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Off-shell amplitudes in taro-dimensional open string field theory
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In this article we present an explicit procedure for the regularization of tree level amplitudes
involving discrete states, using open string Seld theory. We show that there is a natural corre-
spondence between the discrete states and oif-shell states, later acting as a regularized version of
the former. A general off-shell state corresponds to several physical states. In order to obtain the
well-de6ned S matrix elements one has to choose representatives close but not equal to the desired
values of external momenta. The procedure renders finit all four-point amplitudes with an even
number of (naively) divergent channels even after the regularization is removed. The rest of the
amplitudes can be deSned by means of such regularization.

PACS number(s): 11.25.Pm

I. MOTIVATION AND INTRODUCTION

During the last couple of years d ( 1 string mod-
els received considerable attention, Ref. [1]. The main
reason for that is that they provide examples of consis-
tent and exactly soluble string models. Recently, it has
been pointed out that one can construct a nontrivial,
consistent theory of strings with Dirichlet boundary con-
ditions from a collection of two-dimensional (2D) topo-
logical gravity models, Ref. [2]. Dirichlet strings, on the
other hand, have been argued to be a possible candidate
for an efFective /CD string theory, Ref. [3]. In a different
approach toward /CD strings, Gross and Taylor showed
the equivalence between 2D /CD and an efFective 2D
string theory without folds (discrete states), Ref. [4]. It
is desirable to much better understand various 2D models
and relations between them.

In this note we focus on open 2D strings. It should
be remarked that there is no matrix model available in
that case. The only results known until recently were
due to Bershadsky and Kutasov who calculated the bulk
amplitudes for tachyon-tachyon scattering in the contin-
u»m (Liouville) approach, Ref. [5]. Although simple (the
only field in two-dimensional string theory is a massless
"tachyon"), this is not a trivial theory. It possesses a
large spectrum-generated W symmetry. The generators
of the symmetry, discrete states (DS's), are defined only
for some particular values of momenta. In the framework
of string field theory, DS's appear as Becchi-Rouet-Stora-
Tyutin (BRST) cohomology classes, as well as poles of
the tree-level 8 matrix, Refs. [6,7]. In that respect, they
are remnants of higher (excited) string states in 2D. How-
ever, when treated as external (asymptotic) states, pres-
ence of a sufBcient number of DS's leads to tree level
divergences.

A classification of four-point amplitudes involving DS s
was presented in Ref. [7] (see Sec. II for more details). A
four-point amplitude diverges if at least one of the kine-
matic invariants s, t, or u is nonpositive integer. If s is
such an integer, for example, then the s channel ampli-
tudes g &o

"i l is ill defined because the denominator
blows up for t'. Le level n = —s. If s ) 0, on the other

hand, the amplitude vanishes.
The aim of this note is to treat the divergences more

carefully using field theory. We proceed in a simple way.
First we generalize the concept of DS's and allow them
to depart Rom the mass shell in order to render the tree
amplitudes finite. Such a procedure gives a well-defined
result. One can think of such o6'-shell "discrete states" as
just a regularization scheme. Then we show that, upon
such regularization, some divergences cancel each other.
Such amplitudes are well-defined even after the regular-
ization is removed. Our consideration may be generalized
to N point amplitudes.

II. GREE¹S FUNCTIONS AND 8 MATRIX

The starting point in our discussion is Witten's open
string field theory (OSFT) in 2D. As in any other gauge
theory, to derive Green's functions in 2D OSFT one needs
first to fix the gauge. We choose the so called Siegel's
gauge, beA = 0 (see Ref. [6]). Introducing the external
sources J„onefor each coeKcient field, one determines
the generating functional Z(J, ) Rom which it is easy to
deduce (ofF-shell) Green's functions:

1
Z(J,) oc —,G„(pi,. . . ,p„)J„Ji,

At
(2.1)

~ e;, ;,n", ".a'",.„~.~. . 2n, —. ~2 + ~2s), (2.2)

where G„contain an overall factor h(z) (P," i p;+Q), and
Q~ = (0, 2~2) is the background charge of the matter-
Liouville system. We need, however, to specify what is
meant by ofF-shell states and how they relate to the phys-
ical states of the theory. Let us recall, first, that H&~~

DS's can be obtained by applying the raising or lowering

SU(2) charges H~ = &,. $ e+*~ to discrete tachyons
= pygmy 2+g( 4 2+4 2+) V' ~
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~ke ~4 --4 {x &.—p ~&~'„1 . .»&,1 is the polarization
tensor, and g Icjk is the level of the state W+ . In this
representation only the matter Qeld contributes to excita-
tions. The set of physical states can be partitioned with
respect to the following equivalence relation: two states
are considered equivalent if they have the same polariza-
tion structure and difFer only by the values of momenta.
For example, discrete and generic tachyons belong to one
class, vector particles to another and so on. Denote the
quotient space by P. Let us introduce, now, another
set 0 which consists of states with the same polarization
structure as physical states but with unphysical values
of momenta. We refer to the elements of 0 as og-sA:ell
states. It is clear that there exists a natural bijective
map P ~ O. We can visualize an element of 0 as an
open, connected subset of R2, with discrete (physical)
states corresponding to points cut out form the surface
(Fig. 1). Note that, in general, more than one physical
state maps to the same o8-'shell "surface. "

Tree-level four-point Green's functions are given by the
expression

Goc D;) Vz„iD &4„s. (2 3)

Here, D; represent external propagators ("legs" ), the
sum is over a complete set of intermediate states, and
each of the states i belongs to 0. To recover (on-shell) S
matrix elements from the expression for Green's function
(2.3) one needs to (a) cut the external legs and (b) for
each external leg choose an on-shell representative. From
the comment above it is clear that one oK-sheQ Green's
function corresponds to a variety of S matrix elements.

Let us consider, for example, tachyon Green's function.
Contribution to the s channel reads

where p2 = i(p; + &)z is ith tachyon external leg and
the erst couple of res1dues are g1ven by

Ap ——1,
1

A, = —(t —u),
2

1 1 z 5
A, = —-+-(t —u) ——) V; .

8 8 32 i=1

(2.5)

III. OFF-SHELL AMPLITUDES
AND RECULARIZATION

The total Green's function is' ~ ~ = +~'~ + +
+G'~"~. To obtain S matrix elements, after we calculate
the residues in p2 we need to pick the values of tachyon
(on-shell) momenta we are interested in. The same pro-
cedure can be repeated for the nontachyonic states. In
this way one can reproduce the results of Ref. [7]. I,et us

briefly summarize them. If we denote by T a generic
tachyon and by D an arbitrary DS including discrete
tachyons, then (a) classes ATTT z and Az ~~~ are empty,

(b) class AT Tz D is well defined and the amplitudes have

an infinite number of intermediate physical states, and

(c) class A2 T Dii has at least one degenerate channel and
it can be subdivided into three subclasses: A&T&D is well

de6ned and has a 6nite nn~ber of intermediate states,
AT &&D diverges a,nd has an in6nite number of interme-

diate states, while AT,'T&D is just a divergent nuxnber.

Finally, ADDDD always diverges. Let us stress, however,
that being ofF shell, even not far fxom the mass shell,
makes all amplitudes well defined. Moreover, as we shall

see in the next section, if an amplitude is apparently di-

vergent in two channels, these divergences can be made
to cancel each other. Such amplitudes are well de6ned
even after the regularization is removed.

f"
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In the previous section we have defined oK-shell states
and discussed their relationship with physical states. We
have seen that several physical states correspond to the
same oK-shell state. Green's functions (2.3) are well de-

fined off-shell. In fact, none of the kinematic invariants

s, t, or u degenerate because, apart from the overall mo-

mentum conservations, there is no other kinematic con-

straint. Cutting the external legs or, in other words,
calculating the residues in p;, gives rise to the constraint

s+t+ u = Q,. iyz & 1, which is still harmless The.
only potentially harmful step in the procedure of S ma-

trix calculation is the last step, namely, choosing the rep-
resentatives of the external states. This is what we shall
discuss next.

Let us consider a specific exa.mple, namely, the ampli-

tude belonging to the class A&&D&.

1 dx
(~1 1 ~„1~i1 ~1 1 )2~2 0

(3.1)

FIG. 1. Mapping from on-shell to off-shell states. Equiva-
lence classes of discrete states {depicted by dots) are mapped
to ofF-shell states {depicted by surfaces with punctures).

Notice that (3.1) is nondynamical (momentum indepen-

dent), although divergent. One would expect that it does
not contribute to the properly defined scattering ampli-
tude. Let us show that this is, indeed, the case. VTe start
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Rom the off-shell tachyon Green function (2.4). Matter
and Liouville momenta are, at this point, arbitrary (sub-
ject, of course, to the conservation law). Let us, now,
pick the values of momenta close to the physical values
indicated in (3.1): namely,

1
pl I

+~1 ~ +~1
2 2 )

1
S =—

2

qi'I»+p. + —
I

Q'l '
I pi+ ps+ —

I2)
( Ql'

I
»+&4+

2

4eI +k2
I

E 2

( 1= -4.
I

+ k.
I

= —., (3.4)

= 1~2v2e.

p2 = (k2+ ep~ —V 2 —k2 + &2 ) )

p~s = (ks+as, —V2 —ks+as ),
( 1 1

p4
It p+e4 & p+~4

(3.2)
We see that in the limit e ~ 0, s, t —+ 0, while u ~ 1.
This means that, had we altogether neglected e we would
have two divergent channels, divergences arising &om the
n = 0 (tachyonic) intermediate state. Let us keep, for
now, finite e and consider the potentially divergent piece
of the total amplitude more carefully. We have

From the moment»m conservation, one has a constraint
on the allowed values of e s:

4 4

) sF= ) eI~ (3.3)

which is identically satisfied if we choose 6' ~ = ~ = —E';.

Selecting a particular regularized S matrix element is
equivalent to choosing sufficiently small, nonintersecting
neighborhoods around those value of momenta (Fig. 2).
Such neighborhoods always exist since each element of
0 is a HausdorfF topological space. The neighborhoods
are off-shell representatives (regularizations) of the on-
shell state. It follows that the choice made in (3.2) gives
a particular contribution to the S matrix only if we re-
strict ourselves to the terms small in e. The limit e ~ 0,
if exists, gives then the value of the particular on-shell
amplitude. For the larger values of e, on the other hand,
neighborhoods start overlapping with each other. That
situation corresponds to a generic oE-shell amplitude.
Below, we discard all quantities of the order O(e).

Kinematic invariants, then, read

A(~.~) (~~) —( —,s) (3.5)

We see that the residue in s vanishes, so that the ampli-
tude has, in fact no singularities. Now we can take the
limit e -+ 0. Evidently, A&s's& = 0. This result can be
generalized to any four-point amplitude which (naively)
diverges in two dHFerent channels. The crucial point here
is that two divergent contributions (from two different
channels) can always be made to cancel each other. In
the case of an odd number of divergent channels this
simple argument does not work. This is the case, for ex-

a.mple, for AT,z,DD. There we only have one divergent
channel, so that the residue of the divergent piece is not
zero and the cancellation does not occur. Similarly, some
of the amplitudes A~~D~ have three divergent channels.
(For example, for (Ws+, , W~+, Wz s Wz s) one has s = —9

Q~2

and t = u = 0.) It is easy to see that divergences of two
of the channels may cancel each other, but there will be
always one left. It is not a disaster, however. In that
case we could keep ei finite, and have well-behaved ex-
pressions which we can degne to be the answer we are
looking for.

So, to summarize, departing from the mass shell gives
a natural way to regularize the amplitudes involving dis-
crete states since the states are not, basically, discrete any
more. In the case of an even n»mber of divergent chan-
nels divergences cancel each other, and the amplitude is
well de6ned even after the regularization is removed. For
the amplitudes with an odd number of divergent channels
one can redefine them using the procedure above.

It is easy to see that the similar situation arises in
general N-point case. As an illustration, consider five-

point Green's function. It is given by

G oc g DiV2z1DzVz3I, V51,4 )
~ h ~ h

i=1
(3.6)

FIG. 2. A blown-up representation of an element of O.
Shaded regions represent small neighborhoods around discrete
states.

plus nonequivalent permutations. Upon chopping the ex-
ternal legs we are left with Cwo intermediate propagators.
Each of them, potentially, could give rise Co a divergence.
It is going to be the case always when a s»scient n»~-
ber of DS's is involved. Departing &om the mass shell
makes amplitudes well defined, and the procedure sinai&ar

to the one developed for the four point functions may be
applied.
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IV. FINAL REMARKS

In this note we suggested a simple way to deal with the
divergences of the tree-level amplitudes involving discrete
states. Namely, we suggested to use the off-shell formu-
lation of the 2D OSFT. We have seen there is a natu-
ral correspondence between the discrete states and ofF-
shell states, later acting as a regularized version of the
former. To obtain mell-defined S matrix elements one,
in general, needs to choose off-shell states close but not
equal to the desired values of external momenta (some-
what analogous to the way in which in Minkowski space
one replaces m2 ~ m2 —ie). We have shown that the
procedure renders finite all four-point amplitudes with
an even number of (naively) divergent channels even after
the regularization is removed. The rest of the amplitudes
can be defined by means of such regularization.

Discrete states are a consequence of a gauge theory in
two dimensions. If the loop corrections are taken into
account DS's might be "broadened. " In other words, in-
stead of a monochromatic wave one would have a wave
packet. If 2D string theory has anything to do with some
two dimensional condensed matter system, which is not
totally unreasonable assumption (Ref. [8]), this kind of
broadening of the "resonance" spectr»m would be ex-
pected. It is interesting to speculate that these "dressed"
states might be related to the off-shell states.

Recently, 2D closed string field theory has been formu-
lated, Ref. [9]. Although the formulation of the theory
is much more complicated than that in the open string
case, there seem to be no principal difBculties in treating
the divergences arising there in exactly the same way.

Finally, note that we have considered here discrete
states as asymptotic string states. This is not the only
possibility. As an alternative, one may consider scat-
tering of tachyons in various discrete state backgrounds
(similar project was carried out for the black hole back-
ground in Ref. [10]). Another compelling approach is to
consider a field theory of a tachyon coupled to the com-
plete set of two dimensional topological gravity states.
There are indications that such an approach might shed
some light on relation between string field theory and
W (author would like to thank Z. Qui for discussions
on this matter). These and other interesting problems
shall be discussed elsewhere.
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