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Light front Beld theories are known to have the usual infrared divergences of the equal time
theories, as well as new "spurious" infrared divergences. The former kind of IR divergences are
usually treated by giving a small mass to the gauge particle. An alternative method to deal with
these divergences is to calculate the transition matrix elements in a coherent state basis. In this
paper we present, as a model calculation, the lowest order correction to the three point vertex in
+ED using a coherent state basis in the light cone formalism. The relevant transition matrix element
is shown to be f'ree of the true IR divergences up to O(e ).

PACS number(s): 11.10.Ef, 12.20.Ds

I. INTRODUCTION

Light &ont field theories have been the subject of con-
siderable interest in the past few years as they promise to
provide a practical tool for solving the problem of highly
relativistic bound states [1,2]. There are two major ap-
proaches to obtaining the bound state wave functions in
the light-cone framework, the light front Tamm-DancoH'
(LFTD) method [1]and the discretized light cone quanti-
zation (DLCQ) method [2], both based on diagonalizing
the light cone Hamiltonian in. the basis of Fock states.
Both of these approaches are beset by the usual ultravi-
olet divergences of field theory coming ft. om large trans-
verse momenta, as well as by infrared (IR) divergences
near k+ = 0, where k+ = k + k is the longitudinal
momentum. The infrared divergences can be classified
into two diferent categories —"spurious" IR divergences
and "true" IR divergences. The spurious IR divergences
are just a manifestation of the ultraviolet divergences of
equal time theory and can be regularized by an IR cut-
off on small values of longitudinal momentum [3,4]. The
"true" IR divergences are the bonafide in&ared diver-
gences of the equal time theory and are present due to
particles being on mass shell. These can be taken care of
by giving the photon a small mass [3,4].

In the present work we suggest an alternative treat-
ment of this latter kind of IR divergence. Addressing
this excercise may seem unnecessary in the case of /ED,
since a simple solution (i.e., giving photon a small mass)
already exists. However, the suggested formalism may
turn out to be useful in future work on non-Abelian gauge
theories, where giving mass to the gauge particles violates
gauge invariance.

Both the LFTD theory and DLCQ are based on the
old-fashioned Hamiltonian perturbation theory, wherein
one calculates the matrix elements of the light front
Hamiltonian between Fock states. In the present pa-
per, we propose another set of basis states, the coherent
states, to calculate these matrix elements. The useful-
ness of coherent states in the proof of cancellation of IR
divergences in equal time theories has been weO estab-

lished [5,6]. Chung has shown that the IR divergences of
/ED are eliminated to all orders in perturbation theory
in the matrix elements by an appropriate choice of ini-
tial and final soft photon states [5]. Kulish and Faddeev
investigated the asymptotic behavior of the /ED Hamil-
tonian and showed that when a particle mass becomes
negligible compared to the energy scale, the asymptotic
Hamiltonian need not coincide with the free one. This
leads to a redefinition of asymptotic states [6,7]:

where Ag is the asymptotic evolution operator and ~n)
is a Fock state. They further showed the cancellation of
IR divergences when the matrix elements were calculated
between these coherent states. In the light &ont theories,
one can make use of this property of coherent states to
separate the two kinds of IR divergences.

As a first step in this direction, we have, in this paper,
calculated the lowest order radiative correction to the
three point vertex in null plane /ED using the coherent
state basis. This calculation has been done in Ref. [3],
henceforth referred to as I, in the Fock state basis. The
main subjects of I are the ultraviolet and spurious IR
divergences, and the problem of "true" IR divergences
has been treated by giving the photon a small mass. We
shall use their expression for the vertex correction auithout

giving the photon a mass, and show that the true IR
divergences present in this expression are canceled in the
coherent state basis by additional contributions coming
from the emission and absorption of soft photons.

The present formalism has been developed for contin-
uum light cone /ED. However, if applicable to the dis-
cretized case, it may provide a natural way of eliminating
the troublesome k+ = Q, k~ = Q state from the DLCQ
calculations [4,9]. In discretized light-cone /ED, one has
to eliminate the k+ = 0, k~ ——0 state by an artificial
IR cutoK and then one has to add a Colonmb counter
term in order to obtain convergence. The present work
was inspired by the hope that the coherent state formal-
ism developed here may provide a natural cutoK on smaH.
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values of photon momenta, which on discretization will
eliminate the k+ = 0, k~ ——0 state.

The plan of the paper is as follows. In Sec. II, for the
sake of completeness we shall set our notation and present
the relevant result of I. In Sec. III, we shall define the
asymptotic region and coherent states in the light-cone
kamework. Section IV presents the main result of this
paper. We calculate the transition matrix element be-
tween coherent states and show the cancellation of true
IR divergences. Section V contains some concluding re-
marks regarding the possible usefulness of coherent state
formalism in DLCQ calculations. Appendix A contains
some useful properties of coherent states and Appendix
B presents the details of the calculation in Sec. IV.

where

2 — Z--" 1 2
Hp —— d z~dz —(p g f+ —(Eg2)

(2 2

1——a+0 O~ag
2

Vj ——e d z~dx p a~ (4)

is the &ee Hamiltonian as a function of independent de-
grees of freedom, and

II. PRELIMINARIES

We shall use the notation of I.
The light-cone /ED Hamiltonian is given by [3]

P = H = Hp + Vj + V2 + V3, (2)

is the three point vertex interaction. V2 and V3 are non-
local efFective four point vertices corresponding to instan-
taneous fermion and photon exchange, respectively. De-
tailed expressions for V2 and V3 are not needed for our
purposes, and can be found in I.

( and a„can be expanded in terms of creation and
annihilation operators as usual:

+~ — a(*)=, ) [u(p, a)e '~~ ~ lb(p, a, z+) +v(p, a)e'~~ * ~~ ~ddt(p, a, z+)],
(2m) ~ /2p+

a„(z)=, ) e"„(q)[e ' ~ a(q, A, z+) +e'i ~ a (q, A, z+)],
(2m) ~ /2q+

(6)

where

(b(»a) b (p a)) =h(p J~ (J —p)~. ,"=~-(p p')~. .. , -

(d(p a) d'(p' "))= h(p' p")h'(pi -p~)~. ,; =-~'(p p')&... , -

[a(q A) a'(q' A')] = b(q' —q")b'(qi —q&)4,~ = ~'(q —q')4, i
The Hamiltonian can be expressed in terms of annihilation and creation operators. For example,

where

Vj ——e d +~de dp dp dk e'"' 8 p, s' b p, s' + e ' '*6 p, s' d p, s'

s,s', A

xp [e
'"'

u(p, s)b(p, s) + e'" v(p, a)d(p, a) ]e„(k)[e ' '
a(k, A) + e' ' a (k, A)], (10)

Similar expressions for V2 and Vs can be obtained and are given in Appendix A of Ref. [3].
In perturbative light cone /ED, all graphs are matrix elements of the transition matrix T given by [3]

1T = V+V V+. . -

p —Hp
(i2)

between the Fock states. For example, the lowest order correction to the three point vertex A (p, p) is given by the
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matrix element

T2i = e"„(e)~"(p, p)

1 1
P, o, q, A Vj Vj Vj P, s + P, a., q, A V2 Vj. P, s

P 0 P 0 P 0

1
+ p, o, q, A V3 Vj p, s

P 0

where ~1) = [p, s) is the Fock state containing a single
fermion and ~2) = [p, o', q, A) is the Fock state containing
one fermion and one photon.

The full set of diagrams corresponding to the above
matrix element is given in Ref. [3]. We shall limit our
selves to the calculation of A+(p, p), in which case many
of the diagrams do not contribute due to their tensor
structure. The only diagrams contributing to A+(p, p)
are shown in Fig. 1. Calculation of the diagrams in Fig.
1 has been done in I. Later we shall make one further
simpli6cation; i.e., we shall consider only the q = 0 case.
In this case, only the diagram in Fig. 1(a) contributes to
the matrix element in question [3].

One can calculate the diagram in Fig. 1(a) from

1 1
T2j. —— p', ~, q, A Vj Vj Vj p, 8 14

P 0 P

) A( ) A( ) + y+p»+p~4+p +4+p~
A=1,2

p+

and

) u(p, s)u(p, s) =P + m,
s=+ j./2

(16)

one obtains, after a straightforward calculation [3],

by substituting Vq from Eq. (10). Using the relations

„( s d2k~ dk+ N" + yNf
(4~)' k+k'+k"+ (p- —k- —k' )(p —k- —-k —-

where

N" +yNs" = 6(p, o)p (P'+ m)

xp~d p( Jc" + m)p"u(p, s), (18)

(,+ [(1 —x —y)p~ —k~]2+ m'
1 —x —yjp 2(1 —z —y)p+

and

' = (2') /2p+ /2@+ /2q+ . (19)
(1 —z —y)p~ —k~ (23)

Reparametrizing the momentum variables as

(xp~ + k~)2
k =

~
xp+, , up~+ k~ ~,2p+x )

f+ p~Q=y~ p
2 + px)~2p+

(20)

(21)

(1 —y)J+, (1 —y) 2 + + +.

(1 —y)pi (24)
[(1—z)pg —kg]2 + m2

1 —z p+,
2(1 —x)p+

)
(1 z)p~ —k~ (22) and using the properties of p matrices, one 6nally ob-

tains, after some algebra,
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d 'k u(», )~'(' ),'. +1-* (p, )

+Ae dx
d2k~ u(p, o)2z(1 —2)[(1—x) Pp+ —(1 —x)m p+ —p+m]u(p, s)
(2') s [k' + m'z'][k' + g,m')] (25)

where

x(x+ y)
(1-W)

(26)

Putting q = 0 and ignoring the IR convergent contribution to A, one finally arrives at

(27)

where a is an infrared regulator, which eliminates the
IR divergences near k+ = 0. The first term in the
above expression has ultraviolet divergences also, which
are usually regularized by dimensional regularization or
by putting a cutofF on large values of k~.

III. INFRARED DIVERGENCES AND THE
COHERENT STATE BASIS

For massive particles as well as for massless particles
with k~ g 0, the condition k+ ) a as in Eq. (27) is equiv-
alent to putting an ultraviolet regulator on large values
of k3 in the usual space-time formulation. However, for a
massless particle at k~ ——0, the divergences near k+ = 0
are the true IR divergences of equal time theory, and in
this region the condition k+ ) o. does not follow from
the condition of an ultraviolet cutofF on k3. The IR di-
vergences in equal time /ED are canceled in the cross
sections when a snm is taken over all possible initial and
final states with any n»aber of soft photons having mo-
menta below the threshold of obesrvability. Chung [5]
suggested that the origin of IR divergences lies in an in-
appropriate choice of initial and final states to represent
the experimental situation and showed that the matrix
elements do not have IR divergences if initial and final
states are chosen to be appropriately de6ned coherent
states instead of the usual Fock states. Kulish and Fad-
deev [6] argued that since the asymptotic Hamiltonian
does not coincide with the free one in /ED, the matrix
elements should be calculated between coherent states
instead of the Fock states. They obtained a form for the
asymptotic states starting from the asymptotic Hamilto-
nian. In the following, we shall obtain the form of coher-
ent states in the light-cone formalism following the same
procedure. In this way, we will extend the coherent state
formalism to the light-cone field theory. The light-cone
time dependence of the interaction Hamiltonian is given
by

3

H ( +) =ee)e" f dv [e
'"' +h(v) +e' ' +LJ( )), v

i=1

(28)

FIG. 1. Vertex correction diagrams that contribute to
&'(p p).

where h;(v;) are the /ED interaction vertices,

h, = P b (p, s')b(p, s)a(k, A)u(p, s')p"u(p, s)c"„, (29)
s,s', A
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h2 ——) bt(p, s')dt(p, s)a(k, A)u(p, s')p"))(p, s)e„", (30)
B)B )A

the asymptotic region. We define this subregion to be
consisting of all points (k+, k~) satisfying

&s = ) dt(p, s') d(p, s)a( k, A) 6(p, s')p"v(p, s) e"„, (31)
e,e', A

k+a
k~ &

p+

and v; is the light-cone energy transferred at the vertex
h; . The integration measure is given by (38)

f 1 [dp] [dk]

+2@+
' (32)

p+ and p~ being fixed at each vertex by momentum con-
servation. For example,

P1 ——p+k -p =+ k+
p ~ k

p++ k+ (33)

V,.(e+) = e ) /d e8~(k) e('"" te;(e;)
i=1,3

+e'"' ht(v;)], (34)

where 8a(k) is a function which takes a value 1 in the
asymptotic region and is 0 elsewhere.

One can define the asymptotic region to consist of all
points in the phase space for which

is the energy transfer at the eel vertex.
At asymptotic limits, nonzero contributions to HI(z+)

come Rom regions where v; goes to zero. Et is easy to see
that v2 is always nonzero, and, hence, h2 does not appear
in the asymptotic Hamiltonian. Thus, the asymptotic
Hamiltonian is de6ned by the expression

This choice of the asymptotic region leads to the asymp-
totic interaction Hamiltonian defined by Eq. (34) with

The asymptotic states can be defined in the usual man-
ner by [7]

in: coh) = O+in), (40)

where in) is a Fock state of charged particles and hard
photons and OA+ are the asymptotic Moiler operators de-
fined by

0

O~ —T —i exp V, (z+)de+ (41)

x[f(k, A: p)at(k, A) —f'(k, A:p)a(k, A)]p(p)

Following the standard procedure [6] of substituting
k+ = 0, k~ ——0 in all the slowly varying functions of
k, and carrying out the x+ integration, we arrive at the
following expression for the asymptotic states:

A . + 2 dk+ d kg
O~in:p, ) = exp —e dp d p~

2k+ (2)r) )

+ (~E
p+ (35)

xin:p;), (42)

where AE is an energy cutoff which may be chosen to
be the experimental resolution. For simplicity, we shaB
choose a kame p~ ——0. In this kame the above condition
reduces to

where

f(k A. )= "" 8 —k 8 —k+
)'k+~ ') ( +Z

p+ k~2 m2k+

2k+ 2p+ (36)
f(k, A:p) = f"(k, A:p), (44)

where 4 = p+AE.
Thus, for all the points satisfying Eq. (36), vi and vs

can be approximated by zero. This implies that in this
region, the asymptotic Hamiltonian is diferent &om the
&ee Hamiltonian. For the present purposes, i.e., in order
to eliminate the true IR divergences, we find it suKcient
to choose a subregion of the above-mentioned region as

if one follows the convention in I for photon polarization
and

p(p) = ).[4' (p)~-(p) dt (p)d-(p)]—

Applying the operator p(p) on the Fock state, we finally
obtain

dk+ d2k
O~in: p) = exp —e ),[f(k, A: p)at(k, A) —f'(k, A: p)a(k, A)] in: p) .

/2k+ (2n.) ~

In particular, the coherent state containing one fermion is given by

dk+ d2k
ip, (r: f(p)) = exp —e ),[f(k, A:p)at(k, A) —f'(k, A:p)a(k, A)] ip, o) &/2k+ (2)r) ~
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and the coherent state containing one fermion and one hard photon is given by

Ip, n, q, A: f(p)) = exp —e ),f(k, A:p)a (k, A) —f'(k, A:p)a(k, A) Ip, o, q, A)
dk+ d2k~-

„,, /2k+ (2m) ~

Some useful properties of these coherent states are listed in Appendix A.

(48)

IV. CALCULATION OF VERTEX CORRECTION IN COHERENT SPACE BASIS

Let us rewrite the IR divergent contribution to the O(e2) vertex correction as given by Eq. (27) as

1

AiR(p, p) = dz d kiI(z, k~) .
0

(49)

From our discussion in the preceding section, it is natural to split the z and k~ integrals in the above equation as

&k+a, & &p+a
&iR(p) p) = dz d k~I(z, k~)8 —k~ 8 —k+

0

k+~&
+ dz d kgI(z, kg) + dz d kgI(z, kg)8 k~-

a )
(50)

In what follows, we will show that the vertex correction
does not have the true IR divergences such as the Grst
term in the above equation if one calculates the matrix el-
ements of T between coherent states de6ned by Eqs. (47)
and (48).

In the basis of coherent states there are additional
O(e ) contributions to T2q coming from

1
2x = (p ~ ~ 7: f(p)l&~ &~lp s: f(p))

p —H()

= e",(~)A'"(p p)

corresponding to the emission and absorption of soft pho-
tons, as shown in Fig. 2. Details of the calculation of di-
agrams in Figs. 2(a)—2(c) are given in Appendix B. Here
we will present the Bnal expressions for Az, Az» and
A2+. , nrst:

+2

p+k- —p-k+ ~
x 1+

k p

For the case p~ ——0, the above equation reduces to
—k, cr

Ae3 dk+Ae dk + „+ 2 Oa(k)
2k+ '~+

x 1—
2 /+2

p+2

I2 +mle+
J @+2

FIG. 2. Contributions to the O(e ) vertex corrections due
to emission and absorption of soft photons.Similarly, we 6nd
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+ + Ae dk+ 1
A2+~ = A2+, = — d k~0~(k): -4- k- p--p-

p-k+
x 1—k. p

(54)

Both Az& and A2 have a vanishing denominator at q = 0,
and can be evaluated using the Heitler method [3,8], to
give

which does not have any IR divergence. So, the IR-
divergent contribution to A'+(p, p) at q = 0, comes from
Fig. 2(a) only:

Aesp+ dk+
~ e~(k)

k+ '
2 -'~s+l'

kJ +
( +)Q

x 1—
2I +2
p+ 2

k2 ~~(I +)
(J+)'

Comparing Eq. (27) and Eq. (56) one can easily see
that the true IR divergences in Figs. 1 and 2 cancel ex-
actly. This completes the proof of cancellation of "true"
IR divergences in the O(e ) three-point vertex correction
in the coherent state basis.

positronium and have discussed the Coulomb singular-
ity occurring due to the exchange of a k+ = 0, k~ ——0
mode photon. They have claimed that even though one
can rexnove the true IR divergences by eliminating the
k+ = 0, k~ ——0 state by an arti6cial cutofF or by giving
a small xnass to the photon, neither of these procedures
leads to convergent results. In order to achieve conver-
gence, one has to add and subtract an appropriate term
to the light-cone Schrodinger equation. This countert-
erm removes the discretized IR divergence and replaces
the term at small k+ and k~ by the appropriate contin-
uum value. However, if one calculates the Hamiltonian
matrix elements between the coherent states before dis-
cretization is carried out, one may be able to remove the
true IR divergences in a natural manner. Work in this
direction is in progress.

We would like to emphasize that the coherent state
formalism takes care of only the true IR divergences and
one would still need an IR cutofF on k+ for massive 6elds
as well as for nonzero values of k~.
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V. CONCLUSION

We have presented a lowest order calculation in con-
tinuum light-cone QED to show the cancellation of true
IR divergences when a coherent state basis is used to
calculate the matrix elements. A similar analysis can
be carried out for the lowest order correction to the
fermion wave function renormalization constant also (see
Eq. (3.27) in Ref. [3]).It can be shown that the use of the
coherent state basis eliminates the true IR divergences
in Z2 as well. Since the only efFect of using a coherent
state basis is to eliminate the true IR divergences &om
both Zi and Z2, the Ward identity (in the forin given
in Ref. [3]) is still valid and the physical quantities such
as the renorxnalized charge are in no way affected by our
different choice of basis.

The present calculation has been done in the contin-
uum case, but the suggested method of using the coher-
ent states as the asymptotic states in order to calculate
the Hamiltonian matrix elements promises to be useful
in the discrete case as well. In particular, it may be
relevant to the problem arising due to an exchange of
a zero mode photon in discretized light-cone QED [4,9].
Tang has shown that in a numerical DLCQ calculation
of energy levels of positronium, the lowest energy level
diverges with K, the harxnonic resolution, if one does
not remove the k+ = 0, k~ ——0 state by an arti6cial
IR cutofF. Krautgartner et al. have analyzed the var-
ious approximations to the DLCQ matrix equation for

APPENDIX A: PROPERTIES OF COHERENT
STATES

(k p)II:p') = --, , „ f(» p:p')ll:p') (&~)

Also,

f(k, p: p;)i2: p;, k;)

+h (k —k, )h p, il:p;), (A

a(k, p)~2:p, , k, ) =—

a (k p)l~:p') = — „, ,f'(k p: p*)l~:p*)

+~2:p;, k;) .

In the lowest order, Eq. (A3) reduces to

a'(» p)ll:p') = I2:p' k') .

We denote with ~1:p;) the coherent state contairung a
fermion and a superposition of an in6nite number of soft
photons as defined by Eq. (47) and with ~2:p„k,) the
coherent state containing a fermion and a hard photon
as defined by Eq. (48).

It can be shown easily that the coherent states ~l: p;)
are the eigenstates of a(k, A):
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Coherent states satisfy the orthonormalization properties

(I:py, opal:p;, o;) = h& &(p; —py)b, . „
(2:py, oy, ky, Anil:p;, o;) = h~ l(p; —py)b

xf(ky, Ay. py) i . (A5)

photons in the initial and Snal states; T2 corresponds to
the emission of soft photons &om the 6nal state. There is
no diagram corresponding to the emission of soft photons
in the initial state to this order as evident &om Eq. (A4).
T2, T2q, and Tq are denned by

1
T2 —— po: p Vt V ps: p

p 0

APPENDIX B:MATRIX ELEMENTS BETWEEN
COHERENT STATES

1
T2g —— p, cr: p V V p, s: p

p 0
(B2)

In this appendix, we shall calculate the various contri-
butions to the matrix element considered in Sec. IV:

1
T2q

—— p, cr, q, A: p Vj Vj p, s: p
p 0

and

where

1
J V V ps: J

p 0

Substituting for Vq from Eq. (10) and using Eqs. (A1)
and (A2) one obtains

T2g = T2~ + T25 + T2& (B1)

where T2 and T2g correspond to Fey~man diagrams in
Figs. 2(a) and 2(b) representing the absorption of soft

'*ac p, s
e,e', A

xu(p, s)bt(p, a')b(p, s)a(k, A)e"„(k)].

Using Eqs. (16), (Al), and (B4), one obtains, in a
straightforward manner,

T2 ——e„"(q)A2 (p, p) = — " . . . ) e„"'(k)f(k, Ag. p)

Alternatively,

x u(p, o)p"(P+m)p"u(p —k, s)

Ae3 dk+ d2k~ 1
A2~(p) p) = ~ k ( )s „u(p, cr)p" (p+ m)p"u(p, s) ) (ek)epp(k) fr (k, p), (B6)

where we have used Eqs. (39) and (43) in the above expression, and have approximated u(p —k, a) by u(p, a). We
have defined fr (k, p) by

For p = +, Eq. (B6) reduces to

f(k, A:p) = f~(k, p)e"(p) . (B7)

gk+ (u(p, cr)p+(P+ m)p"u(p, s))(—f„(k,p) + „ f+(k, p) + „"+k.f)
8vrs 2p+ k+2 p

——k ——(p —k)—

In a frame where p~ = 0, one can use Eqs. (43) and the relations [3]

p —k —(p —k)
p. k

p+ —k+ '

(B8)

(B9)

to reduce Eq. (B8) at q = 0 to

p+ (, 'k2&
p k= k~+

)
(B10)
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Aes dk+ z (Ap+
A2+ (p, p) = — d k~8~

which has an IR-divergent part given by

&k+a, l p+ —k+ ( p+k -
p-k-+l

) &p )
(811)

Ae' dk+ & op+
A2.iR(» p) =—

2 k+

Similarly, one can show that

2J +2
Ae dk+ (p+ ) 1 „+m

2siR(»p) —
2 iR(»p) —

4 s k+ ~ -+ ~
—

k2 *t,+4m &p p —P kj'+

zn IC+2
p+ 2

+ rn2IC+2
J p+2

(812)

which has a vanishing denominator at q = 0 and therefore must be calculated using the Heitler method [3,8]. This is
easily seen to be &ee of IR divergences.

Thus, one finally obtains

Aes dk+
2 Oa (k)

p+'

2 g+2
2p+

k~ + ~2I+2
J p+2

(813)
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