
PHYSICAL REVIEW D VOLUME 50, NUMBER 6

"Theory of theories" approach to string theory

15 SEPTEMBER 1994

Hiroyuki Hata'
Department of Physics, Kyoto University, Kyoto 606 01-, Japan

(Received 18 October 1993)

We propose a new formulation of gauge theories as a quantum theory which has the gauge
theory action S as its dynamical variable. This system is described by a simple actional I(S) (that
is, an action for the action S) whose equation of motion gives the Batalin-Vilkovisky (BV) master
equation for S. Upon quantization we find that our new formulation is reduced to something like a
topological field theory having a BRST exact gauge-fixed actional. Therefore the present formulation
can reproduce ordinary gauge theories since the path integral over S is dominated by the classical
configuration which satisfies the BV master equation. This "theory of theories" formulation is
intended to be applied to closed-string field theory.

PACS number(s): 11.25.Sq, 11.15.Tk

I. INTRODUCTION

In this paper we propose a new formulation of gauge
6eld theory. It applies in principle to any kind of gauge
theory, but our interest is mainly in the reformulation of
string 6eld theory.

A field theory having a dynamical variable y is de-
scribed by an action S(rp) as

(A} =
f17@A(y) exp —S(y)

In gauge theories 8 must be modified so that the lo-
cal gauge invariance is fixed and correspondingly the
Faddeev-Popov (FP) ghosts are introduced. This pro-
cedure for quantizing gauge theories is most eSciently
carried out using the Becchi-Rouet-Stora-Tyutin (BRST)
or the Batalin-Vilkovisky (BV) [1] formalism. According
to the BV formalism, the quantum action S has to satisfy
the master equation

hb, S+ —{S,S) = 0,
1

2
(1.2)

where {e,ej and b, are operators whose precise defini-
tions will be given in Sec. II. The master equation ex-
presses the quant»m BRST invariance of the system: the
term proportional to h takes into account the variation
of the path-integral measure under the BRST transfor-
mation. [Precisely speaking, the action S in Eq. (1.1) for
a gauge theory is obtained from S satisfying the master
equation (1.2) by the restriction to a Lagrangian sub-
manifold. In this section we do not distinguish these two
S's to avoid unnecessary complication. ]

In "simple" systems such as the Yang-Mills theory, the
measure term M,S can be consistently neglected by using

dimensional regularization. However, for closed-string
Geld theory, which is recognizable as a gauge theory hav-
ing an infinite number of gauge symmetries, the measure
term is essential in obtaining a consistent theory. For
such a system the quantum action S satisfying Eq. (1.2)
is given as an infinite power series in 5:

) gn S(n, ) (1.3)

((cl)) = fDs o(s) exp l(s)'—(1.4)

where I(S) is the action for the action (hereafter called
the actional). Since S(y) specifies a theory, the present
formulation may be called a "theory of theories" (TT).

The principles we use in constructing the actional I(S)
for a TT are as follows. First, we require that the equa-
tion of motion of the TT, b'I(S)/hS = 0, gives the master
equation (1.2). Second, I(S) should be invariant under
the "local" gauge transformation

Construction of the quantum action (1.3) for closed-
string field theory has been carried out in Refs. [2—4].
Unfortunately, the resulting S looks too complicated to
be used in the investigation of (possible) nonperturba-
tive aspects of string theory. Invention of another, much
simpler, reformulation of string (field) theory is greatly
desired.

Our attempt in this paper is to present such a refor-
mulation of gauge theories, and, in particular, of closed-
string field theory, without referring to the explicit form
of the action S(rp). Instead we promote the action S(rp)
&om a fixed functional of y to a dynamical variable which
should be path-integrated out. Since the kind of 6eld y
which may be used as the argument of S is 6xed, the cou-
pling constants in S(()o) may be regarded as the dynam-
ical variables. Roughly speaking, we consider a theory
described by the path integral
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where ~ is an arbitrary functional of y. The transfor-
mation (1.5) is known to be a symmetry of the master
equation (1.2) [5,6]: if S is a solution to the BV equation,
so is S + heS (this can be naively understood if the left-
hand side (LHS) of the BV equation (1.2) is regarded as
an analogue of the usual field strength F = dA + A ).

An actional I(S) satisfying the above two require-
ments is easily found (and has already been proposed
in Ref. [7]). We want the TT to reproduce the original
gauge theory (1.1), since our aim is to present a refor-
mulation of string field theory. This implies that our TT
should be a kind of "topological" theory [8,9] which has
almost no physical degrees of freedom as a system of the
dynamical variable S(]p) [recall that an ordinary gauge
theory (1.1) is described by a fixed action S(]p)]. Re-
markably, we find that this expectation is in fact true.
Since the TT is also a gauge theory, we quantize it by
again employing the BV formalism. After introducing
an auxiliary field, the resulting quantized TT turns out
to be a topological theory described by a BRST exact
actional. The connection between the TT and the con-
ventional formulation of gauge theories is made through
the partition function: in the TT the partition function
operator Vt, (S) is an observable, whose expectation value
is shown to be equal to the partition function of a gauge
theory in the conventional formulation.

The organization of the rest of this paper is as follows.
In Sec. II we give a brief summary of the BV formalism
necessary in the construction of the TT. In Sec. III, which
is the main part of this paper, we first introduce the
actional (Sec. III A), carry out the BV quantization of the
TT (Secs. IIIB, C, and D), and discuss the relationship
to the ordinary formulation of gauge theories (Sec. III E).
The final section (Sec. IV) is devoted to a summary and
des cuss&on.

where p(z) is the density. Then we can define two basic
operators, the antibrackets (s, sj and the b, operator b,~,
by

(A, Bj = A By~ (z)dgB, (2.3)

(2 4)

where url~(z) is the inverse matrix to wig(z), and Bl =
]91 = B~/Bz and ]91 = o)„/Bz denote the left and right
derivatives, respectively. ~ Note that both the antibrack-
ets and 4 raise the ghost number Ngp by one.

The antibrackets and the delta operator satisfy the
three basic properties

(4) = 0 (nilpotency), (2.5)

A(A, Bj = (AA, Bj
+(—)

+ (A, b,Bj (Leibniz rule), (2.6)

(-)'"'"' "'((»Bj Cj
+cyclic(A, B,C) = 0, (Jacobi identity).

(2.7)

(—) (A, Bj = A(AB) —b,A B —
( )AbB, (2.8)—

Equations (2.6) and (2.7) are consequences of der = 0,
while Eq. (2.5) is a requirement on the density p(z). 2

Other useful formulas concerning the antibrackets and
the delta operator are [5,6]

II. BV FORMALISM

In this section we shall recapitulate the elements of the
BV formalism used in this paper. We follow our previous
convention [7]. A more detailed explanation of the BV
formalism may be found in Ref. [6].

We consider an (n, n)-dimensional superinanifold JH.
The coordinates of ~ are the field variables. In real
gauge theories, a field y(x) has continuous space-time
parameter z. Here the index I (= 1, . . . , 2n) specifying
the coordinates of M should be understood to represent
all the (continuous as well as discrete) parameters char-
acterizing the fields.

The supermanifold M is endowed with an odd sym-
plectic structure defined by a fermionic two-form u which
is nondegenerate and closed, eke = 0, and carries the
ghost number Nsg[u] = —1. In a local coordinate system
(zI) = (zi, z2, . . . , z2 ) of M, ~ is expressed as

(A Bj = —(—)( +')( +i)(B Aj

(A, BCj =(A, BjC+(-)("+') B(A, Cj,
(AB, Cj = A(B, Cj+(—) ( +')(A, C}B.

The master equation for S(z) reads

(2 9)

(2.10)

(2.11)

M(S)—:ES + -(S,Sj = 0,
1

2
(2.i2)

or equivalently

Ae = 0. (2.i3)

(4) = f dA A(z) exp]S(z)], (2.14)

Given a S(z) satisfying the master equation (2.12) the
gauge-fixed quantum theory is defined by the path inte-
gral

dz wig(z) dz = &u—JI(z) dz A dz

On JH we also introduce the volume element

(2.1) where the integration is over the Lagrangian submani-

dp, (z) = p(z) dz,
x 4 z

I=a
(2.2) '( —) = +1 (—1) if A is Grassmann even (odd).

As a matter af fact, du = 0 followers &om b = 0.
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fold L and dA is the associated integration measure. The
Lagrangian submanifold L is a (k, n —k)-dimensional sub-
manifold of M, such that ur(v, v) = 0 for any pair, v and
6, of tangent vectors to L at z E L (v, 6 E T,L). The
corresponding vob~~e element dA is defined by

dA(ei, . . . , e ) = dp(ei, . . . , e„,f, . . . ,f"), (2.15)

where dp, is the volume element in M, Eq. (2.2), and
(ei, . . . , e„,f, . . . , f") is a basis of the tangent space
T,M such that (ei, . . . , e„) is a basis of T,L and the
condition u(e;, f~) = 6~ is satisfied. The choice of L cor-
responds to the choice of gauge fixing. In order for the
expectation value (A) (2.14) to be independent of the
choice of the Lagrangian submanifold L, the operator
A(z) has to satisfy the condition (see below)

(A, B) = 8~A BiB
84* 8$,*.

2
= ( ) g4t'gy

8~A tB
8$' BP*

(2.21)

(2.22)

In the Darboux &arne the Lagrangian submanifold L is
specified by

the condition (2.16) ensure the vanishing of b, (Ae~) =
(b,A+ (S,A)) e + Ab, e~.

The simplest coordinate system for M is the Darboux
frame (P*,P;. ); i „with co = —2+,-dye A dP;. . The
coordinates gP and 4; are called fields and antifields, re-
spectively, and they satisfy Nsh[qV]+Nsh[P;. ] = —1. The
antibracket and the delta operator in the Darboux &arne
(with p(z) = 1) are given by

bA+(S, A) =0. (2.i6) L:P;= (2.23)

The solution S(z) of the master equation (2.12) is not
nuique. Given a solution S(z), we have a continuous
family of solutions obtained by the infinitesimal "gauge
transformation" h, [5,6]:

6,S = b.e+ (S,e}, (2.i7)

where the transformation parameter e(z) carries Nsh[a] =
—1. In fact, using Eqs. (2.5)—(2.7), the master equation
M(S) of Eq. (2.12) is shown to transform homogeneously
under 6,: 6,M(S) = (M(S), e}. The same formulas tell
that the transformation 6, forms a closed algebra:

[6„,6„]= 6(„„). (2.is)

(A)&+&& —(A)& —— dA b,eAe + {Ae,e)
L

dA b(eAe ) + eE(Ae )
L

(2.i9)

where the Le term in the first expression originates &om
the change of the measure dA, while the (Ae~, e) term
expresses the coordinate transformation on the integrand
A(z)e+& & (see Sec. 3.3 of Ref. [7]). The last expression
of Eq. 2.19 is obtained by using the formula 2.8 . The
b, (eAe ) term in the last expression of Eq. (2.19) van-
ishes due to the general formula [10]

dALA = 0,
L

(2.20)

which holds for arbitrary A(z). The inaster equation and

The finite transformation which has 6, of Eq. (2.17) as its
infinitesimal expression is given by considering a general
canonical transformation g: M ~ M satisfying g'u = ur

(see Ref. [7]).
The relationship between the master equation [plus

the requirement (2.16) on A] and the independence of
Eq. (2.14) on the choice of L is understood as follows. A
general infinitesimal deformation of L may be realized by
a canonical transformation: zI ~ z + (z, e) for some
e(z). Therefore we have

A)A = (S,A). (2.25)

Then the BRST transformation in the gauge-fixed the-
ory 6~ is defined by restricting 6~ to the Lagrangian
submanifold:

yi 6 yi
~

~S(4'& 4 )

0:=»(4)/s&'
(2.26)

The master equation ensures the quantum BRST invari-
ance and the on-shell nilpotency of b~.'

6~ S(P) + ln dP' = 0, (2.27)

6S(P)
6p

(2.2s)

where S(P)—:S(P, P' = BT/8$).

III. THEORY OF THEORIES

As seen above, the master equation has a local gauge
symmetry given by 6, of Eq. (2.17). In this section, we
shall construct the TT, namely, a gauge theory which
has S(z) as its dynamical variable and has an invariance
under b, . We shall then study the quantization of the
TT based on the BV formalism and the relationship to
the ordinary formulation of gauge theories.

A. Actional

First we need the actional I(S) for the TT. As stated
in Sec. I, we demand that I(S) has an invariance under

where T(P) is called gauge fermion (Nsh[T] = —1). The
expectation value of an observable A, Eq. (2.14), now
reads

(+) = f~4+(AW )~"Pt~(AA')I . . (224)
y; =ex(y)]e

Finally, we shall explain the BRST transformation in the
BV quantized theory (2.24) in the Darboux frame. First
we define the pre-BRST transformation 6~ on a general
A(z) by
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b, and that the equation of xnotion, b'I(S)/bS = 0, gives
the master equation (2.12). Such an actional has been
proposed in Ref. [7]. It takes a fairly simple form

&omztoz:

dpAHLH~ = —dp SHAH —~ = 0, (3.8)

la (S) = / dpH(z)dH(z), (3 1) where we have used the properties

where H(z) = exp[S(z)] [see Sec. 3.2 of Ref. [7], where
we denoted Ix„(S) by A(S)]. In this paper we adopt,
instead of (3.1), the slightly modified actional I(S):

dp(z) = —dp, (z),
+(z) = +(z)
6z = —cz

(3 9)
(3.io)
(3.ii)

I(S) = — dy(z)H(z)bH(z)
1

1
dy, (z)H(z) AH(z),

2
(3.2)

Equation (3.11) is the restriction on e(z) that it should
not contain Grassmann odd "constants. " Note that
f (z) = +f (z) depending on whether the function f (z) =
~x~(z), p(z), etc. , is Grassmann even (upper sign) or odd
(lower sign). For example, we have p(z) = p(z).

where the coordinate z is related to the original one, z,
by the "inversion" of the Grassmann odd components:

II
( )—z I

The two expressions of Eq. (3.2) are equivalent on using
the partial integration formula

dyAbB = —— dy(A, B) = (—) dy, (b,A) B

B. Master equation for the TT

Having presented the gauge-invariant actional of the
TT, our next task is to quantize it. We shall carry out
this quantization using the BV formalism. For this pur-
pose we have to first define the antibracket and delta
operator for the TT, which we denote by (*,*) and
respectively. Here we shall adopt the following ones:

(3.4)

Since we have Nsh[6] = +1 and Nsh[S(z)] = 0, the
requirement that the actional I(S) carries no ghost num-
ber Ngh leads to the following restriction on the ghost
numbers of zI:

(A) B) = A(S) 2 B(S)

bH(. )
( )bH(-. )

( )' (3.12)

2n

Nsh[dp(z)]:—) (—) Nsh[z ] = —1. (3.5) (3.13)

b,H = b, (He) —(EH) e, (3 6)

is shown as

h, I(S)= dp A(He) —b,He EH

dp —HA H + SHAH- ~ = 0, (3.7)

where H is short for H(z), and we have used Eq. (3.4)
and the nilpotency of L. The vanishing of the AHLHe
term is understood by making the change of variables

Since Nsh[z ] = even (odd) if zx is Grassxnann even

(odd), the requirement (3.5) tells that the dimension n
of our (n, n) supermanifold M must be an odd integer
[this fact follows immediately from the requirement that
I(S) be a bosonic quantity since b, is fermionic]. It is a
delicate matter whether condition (3.5) is satisfied for a
concrete system, such as string field theory, since the in-
dex I is in fact a continuous parameter. Here we simply
assuxne that the condition (3.5) is satisfied.

It is obvious that the equation of motion,
hI(S)/bS(z) = 0, gives the master equation (2.13). The
invariance of I(S) (3.2) under the gauge transformation
h, of Eq. (2.17), which is expressed on H(z) as

where A(S) and B(S) are arbitrary functionals of S(z).
Note that the difFerential operator h/bH(z) is Grassmann
odd since we have

A(')
bH( )

= (-)""bH(
)
A(') (3.15)

It is easily seen that the antibracket (e, s) and the "delta"
operator satisfy the basic properties of Eqs. (2.5)

(2.11) with (*,*) and b, replaced with (*,*) and
respectively. Since Nsx, [b/bH(z)] = Nsh[b(z)]

—Nsh[dp(z)], the condition (3.5) ensures that both (*,*)
and raise Nsx, by one.

Here we should add a comment on the ghost number
restriction on S(z) as the argument of I(S). I.et us sup-
pose a (formal) expansion of S(z) in terms of a "complete
set of interactions" (f (z)):

H(z') = H(z') -= h(z —z') = b'(z' —z), -
hH z hH z

(3.i4)

and h(z —z') is Grassmann odd (recall that n is odd).
In obtaining the second expression of Eq. (3.12) we have
used the formula
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S(z) = ) .f-(z)s- (3.16)

where the coupling constants s are now the dynamical
variables. When we consider the gauge-invariant actional
I(S) (3.2) and the gauge transformation (2.17), we can
consistently restrict the summation (3.16) to those n with
Nsh[s„] = 0 by restricting also the expansion of the trans-
formation parameter e(z) = P f„(z)e„ to Nsh[e ] = 0
(and therefore Nsh[f ] = —1). In other words, we can
impose the condition

0+ —(I, O) =0. (3.22)

As an example of an observable satisfying Eq. (3.22)
we have the "partition function operator" Vl, (S):

Vr, (S) = dA H(z).
L

(3.23)

pectation value ((0)) to be independent of the choice of
the Lagrangian submanifold 8, the observable G(S) has
to satisfy the condition [recall Eq. (2.16)]

(3.i7)

for an arbitrary 8. This restriction looks natural if we re-
gard I(S) as a "classical" actional before introducing the
FP ghosts for quantization. However, when we discuss
the BV formalism, we have to relax this ghost number
restriction on S(z). Namely, in order for the antibracket
and the delta operator of Eqs. (3.12) and (3.13) to be
nonvanishing and make sense, we have to allow the ex-
istence in S(z) of the couplings s„ofany ghost nnmber.
The situation is the same as in string field theory [11,4].

Once we relax the ghost mImber restriction (3.17) on
S(z), the same I(S) as Eq. (3.2) satisfies the master equa-
tion of the TT:

I+ —
/

—I, I
/

=—0, —1 151 1
A 2gA'Ay (3.is)

for an arbitrary coupling constant A. Namely, each term
of Eq. (3.18) vanishes separately:

(I I) = fd0 IzHIzH = J diz HIz'H = 0,

I = —'Ilk = —J dz Ed(z —z')), =, = 0. (0.20)
I

I vanishes because it is a Grassmann odd constant
which we do not have. 3

For this VL, each term of Eq. (3.22) vanishes separately.
Vg = 0 is obvious since Vg is linear in H(z) As .for

the second term, (I, VL, ), we have

(I, VL, ) = dAb, K(z) = 0,
L

(3.24)

with

6L, VL, (S) = dA b,eH+ (H, e)
L

dA be,H = (X,I),
L

(3.25)

X = dA e(z)H(z).
L

(3.26)

Then the variation of the expectation value ((VL, )) under
8L is

where use has been made of the general property (2.20)
of the integration over the Lagrangian submanifold L.

((VL, )) is not only independent of the choice of 8, but in
fact is also independent of the choice of the Lagrangian
submanifold L de6ning VL. This may be seen as follows.
First, under a small deformation hL, of L corresponding
to the canonical transformation zr ~ z +(z, e(z)},the
observable VL, transforms as [cf. Eq. (2.19)]

C. BV quantisation of the TT

((C7)) = 27A Q(S) exp I(S)—1 1
(3.21)

We now apply the BV quantization method to our TT
described by the actional (1/A)I(S). The expectation
value of an observable O(S) is given by [cf. Eq. (2.14)]

b'L, ((VL, )) = A 1)A (X,el~"
~)

(x"~" ) + x"~"
)

I/A

=0, (3.27)

where l: is a Lagrangian submanifold of the supermani-
fold of H(z), and 1%A is the volume element on l: defined
similarly to Eq. (2.15) on the basis of the volume element
17H(z) on the total supermanifold of H(z) (the explicit
expression for 17A will be given later). Z(A) in Eq. (3.21)
is the partition function of the TT. In order for the ex-

where the three terms in the last expression vanish sep-
arately upon using (i) the formula (2.20) applied to the
TT, (ii) the fact that X' is linear in H(z), and (iii) the
master equation for I(S), Eq. (3.18) [in Eq. (3.27) we
have omitted to divide the RHS's by Z(A)].

D. Choosing a Lagrangian submanifold

In fact, a more careful analysis using a suitable regulariza-
tion may prove necessary, and this might give a nonvanishing
S-dependent "anomaly" to Eq. (3.20).

The quantum TT is now given by Eq. (3.21). In this
subsection we shall choose a concrete Lagrangian sub-
manifold l: for the quantization of the TT. For this pur-
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pose we shall work in the Darboux frame for M with
p(z) = 1 and treat one pair of field and antifield vari-
ables in a special manner. We choose a kame

bG[h] bG[h]

hh(7-, z) &h
(3.37)

z' = (~, 8, Z'),
in terms of the gauge fermion G[h] of TT [cf. Eq. (2.23)].

(3.28)

with E. The TT as a topological theory

=? -( ' ay'api=1
(3.29)

where 7 and 8 are Grassmann even and odd, respectively,
and the condition Ksg[w]+Ash[8] = —1 is satisfied. Then
we make explicit the dependence on the Grassmann odd
coordinate 8 by expressing H(z) as

hgyH = (I, H) = b,H,

are expressed in terms of h and y of Eq. (3.30) as

(3.38)

In this subsection we shall carry out a concrete study of
the BV quantized TT of Eq. (3.21) using the Lagrangian
submanifold of the previous subsection. First, I(S) and
the pre-BRST transformation b~ for the TT,

H(z) = h(r, z) + 8g(r, z) (3.30)

In terins of the components h and y of Eq. (3.30), the
functional difFerentiation h/hH(z) is given by

b b b=8
bH(z) bh(r, z) by(~, z)

'

b b b0+
bH(z) h'h(~, z) by(r, z)

(3.31)

Note that b/bh and h/byare Gr' assmann even and odd,
respectively. Using Eq. (3.31), the antibracket (3.12) of
the TT is re-expressed as

bgyh = Ah+
87

(3.40)

We shall consider the expansion around a classical solu-
tion Hp(z) of the master equation:

Hp = hp + 8+p with AHp ——0. (3.41)

The master equation. for the components hp and yp reads

1 ( cj
I(S) = —— drdz

l y —g+ yb, h+ hb, y l, (3.39)
2 ( 87

and

(A, B) = f dYdzA ————= 8 (3.32) x
Ahp +

f97

p=0

=0,

(3.42)

where dz—:g,".
I dP'dP, *.

, and h = h(v, z) and y
g(7., z), etc. Namely, we have chosen a Darboux coor-
dinate for the supermanifold of H(z)

The Lagrangian submanifold 8 in the space of func-
tions H(z) is specified by

Defining the fiuctuation f by

f(r, z) = h(r, z) —hp(r, z),

the Lagrangian submanifold 8 is speci6ed by

(3.43)

i":r(r, z) = 0, (3.33)

where r(r, z), which is defined for each (r, z), is a func-
tional of h and y, and it satis6es the condition

(r( „z,), r(~„Z,)) =0, (3.34)

for any pair (TI zi) aild (vz, z2). A solution to Eq. (3.34)
is obtained by assuming that

r (r, z) = y(7-, z) + r (r, z), (3.35)

(r( ) r( ))
br(7I, zi) br(r2, z2)

bh(~z, z2) bh(7I, zi)

(3.36)

and F should be given as a gradient form

where I' depends only on h. Then Eq. (3.34) is rewritten
as

C: y(~, z) = yp(7. , z) + hG[f]
bf(~, z)

(3.44)

where lc means the restriction to the Lagrangian sub-

manifold (3.44). It can be checked explicitly that I(f) is

invariant under b~ and that the latter is on-shell nilpo-
tent:

Note that this is slightly modi6ed compared to the form
in the previous subsection because of the rede6nition of
G. We assume that bG[f]/bflf p ——0 and —therefore

xlf=p +p
The gauge-fixed actional I(f) and the corresponding

BRST transformation b~ are given by

I(f)—:Ilr = — d7.dz
I

—
& &

—+
h

+f
I

(345)
1bG 8 bG'hG—

~2 bf 8~ hf h'

8 bG
hIIf = bafle = &f + ~0~ $f

(3.46)
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bgyI(f) = 0,

8 t'6II
E i Br ~bf)

(s.47)

(3.48)

In proving Eq. (3.47) we have used, in particular, the
manipulation

6G —( 8 6Gi —t' 8 6G) 6G

bf gBT bf) gBT 6f) 6f
—(8 6Gi 6G

gBT bf ) bf
(3.49)

where the first equality is due to partial integrations, and
at the second equality we have made a change of integra-
tion variables z ~ z, under which we have dz = dz and

The partition function operator Vr, of Eq. (3.23) on 8
is given by

Vr, (f) = VL, (c = Vt + dA
~
f + 8

6f) (s.50)

where Vr = f&dAHo(z) is the partition function of a
gauge theory described by the action So(z) = lnHo(z).
The expectation value ((Vg)) of Eq. (3.21) may now be
explicitly written as

iv, i = z'„ fvyv, (y). „'F(g) . - (s.51)

Some comments are in order. First, it should be noted
that the range of path integration over f in Eq. (3.51)
is nontrivial since the original variable K(z) is in fact an
exponential function H(z) = exp[S(z)]. It is restricted
to the region

f [e,=o & —hole, =o (s.52)

where 8; denotes all of the Grassmann odd coordinates in
zI. Therefore, even if we adopt G[f], which is quadratic
in f and hence makes I (3.45) quadratic in f, the TT
is not truly a kee Geld theory: I expressed in terms of
»n~estricted variable contains interactions.

Second, the (formal) invariance of the path-integral
measure 17f under the BRST transformation 6~ of
Eq. (3.46) may be checked as follows:

b [bye f (T, z)]
6 (T, z)

b 0 bG= Tb+ drdz — =0,
6 T, z BT bf(r, z)

(3.53)
where the vanishing of the last term can be understood by
partially integrating with respect to T and then changing
the integration variables &om z to z to obtain minus the
original expression.

The third co~ment is that VL, (f) (3.50) is not exactly
a b~ invariant operator but bgyVL is proportional to the
equation of motion:

6 V (f) = — dAH
bf

(3.54)

baf = &f+
BT

bye B = b,B. (3.56)

This bn is apparently the same as the pre-BRST transfor-
mation bz of Eq. (3.40) with (h, Z) replaced with (f, B)
and hence is ofF-shell nilpotent:

(3.57)

The actional I(f, B) for the new (f, B) system is ob-
tained by summing I(f) (3.45) and the contribution from

Eq. (3.55), and it is written as a 6~ exact form:

I(f, B)=I(f) + — d7dz
i
B —

i

—.
i

B—
2 ( bf) Br ( bf)

t'1 —8 bG BB
(2 Br bf Br

bG- )
bf

= bye
~

G[f] —— drdzBf
~

.
)2

(3.58)

In the (f, B) system described by the actional I, the
partition function operator VL, (3.50) is equivalent to a

new operator VL,

Vt, (f, B) = VL + dA(f +HB),
L

(s.59)

so long as we consider only the the "one-point" function:

The invariance of ((VL,)) under an infinitesimal change of
the gauge fermion G by 6~G can be checked explicitly
using Eq. (3.54) and 6~I = 6~ (6~G), etc.

The gauge-fixed actional (3.45) consists solely of terms
containing the gauge fermion G[f] which specifies the
gauge fixing. Therefore one may suspect that our TT
is a topological theory which has no physical degrees of
&eedom as a quant»m theory of S. We show in the fol-
lowing that this is the case: by introducing an auxiliary
field the gauge-fixed actional I can be reduced to a BRST
exact form. For this purpose we multiply both the de-
nominator and the numerator of Eq. (3.51) by a Gaussian
integration over a new Grassmann odd variable B(r, z),

1 (— 6GI 8 t' 6GI
'DBexp — drdz

/

B-
2A g bf)Brl,

(3.55)

and consider the system of f and B variables [note that
(3.55) is independent of the old variable f]. Let us define

the new BRST transformation bn for the (f, B) system
by
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((Ve)) = fBfJ17BV e(fB,)exp
~

I(—f, B)
)

(3.60)

This is because we have

bG')(
v, (f) = v, (f, B) — dx e

~

B—
bf) (3.61)

bgyvl, (f, B) = did(f +OB) = 0.
L

(3.62)

This implies that ((Vr, )) is in fact independent of the cou-
pling constant A:

((v, )) = 0,
8

(3.63)

and therefore ((VL, )) may be calculated in the "classical"
limit A ~ 0 [8,9]. In this limit the (f, B) fields are frozen,
and we find that the expectation value of the operator VL,

in the TT is equal to the partition function of the gauge
theory corresponding to a classical solution So(z) of the
master equation (2.12):

and the expectation value of the last terin of Eq. (3.61)
vanishes since it is odd with respect to B —bG/bf [cf.
Eq. (3.55)]. For a general multi-VL, function ((g, Vi„)).
(whose physical meaning is not clear at present), VL, can-

not be replaced by VL, . In distinction to the case of the

VL, operator in the f formalism [cf. Eq. (3.54)], the VL,

operator in the (f, B) forxnulation is simply a b~ invari-
ant operator:

the latter case of choosing one stationary point, let us
regard the variable f as the original h of Eq. (3.30), that
is, let us put Hp ——0 in the above equations. For sim-
plicity we consider the stationary points of I(h) instead

of those of I(h, B) (they give the same result for h). The
stationary condition of I(h) reads

bI(h) — —i bG[h]
(3.65)

From Eqs. (3.65), (3.42), and (3.46) we see that, if we
have a solution Hp of the master equation QHp ——0 on
the Lagrangian submanifold l'. of the form

Hp ——hp+ 8
bG[h]

h=ho
(3.66)

IV. SUMMARY AND DISCUSSION

then h, = ho is automatically a stationary point of I(h).
However, not all solutions of Eq. (3.65) correspond to
solutions of the master equation. If only one stationary
point is chosen in evaluating ((Vl, )) in the TT, a station-
ary point hp which does not correspond to a solution of
the master equation should not be selected, since in that
case we would have b~h~f, f„g 0—and the BRST symme-
try in the TT would be spontaneously broken so that the
above argument leading to the A independence of ((VL, ))
would break down. If we have many stationary points
which have corresponding solutions (3.66) of the master
equation, we do not yet know how one of them might be
singled out. Note that I(h) vanishes at every one of these
BRST-invariant stationary points.

((V, )) = »m((V&)) = V~. (3.64)

This implies the equivalence between our TT and the
ordinary formulation of gauge theories, at least as far as
the partition function is concerned.

In deriving Eq. (3.64), we have implicitly assumed that

there are no stationary points of I(f, B) other than the
trivial one (f, B) = (0, 0). What will happen if there are

other stationary points of I? In this case there would
be two possibilities: one is that we have to sum all the

contributions from the stationary points of I, and the
other is that only one of the stationary points is chosen in
the same manner as in the case of spontaneous symmetry
breakdown. Which of the two is realized depends on the
dynamics of the TT: whether the TT with a nonvanishing
coupling constant A is in a disordered phase or in an
ordered perturbative phase.

If all the stationary points of I have to be summed
over, the TT would be a very peculiar theory which could
hardly reproduce an ordinary gauge theory. To discuss

Here ere are assuming that the discrete symmetry B
B+2bG/bf is—not spontaneously broken.

In this paper we have proposed a new approach to
gauge theory. It is formulated as a gauge theory having
the action S of ordinary gauge theories as its dynamical
variable. Applying the BV quantization method, we have
found that our TT is essentially a topological theory de-
scribed by a BRST exact actional and can reproduce an
ordinary gauge theory corresponding to an action satisfy-
ing the master equation (1.2). Since this new formulation
does not refer to any concrete solution of the master equa-
tion (1.2) in its basic formulation, our TT is expected to
be useful in its application to closed-string field theory
whose quantum action takes a very complicated form.

There are many questions left unanswered. Most of
them are mentioned in the text. We finish this paper
by summarizing them (not necessarily in the order of
importance).

(i) Observables in the TT. At present we have only
the partition function operator (3.23) as an example of
an observable satisfying the condition (3.22). In order
to make clearer the connection between the present TT
and the ordinary formulation of gauge theory, we have
to prepare more observables. An "on-shell amplitude op-
erator" would be an interesting candidate, however, we
do not know the exphcit form of such an operator in the
TT.

In relation to the problem of observab}es in the TT,
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we comment that the product of the partition func-
tion operators, 0 = g,. VL„, is also an observable
satisfying the condition (3.22). We have (I,0)
g,. (I, VL,, ) g.&,. VL, = 0 since (I, Vl, , ) = 0. As for 0,
it is expressed using Eq. (2.8) as a sum of terms which
contain either VL„.(= 0) or

(Vl, ;V )I.= f dA(z) f dA(w) b(z —w). (4.1)
1

I„ 1„~(z)
The quantity (4.1) vanishes since it is a constant with
Ngh ——1. However, we do not know whether there is any
interesting meaning to the expectation value ((g,. Vl„.)).
Note that (8jd9A)((g, z VL„.)) = 0 does not hold for N )
2.

(ii) Nsh[I(S)] = 0'? We have left unanswered the ques-
tion of whether the actional I(S) of Eq. (3.2) carries no
ghost number, that is, whether the condition (3.5) is sat-
isfied in the system we are interested in, for example,
closed-string field theory. As stated in the text, this is
not an easy problem since the index I is in fact a contin-
uous parameter.

(iii) We do not yet know how to treat the case where

the actional I has many stationary points, should this
arise.

(iv) It is an interesting question whether the present

TT formulation applied to closed-string field theory gives
a space-time background independent formulation (see
Refs. [12,13] for recent studies on the background inde-
pendence of string Beld theory).

(v) We have no intuitive understanding of why the TT,
which has a nontrivial classical actional, I(S) of Eq. (3.2)
with the restriction (3.17), is reduced upon BV quanti-
zation to a topological theory, at least in the evaluation
of ((VL)).

(vi) Most of the manipulations in this paper are very
formal. It is desirable to study the validity of the argu-
ments for the TT using a simple model.

The last and the most important problem is how the
present TT formulation is useful in the study of gauge
theories, and, in particular, of string theory. This prob-
lem is currently under investigation.
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