR poles
occur only at zero momentum transfer. The Feynman
rules for the inserted operator vertices are given in Figs.
7 aild 8.

V. CONCLUSION

a,a

a,a

cr,a

(GI)

(G&)
7-,b

7,b

g(GI)

p W -p

7,b

g(«)
p P

b

E„
p

b

ancestor &ttt ~)

P

6Gh [P (gaT9Icv 9aIcgT v gav 9T/I )—2PtcPugaT + PTPugai + PTPI gav
+ PapugTI + PapI 9TV paPT91 V]

6ab~(PTpv9ap + PTPIcgtrv + Pcrpv9TJs

+ PaPg gTv PaPT9I v)

2 1
6ab[ 2P ( 29aT9Icv + gcrpgTV + gcrvgTp)

+ (& —&)(P Pvg + P P~gcr + P P 9 ~
+ PapI 9Tv Pcr PT9I v J]

6ab(2' P —P 9I )

lg 2—
2 abp 9tlu

1
&~ab(pug, T + p, gVT 29IsVPT)

W6 have seen by explicit calculation that one of the
central results of Joglekar and Lee, that physical matrix
eleinents of BRST-exact operators must vanish, fails at
one-loop order. We give a form for the BRST ancestors
of the alien operators required in the renormalization of
the covariant gluon operator. Our alien operators are
then manifestly BRST exact whereas the basis of alien
operators proposed by Dixon and Taylor (those used by
Hamberg and van Neerven) are not BRST exact. The
Dixon and Taylor set of alien operators are not guaran-
teed to vanish in physical matrix elements.

We have verified the predictions of Freedman et al. on
the finiteness of the energy-momentum tensor in both
gluon and ghost two-point functions to one-loop order at
zero momentum transfer by evaluating diagrams with a
BRST-exact alien operator insertion.

The BRST Ward identity demonstrates where the
proof of the Joglekar-Lee theorem breaks down. Tak-
ing the momentum transfer to zero too soon introduces
spurious IR divergences which cancel factors of zero on
which the proof relies. Calculations performed using the
Dixon and Taylor set of alien operators cannot be ana-
lyzed through the BRST Ward identity.

The physical region of interest in almost all calcula-
tions involving the renormalization of composite opera-
tors, such as the calculations required in the operator
product expansion, is the exceptional point of zero mo-
mentum transfer. To expedite the computation, one sets
the momentum transfer to zero at the very beginning,
thereby eliminating one scale &om the problem. In some
calculations involving 6nal-state cuts, it is not clear how
one would generalize to nonzero momentum transfer.

The alternative is to keep the momentum transfer ar-
bitrary until after the Feynman graphs have been evalu-

ated, and only then to set the momentum transfer to zero.

r, b

FIG. 7. Feynman rules for nonstandard two-point vertices
at zero momentum transfer.

p, a

y(GV)

~,b

7)C

AIcgpT gcrv AT gppgav
+ AugpT gaI ATgpvgaic

PjIcgpagTV + AagpIcgTv

AugpagTIc + AagpugTI
+ p2c 9apgTV —p2pgaI gTv

+ p2ugapgTI —p2pgavgrg

p2I gaTgpv + p2TgaI gpv

pzvg«gpss + p2Tgav gpss

+ P31cgTagpu P3a97 I gpv

+ P3ugTagpIc P3crgTvgpg

P3tcgT pgau + P3pgTIsgav

P3vgT pgaIc + P3pgTugaIs
+ 9Icvfgpa(AT PQT) + gaT(p2p p3p)
+ 9-.(P —p -)])

&9&bc(PIcguT + PvgpsT
—PTgpu)

FIG. 8. Feynman rules for nonstandard vertices other than
two-point at arbitrary momentum transfer.

With this procedure, the Joglekar-Lee theorem should

apply, making it unnecessary to compute the graphs con-
taining the alien operator insertion. The price to be
paid, of course, is the introduction of another momen-
tum scale into the problem and a corresponding increase
in the complexity and volume of the analysis.

There has been a sense of disquiet in the literature
about zero momentum transfer for a long time. Joglekar
mentions in the concluding section of [24] that, at the
exceptional momentum point Q = 0, matrix elements of
gauge-invariant operators lose some of the properties that
make them manageable at nonzero momentum trans-
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fer. Lee [25] works with the twist-2 piece of the energy-
momentum tensor to show that certain pieces of the cal-
culation at zero momentum transfer can yield useful in-
formation, that is, the coefficients of certain terms are the
same, independent of the moment»m transfer. He calcu-
lates only the pole terms of the two-gluon Green function
at one-loop order at both zero and nonzero momentum
transfer. The unease was certainly justified; some re-
sults hold while others fail utterly. It is not unreasonable
to question all calculations performed when the limit of
zero momentum transfer was applied initially, and such
calculations are the mainstay of perturbative /CD.

APPENDIX

1. Right derivatives

Right derivatives [26] are such that

8"(XY) 0"Y ~„J,, (8"X)
(A1)

where P„ is the "Grassmann parity" of the quantity Y.
The (anti)ghost field components have Grassmann parity
1, while the c-number parameters and boson field com-
ponents have Grassmann parity 0. Fermion field compo-
nents would be assigned Grassmann parity 1.
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In this section of the Appendix, we give the full
Lorentz structure for the amputated Green functions of
the energy-momentum tensor operators with two gluon
fields off mass shell, at zero momentum transfer, to one-
loop order. The —, poles are purely UV divergences while
all of the IR divergences (as p2 m 0) are seen as loga-
rithms.

a. Entim energy-tnomentum teneor

The two-gluon amputated Green function of the entire energy-momentum tensor is

(0IT'&v agyv&r bI0)amputated = ~ab[p (9«tv gvpgrv gvvgrp)
2

2pppvgcrr + prpvgcrp + pv ppgcrv + pcrpvgrp + pappg~v paprgpv

~(pTpvgop+ pTp'pgvv + pvpvgTp + pvpglgTv pvpTgpv)]

+ isg& &ha&
4 I ) I p (9«tv 9&vg&v 9&vg&w) 2pvpvg«

)

+prpvgcrp + prppgcrv + pcrpvgrp, + pcrppgrv pcrprgpv

+I1——„ I

""— 3+lnI
I p pg

t' —p'l
+ 1+-»I, I [p'(9-9.--9-.9- 9-9:)-

E ~').
+p.p.g.,+ n.n, g..+ ~-n-g-, +s-n~g- v~ gu I)—--

10p p~pi pv 32+ +
p2 9

31 5 (—pi+ ——+-lnI
9 3 gP,')

10 6 —pl
3 g p )I p~p 9

I 2/
[p (g«gjlv gvglgTv gcTvgTgl) + PTPvgvv + PTPvgvv

+P P g „+P P„g „—P P 9„„] + O(9 ).4 (A2)

To make the comparison with Hamberg and van Neerven more transparent, we present the twist-2 (spin-2) piece of
this amputated Green function in which the &ee Lorentz indices of the inserted operator, p and v, are contracted
with a null vector 4:
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2
(OITA 4"8„„4"A slo)amp„t t d = 2b g[ p'—b. b, —(p b,)'9 + (1 —A)(p b)(p~b +p b~)]+

x --
I

1--
I

I-p'~.~. (-p ~)29..+(p ~)(p.~.+p.~.)I2 q

p & p

(—p'&
+ z+s~~,

~ [
—s*e.e.+(s e}s.e. +{s a}s.&.))

iop p. (p &)' »»i (—p'&
8 p' » qS'&

+ + —i.l, I
p'~.-~. +(p ~)(p.~.+p.~.) +o(9') (»)

io (-p) -,
s 3 ip'&

Cathe-invariant pat t

The two-giuon amputated Green function of the gauge-invariant piece of the energy-momentum te»o»s

(0IT+sr ae&v +r bio)amputated =
e csee +A~ats[p ( 29srrgav + gsrPgrv + gsrvgrl4)

(GI) 1 g 2 1

1r
2 t PrPv gsr }s + PrP pl gsr v + PsrPv gr }s + P(TP/I gr v PsrPr gls v )]
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2 l
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& l
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I p~p 9-11 ppp~p (—p&
X& p qP'&

5 i, (-p'~
+ + in

I 2 I (p gsrrggav psrprgpv)2 2 ( p

ii (—p'l-
+ s+ s}ss} s l

ss (g r g..+g gu}+—p ss g u+ss.sos ~ +ss ss g u+ss s'us }I

2p p p„p„86 10 (—p }

+ ———ln p„pvgvr3 p2 9 3 (P,
58 i3+
9

+
6

n
I , l (p 9-9,. P.p.g .)9 6 q p,

49 8 ( p')+
9

—3»l, , I
I'(9 ~9 +9 9 ~)3 ( p

l+ +»I, I (p J 9 ~+p ppg +p p 9 «+p ppg ) I+o(9').18 6 }, p2&

(A4)

The twist-2 (spin-2) piece of this amputated Green function in which the free Lorentz indices of the inserted
operator, p and v, are contracted with a null vector 4 is
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—P'&-&- —(P. &)'9-+ (P. &)(P-&-+P.&.)

(0lT& o&"g~ '1&"& bl0) mp t tea = -', „'.&~4b[2P'& & —(P &)(P & +P & )]
+».b[ P-'~.~. —(P ~)"..+(P ~)(P-~-+P-~-)]

(
+16,C~b g — 1 ——

+ 4+ 1n l, l

—p'b, 4 + (p b,)p A. + (p. ~)p.~
(-p' i
(, I" ).

2p p (p E)2 86 10 (—p2)
3 p2 9 3 (, P2 )

98 16 (—p21———1nl
l

pb b,
9 3 P2)

89 13 (—p'i——+ —1nl
l (p b)(p 6 +p 6 ) +0(g).9 8 ( P,2

(A5)

c. Gauge-t)ariartt |'aliett) part

The two-gluon amputated Green function of the gauge-variant piece of the energy-momentum tensor is

(01++cr ag&v +T bl0)amputated =
6 yeee &A~ab[P ( 2gggrglgv + gv)ggrv + go'vgr(A)

(GV) 1 g 2 1

1I
2 (PTPvgCTP + PTPPgggv + Mvgrg + PggPPgrv Mrg(AV)]

~~ab(prpvgITJl + prppgggv + plrpvgrlg + pggp+grv p&prgpv)

+ (s~e &Ahab
l

1
~ l p (gargigv gang v gvvgrp)4g A)

2PPPV geT + PTPV gCry + PTPPgCrV + PCrPV gTP, + PCrPPgTV PCrPT gI)tV

l» p-p-s. p-+ 1
P 2 +J'

I 29 9 +9 9 +g g
) )

3
+3PPPV gCTT PTPV gag PTPPgCJV PCTI VgTP PO'PP, gTV + PtJPT gPV

I~I TI PPV 1 (—p2)
+4 2

—6PqPvgITT + 3 ——1n
l 2 l (P garg66v —PvPrglgv)p' )

(—p21
+ 2 + 1n

l
—2 l P (gv66grv + govgr66)

)

3 1 ( p')+ I
——g»I -, I ( -- gg+ g. , gg+ gg g+g. g.g.)g)+0. (.g ). (A6))

The twist-2 (spin-2) piece of this amputated Green function in which the free Lorentz indices of the inserted
operator, p and v, are contracted with a null vector 4 is
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1 2

(O~TA 6 "g~„ lh."4 g)0) „,g = —— C~b g[2p A 3, —(p. b, )(p E + p D )i~ 16~2
—2Ah g(p. A)(p 4 + p b, )

+„'.,~.~.. —~1--,
l

p'~.-~. (p-~)'g..+(p &)(p.&.+p.&-)'2l A)

+~] ——
~

— +2pA b, +3(p 4) g
» ( p-p-(» &)'
A) l P

-2(p &)(p-&-+ p-&-)

2 2

+4 —6(p 4) g + —4+21n~
~ p b, b,

l »' j.
+ g —» l, l (p &)(p.&.+ p.&.) I

+ o(g')(—p')
l»" ).

8. Unamputated two-gluon Green function of alien piece of the energy-momentum tensor off shell

(0~x~..e~ „ la. &~0) = D:;, (p) (0(». .0„"„'&.~ ~0). ..~.t.s&:& (p)

» (,p.p.p.».
A) l P2

1 g
r1

e 16~~ +A~a~ (p~

1 2 1

l
(PTPVglpgs + PTPilgav + PoPvgTp + PgpPpgTv) + P l ggpTgpv + ggrpgTv + ggpvgTp

1
PTPVgCJP + PTPPgCFV + PCJPVgTIj( + PCTPgkgTV PO'PTgPV

1 ( ( 1 ) p~pTpppv+~ & I 2i2 4
~ ), ~ 2 + p p 9 I + pTpI 9VV + plppV9Tl + p~pvgTV pVpTgl V(P) l l )

C 6
1 t '(1 —11) p~pTpig p—

)
1 1 1+ P ( 90TgglV + glJgl 9 +'T VglJ VgT)l ) + PPPV glPT + PgpPT gPV

In order to use the BRST Ward identity (which is valid off mass shell), we need the unamputated Green function
which we obtain &om the amputated Green function, Eq. (A6), by attaching the dressed external gluon propagators,
Eq. (3.23a) s

1) p pp„p„2 3+~1 —
&~ 7, p( 9 9 +9 9 +9 9 )

1 3
(PTPvgvp + PTPpggpv + PgrPvgTil + PgpPilgTv) 3PilPvggpT PITPTgpv

160 20 ( p' ~ p.p.p„p.-1 (-p' l+ + I.~, ~

- ..."+ -3+-I ~, ~

(p'g..g..-p.p.g.-)93 lp,2)p22 l p)
(—p'l+ 2 —ln

~ ~

p (gvplgTg + gvvgTp) + 6p)lp ggpT

)
(—p")———»

~
~

(p p g „+p peg +p p gn +p

ping

) j+o(g )

13The moChed LSZ prescription, rather than the dressed external propagators, mould have been used to go on shell.
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4. BRST Ward identity graphs evaluated

The quadraticaHy IR-divergent Fey~man graphs used in the BRST Ward identity are evaluated as follows:

(Fig. 6) = 1 lss, CAh si

+ y6~~ +A~ah

gggg gigv + gaiggg v + gggvgg p

p p.p„p„1
~ r t + ( go'Tgigv + gtgglggv + go'vgTIZ)

) (p)

+ 2 go'T ~ 2 gay ~ 2 ger v 2 gTgk 2 gTv ~ 2 gy v
p 2 p ~ p ( p p 2 p

1 1 P~PTPS,PV 3 PPPV+ ~ 22 +2g g~ g+g g g~ 2

PTPv PTPp P&PV P&Pp P&PT

p p 2 ( p p $ p
ger@ 2 gcrv ~ 2 gTp 2 gTy 2 gglv

+ ——+ —ln~ 2 gtgggpg + ~ — ln 2 (gtgigggs +gtrvggv)
~P 2 p )

P P P P P P P P + P P P P + 03 f'
2 g 9 2 g & 2 g 6 2 g+& 2 g~ 2 (A9)

The terms proportional to ""","g in the finite part ruin the proof that a physical matrix element of an alien
operator must vanish.

The graphs in Fig. 6 plus their xnirror images (o ++ r, a ++ b, p ++ —p) contribute to the two amputated Green
functions,

0 T ZsZoZegc s,A stc ancestor
~

gs
~

A s 0)
(GV) t

amputated

+ 0 TA ancestor 8„„Z~ZOZ&gc~,A g~, 0(GV)i
amputated

(Alo)

corresponding to the unamputated Green functions found in Eq. (4.30).
To isolate the parts that survive on shell, we contract the external indices of Eq. (A9) with a physical gluon

polarization vectors, E'y and 62 to obtain

. (i~ ( i
(Flg 6)e] e2. =

z ls~Z CAbab& glgvel e2 + el &62 v + el ve2 p&)&' )

+ 18mz CA~ah'z — 1 —— ( ggsvel ' e2 + el &e2 v + el ve2 p) + 2 el ' e24( A) 2 " " p2

3+— 1 —— —g VE E2 —6 E2v «2 31 lp lv Ig 2 1

+ 1 ——ln
2 (e1„62 +e] e2„)+3Pppv

)
3 i & p2)

+ ——+ —» g„„el . e2 +0(g ) .
4 —2 Pv 1 (Al. v)

The quadratically IR-divergent parts of this result should be compared to Eq. (4.9), the physical matrix element of
the gauge-variant part of the energy-momentum tensor.

The pole piece cannot contain a ~ divergence because of locality.
P
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