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Black hole evaporation is investigated in a (1+1)-dimensional model of quantum gravity. Quantum

corrections to the black hole entropy are computed, and the fine-grained entropy of the Hawking radia-

tion is studied. A generalized second law of thermodynamics is formulated, and shown to be valid under

suitable conditions. It is also shown that, in this model, a black hole can consume an arbitrarily large
amount of information.
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I. IN'I RODUCTION

Hawking's discovery of black hole radiance [1] estab-
lished a deep and satisfying link connecting gravitation,
thermodynamics, and quantum theory. But it also raised
some disturbing puzzles. Foremost among these are the
mystery of black hole entropy and the paradox of infor-
mation loss. These two puzzles are closely related. To-
gether they comprise a crisis in fundamental physics.

Black hole thermodynamics has a compelling beauty.
Bekenstein's bold conjecture [2] that a generalized second
law of thermodynamics applies to processes involving
black holes, combined with Hawking's explicit calcula-
tion of the black hole temperature, led to the remarkable
result that a black hole has an intrinsic entropy given by
—,
' the area of the event horizon (in Planck units). But
previous efforts to verify the generalized second law [3,4]
have been limited to quasistationary processes, and to the
leading semiclassical approximation. In this paper we
will study black hole thermodynamics in two-dimensional
spacetime. For the special case of two dimensions we are
able to go substantially further than previous analyses, by
considering processes that are not quasistationary, and by
taking. explicit account of quantum-mechanical back re-
action effects. We will propose a precise statement of the
generalized second law, and will demonstrate that it is
valid in a particular two-dimensional model, under suit-
able conditions.

In Hawking's semiclassical theory of black hole eva-
poration [1], the radiation emitted by the black hole was
found to be exactly thermal [5]. Thus, in the leading
semiclassical approximation, the radiation carries no in-
forrnation about the initial quantum state of the object
that collapsed to form the black hole. This property of
the radiation led Hawking to assert [6] that quantum-
mechanical information can be destroyed when a black
hole forms and then subsequently evaporates completely.
Although the semiclassical approximation is not exact, it
is highly plausible that more accurate calculations would
still support the conclusion that the outgoing radiation
carries very little information; the key point is that once
it has fallen past the global horizon, the collapsing body
is out of causal contact with the radiation emitted from
the black hole. Still, no complete analysis of the micro-

scopic state of the radiation has ever been carried out. In
this paper we study black hole evaporation in a two-
dimensional model, taking into account quantum-
mechanical gravitational back reaction effects. We find
that the microscopic state of the emitted radiation carries
essentially no information, as in the leading semiclassical
calculations. Thus, loss of information really seems to
occur in this model. (Or, perhaps, the information about
the initial quantum state is retained inside a stable or
long-lived black hole remnant [7].}

It was emphasized in Ref. [8] that two-dimensional
models of quantum gravity can serve as a theoretical lab-
oratory for investigating the fundamental issue of infor-
mation loss. A further motivation for studying the
Callan-Giddings-Harvey-Strominger (CGHS} model in-
troduced in Ref. [8] is that it can be viewed as the low-

energy effective field theory that governs the S-wave
modes propagating on the background of a magnetically
charged dilaton black hole in four dimensions. The
(four-dimensional} dilaton black hole is of particular in-
terest because it is a classical solution to a field theory
that arises as a low energy approximation to string theory
[9].

Although the CGHS model is far simpler than four-
dimensional gravity, the full quantum theory of the mod-
el is still difBcult to analyze. Therefore, CGHS studied a
particular limit in which the model simplifies further. In
this limit, the number N of matter field species tends to
infinity, with NA held fixed. Then, to leading order in an
expansion in I /N, but all orders in NA, the quantum fluc-
tuations of the dilaton and metric may be ignored, and
only the fluctuations of the matter fields need be retained.
Later, Russo, Susskind, and Thorlacius (RST) [10]
showed (expanding on ideas introduced in Ref. [11])that
the model can be simplified still further by introducing a
suitably chosen finite local counterterm. Our calculations
in this paper will be carried out in the RST model, to
leading order in 1/N. We will review the RST model in
Sec. II.

The generalized second law of thermodynamics states
that the total entropy is nondecreasing, where the total
entropy is the sum of the intrinsic entropy of the black
hole and the thermodynamic entropy of the matter out-
side the black hole. To investigate the validity of the
second law we will carry out a three-step program. First,
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we must define precisely what is meant by the entropy
due to the matter "outside" the black hole, and we must
calculate this entropy. Second, we must find the correct
expression for the black hole entropy in the RST model,
including corrections to all orders in NA (but to leading
order in 1/N) T.hird, we must consider how the total en-
tropy evolves, for a variety of initial conditions satisfied
by the "collapsing" matter.

To obtain an expression for the entropy outside the
black hole we erect a sharp boundary at the apparent
horizon, and then trace over the matter field degrees of
freedom behind the horizon to obtain a density matrix

p,„,for the matter fields outside. We then calculate the
"fine-grained" entropy S„o= —tr(p,„,lnp, „,) of this den-

sity matrix. The fine-grained entropy quantifies the de-
gree of entanglement of the quantum fields outside the
horizon with those inside. We will see that this quantity
can also be interpreted as the thermodynamic entropy of
the matter outside the black hole. (Actually this is not
quite the whole story. For a black hole formed from col-
lapse, we will need to add to the fine-grained entropy
another term, the "Boltzmann entropy" of the infalling
matter. This will be explained in Sec. VI.}

Our calculations of the fine-grained entropy are per-
formed in Sec. III. The method that we use is a generali-
zation of the technique introduced by Unruh [12] in his
analysis of the thermal bath seen by a uniformly ac-
celerated observer, later extended to other cases by Hol-
zhey [13]. These calculations are of some intrinsic in-
terest apart from the relevance of the results to black hole
physics, and we therefore discuss them in detail. As we
will see, the fine-grained entropy has an ultraviolet diver-
gence that arises from the entanglement of very-short-
wavelength field fiuctuations just inside and just outside
the boundary. We regulate the divergence by introducing
a short-distance cutoff (or, equivalently, by smoothing the
boundary}. One way to introduce this cutoff' is to foliate
the spacetime with spacelike slices; then on each slice we
assign to the boundary at the apparent horizon a "thick-
ness" of proper length 5. The resulting expression for the
fine grain-ed entropy depends on this length 5, but it does
not depend on the choice of the foliation, or on the coor-
dinates used on each slice. In particular, two slices that
cross the apparent horizon at the same point, but with a
relative boost, yield the same value of the fine-grained en-

tropy. As the black hole evolves, the proper length 5 is
held fixed.

In two-dimensional spacetime, the ultraviolet diver-
gence is logarithmic, and the cutoff-dependent term in
the entropy is merely a numerical constant. (At least, it
is a constant from the time of formation of the black hole
until its ultimate disappearance. } Thus, the divergence
does not prevent us from making statements about the
change in the entropy that are free from cutol' depen-
dence. The situation is rather difFerent in four dimen-
sions. Then the divergence is quadratic, and proportional

~However, we will see that the change in the entropy (as we

define it) at the moment of black hole formation, as well as the

total entropy produced by the entire formation and evaporation

process, do depend significantly on the cutoff.

to the area of the horizon [14]. To obtain a cutoff'-
independe'nt expression for the entropy in four dimen-
sions, we must absorb this divergence into the renormal-
ization of Newton's gravitational constant 6 as described
in Ref. [25].

The second step in our program, finding the corrected
expression for the black hole entropy in the RST model,
is carried out in Sec. V. We find a finite correction to the
entropy computed in the leading semiclassical theory; the
correction arises from the back reaction on the geometry
when the black hole accretes or emits a small amount of
radiation. We regard the black hole entropy as finite, and
attribute the ultraviolet divergence in the total entropy to
the matter fields surrounding the black hole. This is real-
ly a matter of convention, as our calculations fix the
black hole entropy only up to an additive constant. We
have chosen to fix the constant by demanding that the in-
trinsic entropy of the black hole vanishes as its mass goes
to zero.

We assemble our expression for the total entropy in the
RST model in Sec. VI, and analyze the evolution of the
entropy in Secs. VI and VII. Section VII contains our
analysis of the generahzed second law of thermal dynarn-
ics. To prove the second law we need to make some addi-
tional assumptions. Most notably, we assume that the
state of the matter that collapses to form the black hole is
of a particular type —it is a coherent state built on the
asymptotic inertial vacuum. Some such assumption
seems to be necessary. It is possible to construct strange
quantum states that pack a lot of entropy into a region at
a very low cost in energy [13,15], or states with negative
energy density (though this is not possible for coherent
states). By preparing one of these strange states and
dropping it into a black hole, the generalized second law
that we have formulated can be violated, at least for a
awhile. It would certainly be of interest to find a modified
formulation of the generalized second law with more gen-
eral validity and/or a concise characterization of how
and when our formulation breaks down.

Our expression for the fine-grained entropy also en-
ables us to address the question of information loss. We
can imagine sustaining a black hole for an arbitrarily long
time by feeding it mass to compensate for the Hawking
radiation that it emits. It was emphasized in Ref. [16]
that, if we draw a suitable spacelike slice through the
geometry of this black hole, the amount of information
stored in the portion of the slice that is behind the global
horizon can be arbitrarily large. Thus one may argue
that the number of internal quantum states of a black
hole is not limited by its intrinsic Bekenstein-Hawking
entropy. In Sec. IV, we analyze this sustained black hole
(in the RST model} from the viewpoint of an observer
who remains outside the horizon. We show that the
fine-grained entropy outside the horizon can increase by
an arbitrarily large amount. In accord with the con-
clusion of Ref. [16], then, we find that there is no con-
sistent way to regard the density matrix p«, as arising
from the entanglement of the degrees of freedom outside
the horizon with a finite number of internal degrees of
freedom of the black hole. Unless there are stable black
hole remnants with an infinite number of internal degrees
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of freedom [7], information is inevitably lost in the RST
model.

In fact, the amount of lost information is even larger
than one might have naively expected. The evaporation
of a warm black hole into cold empty space is a thermo-
dynamically irreversible process —the increase in the
thermodynamic entropy of the emitted radiation is larger
than the decrease in the entropy of the black hole [17,18].
(In one spatial dimension, it is larger by a factor of 2.}
We find in Sec. VI that the fine-grained entropy outside
the horizon behaves like the thermodynamic entropy.
This means that the number of bits of lost information
exceeds the number of bits needed to describe the initial
quantum state of the collapsing matter, by a factor of (ap-
proximately) 2. Thus, the Bekenstein-Hawking entropy
of the black hole formed in the initial collapse does not
correctly quantify the amount of information that is ulti-
mately lost.

The fine-grained entropy can increase indefinitely be-
cause the field modes localized close to the horizon are
subjected to a redshift that increases exponentially as the
black hole evolves. We introduced a short-distance cutoff
of fixed proper length at the apparent horizon. But it fol-
lows that this cutoff, when expressed in terms of the
asymptotically inertial coordinates used to define the
quantum vacuum (or, equivalently, in terms of the wave-
length measured at past null infinity), decreases exponen-
tially along the horizon. As shorter and shorter wave-
lengths come into play, the degree of entanglement be-
tween the fields inside and outside the horizon increases
correspondingly. It is this feature of the quantum state
outside the horizon that is responsible for both the
thermal character of the outgoing radiation and for the
loss of an indefinite amount of information in the RST
model.

It is evident that the conclusion that information is lost
is predicated on assumptions about how extreme Lorentz
boosts act on the matter degrees of freedom. (This point
has been especially emphasized by 't Hooft [19],Jacobson
[20], Susskind [21],and the Verlindes [22].) While loss of
information apparently occurs in the RST model, it
might be avoided in a different model with different phys-
ics at very short distances. In such a model it may be
possible to attribute the fine-grained entropy to entangle-
ment with a finite number of microscopic internal degrees
of freedom of the black hole, and to interpret the
Bekenstein-Hawking entropy of the black hole in terms
of these internal degrees of freedom. The explicit con-
struction of a model with these properties would be of
great interest.

The content of this paper overlaps with that of several
other references that have appeared while our work was
being completed. In particular, Keski-Vakkuri and
Mathur [23] have also analyzed the fine-grained entropy
outside the horizon of an evaporating black hole. Where
there is overlap, our conclusions are in agreement with
theirs. Calculations of the fine-grained entropy for
moving-mirror spacetimes (which closely resemble black
hole spacetimes) have been discussed by Holzhey, Larsen,
and Wilczek [24]. Quantum corrections to the black hole
entropy have been considered recently by Susskind and

Uglum [25], Callan and Wilczek [26], Kabat and Strassler
[27], and Dowker [28].

II. REVIEW OF THE RST MODEL

An elegant model for two-dimensional black hole eva-
poration was introduced by Russo, Susskind and Thorla-
cius [10], expanding on ideas introduced in [ll]. The
RST model difFers from the original CGHS model [8] by
a finite counterterm that is fine-tuned to preserve a global
symmetry. The counterterm makes it possible to solve
the model exactly in the large-N limit, where N is the
number of scalar matter fields. Numerical analyses
[29,30] of the CGHS model indicate that it is qualitative-
ly similar to the RST model, despite the fine-tuning.

The original CGHS model [8] of two-dimensional dila-
ton gravity has the classical action

Sgigggjggi Jd x+ g e [R +4(VQ} +4K ]
1

N——g (Vf;), (1)
2

where g is the metric, R is the curvature scalar, P is the
dilaton field, and the f, are the N scalar matter fields.
This model can be regarded as the low-energy effective
action that governs the radial modes propagating on the
near-extreme magnetically charged black hole of four-
dimensional dilaton gravity. The length scale A, is pro-
portional to the magnetic charge of the four-dimensional
black hole.

Two-dimensional dilaton gravity has classical black
hole solutions. The mass of a black hole can be expressed
in terms of the value P~ of the dilaton field at the event
horizon as

—2&+
MB~ =—e (2)

We may also interpret Eq. (2} as the deviation from the
extremal limit of the mass of a four-dimensional black
hole. Semiclassically, the two-dimensional black hole has
a nonzero Hawking temperature. This can be computed
from the periodicity of the black hole solution in Euclide-
an time [8] or from the Bogolubov transformation that
relates the asymptotic incoming modes of the matter
fields to the asymptotic outgoing modes [31]. The tem-
perature is

TBH 2' '

which is independent of the black hole mass. Thus the
two-dimensional black hole has an infinite specific heat.
The four-dimensional magnetically charged dilaton black
hole also has this property [9]. We obtain an expression
for the black hole entropy SBz by integrating the thermo-
dynamic identity dS =dM /T; it is

(3)

MBz
SB~= =2e

BH
(4)

where we have fixed the constant of integration by
demanding that SB~~O as MB~~0. We may interpret
Eq. (4) as —' the area of the event horizon of the classical
four-dimensional dilaton black hole.



3990 FIOLA, PRESKILL, STROMINGER, AND TRIVEDI 50

CGHS considered the semiclassical corrections to this
classical theory, including the back reaction of the Hawk-

ing radiation on the geometry. To make the analysis

tractable, they assumed that the number N of scalar
matter fields is very large, and calculated the back reac-
tion to leading order in an expansion in 1/N In. leading

order, the quantum fluctuations of the dilaton and metric
can be ignored, and we need only include the one-loop
correction to the energy momentum tensor of the scalars.
This correction can be computed from the conformal
anomaly. Equivalently we add to the classical action Eq.
(1) the Polyakov-Liouville term [32]

S, =— d x ( —a ya y+a na n+X2e2&1

(The effects of ghosts may be ignored in the large-N lim-
it. )

There is a residual conformal gauge invariance in (11).
We fix this by the "Kruskal gauge" choice

(12}

SLiouville f d x&—g(x)
96m

X f d x'& —g(x')R(x)G(x, x')R(x'),

which implies

1 Np=P+ —ln
2 12' (13)

where 6 is a Green function of the operator V . This
term expresses the dependence on the background
geometry of the functional measure for the scalar
fields. The field equations derived from the action
S,&,»,,»+SL;,»,&&,

have been studied numerically
[33,29,30], but analytic solutions have not been obtained.
However, RST (following Ref. [11])found that the model
can be solved exactly if a local counterterm

S„=— fd x&—g PR
N

48m'
(6)

S„„„...=— d x 2e &a+a p
Z —2y

7T

+e ~(A, e ~ —48+$8 P)

S„=—, fd' ya, a p,

S i,„„;„,= — d x8 pB p.
We now perform the field redefinition

12 qP + 11
4 48

12 2 b 1 N
e

—2P+
2 4 3

(9)

(10)

In the large-N limit, with g and Q held fixed, the quan-
tum efFective action is then

~Our conventions differ shghtly from [10]and agree with [34].
They are chosen so that y and 0 are held fixed as N is taken to

infinity.

is added to the action.
To solve the model including (6) we introduce null

coordinates x*=x +x ' and invoke the conformal gauge
condition

g+ —=g —+ = 2e g ——=g++ =0 .2p

We then have

In Kruskal gauge the equations of motion are simply

8+8 0= —
A,

the constraints can be expressed as

a2+0= —T++ —I.+ .2 f

(14)

(15)

Appearing on the right-hand side of Eq. (15) is the expec-
tation field of the scalar field energy-momentum tensor,
which we have separated into two terms. The first term
T is the "classical" piece that can be obtained by vary-
ing the matter action with respect to the metric, except
that, in order to simplify Eq. (15), we have chosen an un-
conventional normalization, namely,

(16)

In particular, since "Newton's constant" is of order 1/N,
we have scaled T~+ by a factor of 1/N, so that T~z of
order one produces a back reaction of order one. Fluc-
tuations of the energy-momentum tensor about its expec-
tation value are suppressed by 1/N, so the energy-
momentum may be treated as a classical quantity to lead-
ing order.

The functions t+(x +—
) in Eq. (15) arise because the con-

straints in Kruskal gauge are governed by the energy-
momentum tensor normal ordered with respect to the
"Kruskal vacuum" state —the state that contains no
quanta that are positive frequency with respect to
Kruskal time. The quantum state of the scalar fields can
be expressed in terms of f creation operators acting on
the f-vacuum state. If this f vacuum differs from the
Kruskal vacuum, there is a finite normal ordering correc-
tion to the energy momentum tensor, in addition to the
"classical" term T . In efFect, this term arises because we
must subtract a p-dependent piece of the vacuum energy
from both sides of the constraint equation in order to ex-
press the left-hand side of Eq. (15}in terms of Q. It is im-
portant to recognize that Eq. (15) holds only in the
Kruskal gauge. On the right-hand side of this equation,
T~++ transforms as a tensor, but t + does not.

In our analysis of black hole formation and evapora-
tion we will typically be interested in incoming quantum
states that are coherent states built on the "o. vacuum. "



50 BLACK HOLE THERMODYNAMICS AND INFORMATION LOSS. . . 3991

The cr* coordinates are related to the Kruskal coordi-
nates x*by

y(x+, x ) =Q(x+,x )

Ax+ =e~ V = —e (17)
= —~'x+ x + P+(x+) +—M(x+)1, 1

A,
'+

A,

These coincide with the inertial coordinates on 2; thus,
the cr vacuum state IO, o & is the state that appears to con-
tain no quanta according to inertial asymptotic observers
in the past. A left-moving coherent state can be build on
this vacuum at 2, of the form

If', ~ &

where

——ln[ —4A, x+x ],4

M(x+ )=Af , dX+x+ T~++ (X+),
P+(x+)=f dX+Ti++(X+) .

(26)

(27)

(28)
= A:exp —g fdo+d+f (o+)f,(0+): IO, o &,

7T

(18)

where the normal ordering is with respect to the 0 vacu-
um, and A is a normalization constant. In Eq. (18},f
denotes the quantum field, and f' is its expectation value:

(We have chosen the origin of the Kruskal coordinate
system so as to remove possible terms linear in x+ and
x .} Here P+(x+} is the total "Kruskal momentum"
that has flowed in from S up to advanced time x+. If
we express M in terms of the energy momentum in the o.

gauge,

& f', olf;(cr+)If', tr&=f (~+) . (19)
8(~+)= 2'~++ (o+ ), (29)

For the energy-momentum tensor:f'++(x+):x normal
ordered with respect to the Kruskal vacuum IO, E & we
then have

&f',~ I:1++.&If', ~ &
= r~+'++ &O, ~I:t++ xlo, ~ &.;

(20)

thus t+ in Eq. (15) can be expressed as

t =&O,ol:f' (x+): lour&, (21)

where it is understood that f'+ has the unusual normal-
ization in Eq. (16), and that & ++(x+) & is to be evalu-
ated in the Kruskal gauge.

In flat space with the metric

ds — dO' do' dx dx

A, x x

we may use standard methods [35] to compute

(22)

t', (x*)=&0,~l:2'gg. le, ~ &

12m N 1

48m (x *) 4(x *) (23)

The solution to Eqs. (14) and (15) then becomes

Q= —A, x+x —
—,'ln[ —4A, x+x ] (24)

1= ——ln
2

—
A, Nx+x

12
=—A,cr ——ln

1 N
(25}

2 12

this is the "linear dilaton vacuum" solution, so called be-
cause P is a linear function of o'= —,'(cr+ —cr }. The
solution corresponding to general incoming matter from

is (in Kruskal gauge)

1 X 1= ——ln, Qcr 2 48 cr 4
(31)

There is no real value of P corresponding to Q&Q„.
This singular behavior occurs deep inside the strong-
coupling region, where a semiclassical analysis is no
longer trustworthy. Nevertheless, RST suggested that a
simple "phenomenological" description of this strong-
coupling physics might be possible. They advocated that
Q=Q„should be regarded as the analogue of the origin
of radial coordinates; it is a boundary of spacetime, and
one should not continue to negative "radius. " Instead, as
long as the boundary is timelike, reflecting boundary con-
ditions (consistent with energy conservation) can be im-

and recall that the cr coordinates coincide with inertial
coordinates on S,we see that

M(x+)= f do C(o+) (30)

is the total "energy at infinity" that has flowed in from
up to advanced time x +.

If the incoming energy flux C(o+) satisfies suitable
conditions (described below), this solution describes a
black hole that forms and evaporates. To make sense of
this statement, we must explain what is meant by a
"black hole" in this two-dimensional model. Since, in
four-dimensional dilaton gravity, 0 plays the role of the
area of a two-sphere (as defined by the canonical metric)
we refer to the points with 8+Q&0 and 8 Q&0 as
"trapped points"; the "area" necessarily decreases in the
forward light cone of these points. The boundary of the
region of trapped points, where 8+Q=O, is the apparent
horizon of a black hole. From a two-dimensional
viewpoint, the significance of the apparent horizon is that
0 ' is a coupling constant that controls the higher-order
quantum corrections in the model. Thus, observers in-
side the apparent horizon are ineluctably drawn more
deeply into the strong-coupling region of the spacetime
(at least for a while).

Viewed as a function of P, Q has a minimum at
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posed. Thus, RST propose y(x+, x )=Q(x+,x )

(32)
= —

A, x x + P+(x+) +—M(x+),1 +

RST also imposed boundary conditions on O. Using
these boundary conditions, one can determine the
dynamical motion of the line Q=Q„in the (x+,x )

plane. However, it turns out to be a delicate matter to
impose quantum-mechanically consistent boundary con-
ditions. Fully consistent boundary conditions will be dis-
cussed in Ref. [36], but we need not be concerned with
such subtleties in this paper.

If the energy flux e of the incoming matter is at all
times less than the critical flux 8„=—,'A, , then the bound-

ary remains timelike, and the incoming matter is benignly
reflected to future null infinity 2+ without any "loss of
information. "However, when 8 exceeds 8„,an apparent
horizon appears and a black hole forms. Furthermore,
behind the apparent horizon, the boundary becomes
spacelike, and the scalar curvature R diverges on the
space1ike portion of the boundary. It is no longer sensi-
ble to impose boundary conditions on the 6elds when the
boundary becomes spacelike. Figure 1 depicts the space-
time of a black hole that forms from an initial incoming
pulse of matter. After it forms, the black hole emits
Hawking radiation, and the apparent horizon recedes
along a timelike trajectory. The global event horizon is
the boundary of the region in which all forward-directed
timelike and null trajectories eventually meet the space-
like singularity. Of course, this singularity occurs deep
within the strongly coupled region, and so might be ab-
sent in the full quantum theory. But observers inside the
global event horizon are inevitably drawn to the
strongly-coupled region where semiclassical methods are
inapplicable.

If the value 0 at the global horizon is large when the
black hole Srst forms, then semiclassical methods can be
reliably used to analyze the evolution of the geometry
and of the quantum matter fields outside the global hor-
izon. This remains true until just before the apparent
horizon meets the singularity at the "end point" shown in
Fig. 1(a). The behavior of the spacetime in the future of
this end point cannot be unambiguously predicted using
semiclassical methods. RST argued that, after the end
point, the boundary of the spacetime is again timelike,
the matter Selds again obey the boundary condition Eq.
(32), and the quantum state of the matter fields returns to
the vacuum state. In their scenario, information about
the quantum-mechanical state of the original incoming
matter is forever lost to asymptotic observers. For most
of our analysis of the evolving black hole we need not
enter into speculation about what happens beyond the
end point. It will suSce to analyze the quantum state of
the matter Selds outside the horizon, without leaving the
domain of validity of semiclassical methods.

It mill someti. mes be convenient to consider an incom-
ing quantum state that is a coherent state built on the
Kruskal vacuum state. Then t+ in Eq. (15) vanish, and
the general solution, in Kruskal gauge, is

(33)

with M and P again given by Eqs. (27) and (28). The
(static) vacuum solution with P =0 and constant M de-
scribes a black hole in equilibrium with a thermal radia-

boundary

FIG. 1. (a) The two-dimensional spacetime of a black hole
that forms due to the collapse of a shock wave, and then evapo-
rates completely. After the black hole forms, the apparent hor-

izon recedes along a timelike trajectory, eventually meeting the
singularity at the "end point. " The timelike boundary and the
spacelike singularity are in the strongly coupled region. RST
boundary conditions are imposed where the boundary is time-

like. (b) Five spacelike slices through the spacetime, referred to
in the text.
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tion bath. Calculating the energy-momentum tensor of
the matter fields in the asymptotic region we find that the
incoming and outgoing energy flux are both given by t „.
From the normalization condition Eq. (16) we see that
this corresponds to the conventionally normalized flux
NA. /48m, which is the thermal flux for N scalar fields at
temperature T=A, /2n. Thus, we see that back reaction
efFects do not modify the black hole temperature, to lead-
ing order in 1/N.

The semiclassical field equations enable us to determine
the evolution of the expectation values of Q, y, and the
f, 's from specified initial conditions (though of course we
must fix the gauge to determine y}. However, in our
analysis of black hole thermodynamics we will need to
keep track of the entropy of the matter fields outside the
apparent horizon of the black hole. For this purpose, it
is not sufBcient to know expectation values; we must
know the quantum states themselves.

Fluctuations of the energy-momentum tensor about its
mean value will induce correlations between the quantum
state of the matter and the quantum state of the dilaton
field and of the geometry. Fortunately, this entanglement
of the state of the matter with the state of the geometry is
subdominant in the large-N limit and can be neglected to
leading order. Thus, the large-N limit drastically
simplifies the evolution of the quantum states. To leading
order in 1/N we may regard the geometry and the dila-
ton field as a classical background, dynamically deter-
mined by the expectation value of the energy-momentum
tensor, as prescribed by the semiclassical equations.
Evolving the coherent state of a free massless scalar field
on this background is easy; we need only choose the
mean value f in Eq. (18) to be a solution to the classical
field equation.

The quantum states also depend on the position of the
boundary through the boundary condition Eq. (32). If
the incoming energy flux never exceeds 8„,then the
boundary remains timelike, and the incoming matter is
reflected off the boundary to S+. Knowing the geometry
and the dynamically determined trajectory of the bound-
ary we can perform a Bogolubov transformation and ex-
press the reflected state in terms of Fock space states
built on the inertial vacuum at 2+. (The state ~f', o )
will not, in general, be a simple coherent state in this nat-
ural asymptotic Fock basis on 2+.) Thus, we can com-
pute a unitary S matrix that relates the incoming and
outgoing quantum states.

If the incoming energy flux ever exceeds 8„,then a
black hole forms, and the boundary becomes spacelike.
Nevertheless, we can determine the quantum state on a
slice [such as slice III in Fig. 1(b)] that penetrates inside
the black hole but avoids the spacelike singularity. To do
so we must again know the dynamically determined tra-
jectory of the boundary. But in our calculations in this
paper we will make the simplifying assumption that no
incoming matter meets the boundary before the global
event horizon. The trajectory x~ (xa+) of the boundary
outside the global horizon is then determined by setting
Q=Q„=—,

' in the vacuum solution Eq. (24); we find (in
Kruskal coordinates)

1
X X8 8 4

(34)

III. FINE-GRAINED ENTROPY

In our analysis of the formation and evaporation of a
black hole in the RST model we will need to study the
density matrix for the quantized matter fields outside the
apparent horizon of the black hole. For a specified quan-
tum state of the matter fields, this density matrix p is ob-
tained by tracing over the field degrees of freedom behind
the horizon. In this section we will derive a formula for
the "fine-grained entropy" SzG = —trp lnp of this density
matrix. We will assume that the matter fields are free
massless scalar fields.

Our derivation will proceed in several steps. First, we
will consider a fiat two-dimensional spacetime, and sup-
pose that the quantum state is the Minkowski vacuum.
We imagine that a finite spatial region R is inaccessible to
an observer. The information accessible to this observer
can therefore be encoded in a density matrix p that is ob-
tained by tracing over the field degrees of freedom inside
region R. We will calculate the entropy of this density
matrix. (Our analytic formula for the entropy agrees
with a numerical calculation by Srednicki [37]. This for-
mula was obtained earlier by Holzhey [13], whose
methods we follow closely. } We then proceed to general-
ize the entropy formula to more general "vacuum" states,
and to curved spacetime.

In the RST model, scalar field modes are reflected by
the boundary of the spacetime; this reflection induces
correlations between left-moving and right-moving
modes, which must be taken into account in the compu-
tation of the entropy. Thus, we consider a spacetime
with a moving mirror, and derive a formula for the entro-

py of the density matrix that is obtained by tracing over a
region that contains the mirror, when the quantum fields
are in a "vacuum" state. The curved-spacetime generali-
zation of this formula can be directly applied to the RST
model.

Finally, in Appendix A, we consider more general
quantum states, namely, coherent states built upon a
specified "vacuum. " We show (somewhat surprisingly)
that the Sne-grained entropy for any such coherent state
takes the same value as for the corresponding "vacuum. "

From this boundary trajectory and the semiclassically
determined geometry, the quantum state outside the glo-
bal horizon can be completely determined to leading or-
der in 1/¹ Our assumption that no matter meets the
boundary before the global horizon not only simplifies
our calculations; it also enables us to obtain results that
are insensitive to any ambiguities concerning the proper
choice of the boundary conditions satisfied by Q.

In principle, we could carry out the Bogolubov trans-
formation and express the outgoing quantum state in
terms of the natural outgoing Fock basis. We will see in
Sec. III, however, that the detailed form of this Bogolu-
bov transformation will not be needed in our calculation
of the entropy of the quantum state outside the apparent
horizon of the black hole.
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Thus, the quantum fields inside and outside of region R
are no more entangled in an arbitrary coherent state than
in the vacuum.

A. Minkowski vacuum

dier Trajectory

%e begin with the case of the Minkowski vacuum in
flat two-dimensional spacetime. I.et us imagine that the
only observables that we can measure have support out-
side of a finite spatial region R. In the vacuum state, the
fields inside R are correlated with the fields outside R.
Thus, even though the state of the whole system is pure,
the density matrix p obtained by tracing over the inacces-
sible degrees of freedom inside R is mixed. %e wish to
calculate the entropy

SFG ——trp lnp (35)

of this density matrix, which we will refer to as the fine-
grained entropy of the state outside R. Note that we
could just as wel1 imagine that we are able to Ineasure
only observables inside R. The two density matrices ob-
tained by tracing over degrees of freedom inside or out-
side the region have the same nonzero eigenvalues, and
hence the same entropy.

For massless free fields in two dimensions, the right-
moving and left-moving modes are uncoupled, so it is
suf6cient to consider, say, the right movers alone. It is
convenient to use the null coordinates

U=t —x, V=t+x; (36)

uii = —ln( —U), U (0,
uL = —ln(U), U&0 .

(37)

for the right movers, we may specify the region R as the
interval [U, , U2] in null coordinates. To proceed with
the entropy calculation we must construct a complete set
of (right-moving) modes localized inside this interval, and
a complete set of modes localized outside. Then we must
decompose the Minkowski vacuum state in a basis con-
sisting of states that are tensor products of states local-
ized inside with states localized outside. Finally, we trace
over the degrees of freedom outside R to obtain p;„„z„
and compute SFG.

This seems a daunting task at first but upon reflection
we recognize that we already know how to do the calcu-
lation when the region R is the half line. The right-
moving modes with U (0 are those that are accessible to
a (Rindler) observer who accelerates uniformly to the
right. (See Fig. 2.) The density matrix seen by the
Rindler observer was computed long ago by Unruh [12].
%e need only generalize Unruh's calculation to the case
where the region R is the finite interval U, & U& U2
rather than the half line U (0.

First we briefly recall Unruh's reasoning. The entropy
does not depend on the bases that we use for the modes
that are localized in U(0 and U&0, so we are free to
choose these bases in any convenient way that simplifies
the calculation. Unruh introduces Rindler coordinates
uz and uL in the right and left Rindler wedges that are
related to the Minkowski coordinates by

FIG. 2. Rindler spacetime. The "right wedge, " with U &0
and V) 0, is accessible to a "Rindler observer" that accelerates
uniformly to the right. The "left wedge, "with U & 0 and V & 0,
is accessible to an observer that accelerates uniformly to the
left.

The Rindler time defined by this transformation actually
runs backward in the left wedge. Therefore, the modes

=8( —U)e

=8( U)e
(38)

This combination of a positive frequency mode (with
respect to Rindler time) in the right wedge and a negative
frequency mode in the left wedge is a superposition of
modes that have strictly positive frequency with respect
to Minkowski time; X is a normalization factor. Simi-

larly, the combination

(40)

is also positive frequency with respect to Minkowski
time.

Using the Bogolubov coeKcients Eqs. (39) and (40), it is
straightforward to express the Minowski vacuum state
~OM ) in terms of Rindler Fock space states. (See Appen-
dix A.) One finds

(co&0) are positive frequency modes with respect to
Rindler time in the right and left wedges, respectively.
Since the coordinate uz covers the right wedge U & 0 as

uz varies from —~ to ~, arbitrary wave packets con-
structed from the modes Pa „arelocalized in the right
wedge; similarly, wave packets constructed from the
modes PL are localized in the left wedge.

If we choose as our basis these modes that have definite
frequency with respect to Rindler time, then, as Unruh
noted [12), it is easy to derive the Bogolubov coefBcients
that relate these modes to the modes that have positive
frequency with respect to Minkowski time. %e need only
recall that a superposition of modes that are positive fre-
quency with respect to Minkowski time will be an analyt-
ic function of the Minkowski null coordinate U in the
lower U half plane. Thus, by analytically continuing the
mode Pi, to the left wedge, through the lower U half
plane we obtain

(39)
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IO~) =g(1—e ')'~ exp( 'as' al )IO„)IOI )

=g(1—e ')' g e ' 'Inj, R)InJ. ,L) .

(42)

This is evidently a thermal density matrix with tempera-
ture

T= 1

2' ' (43)

The temperature is dimensionless because we have chosen
to express the frequencies in terms of dimensionless
Rindler time. If we reexpress the frequency in terms of
the proper time measured by the uniformly accelerated
Rindler observers, we find that T=a /2n, where a is the
proper acceleration. Thus we obtain Unruh's result [12]:
a uniformly accelerated observer in the Minkowski vacu-
um sees a thermal bath with temperature a /2n.

In one spatial dimension, the energy density of a
(right-moving) ideal gas is

oo de CO

o 2~e~ —1
(44)

and the entropy density is obtained from the thermo-
dynamic relation

(41)

Here IOz ) and IOr ) denote the Rindler vacuum states in
the right and left wedges, and Inj, R ), Inj, L ) are the
states containing n quanta with Rindler frequency co .

We can now trace over the degrees of freedom in the
left wedge to obtain the density matrix for the state in the
right wedge; it is

pg =«I, IOsr ) & Osr I

turn state in the right wedge with the quantum state in
the left wedge. To exploit the scale invariance, it is con-
venient to construct a basis for the modes as follows:
From the modes with wave number between kp and 2kp,
we construct a basis of nonoverlapping wave packets,
each with width of order kp '. Among these modes, the
one wave packet that overlaps the boundary between the
two regions dominates the entanglement. Now complete
the basis by replacing ko by 2 ko, for all integer j. For
each value of j, a single wave packet dominates the entro-

py; on dimensional grounds, the contribution is a pure
number of order one, and because of the scale invariance,
the contribution is independent of j. Summing over all
modes we thus obtain an expression for the fine-grained

entropy that diverges logarithmically in both the ultra-
violet and the infrared. The divergent behavior of Eq.
(46) as U;„approaches zero arises because field modes
that are localized just to the right of U=O are entangled
with the modes that are localized just to the left of U=0,
in the Minkowski vacuum state. In three spatial dimen-

sions, because of the enhanced density of states, the ultra-
violet divergence becomes quadratic; the entropy is pro-
portional to the transverse area [14,37,38], and is infrared
finite.

We now want to generalize Unruh's procedure to the
case where the inaccessible region is a finite interval

[U&, Uz] rather than the half line. (This generalization
was pioneered by Holzhey [13].} Again, the key idea is
that, since the entropy is basis independent, we are free to
introduce bases for the modes inside and outside the in-
terval that make the computation of the entropy easy.
Following Unruh, we seek handy coordinate systems that
cover the inside and outside regions, which are related to
one another by analytic continuation. We will also im-

pose an infrared cutoff by restricting the null coordinate
U to the range [ L,L]. Thus, w—e introduce the coordi-
nate

(U —Ui }n
sin

2L
&d8 n.——T

o T 6
(45)

u(U)=ln

sin
( U2 —U)n.

(47)

(uR, max uR, min)

1 Umax
ln

12 U;„ (46)

Of course, including the left-moving modes would result
in the additional term —,', ln( V,„/V;„).

The logarithmic behavior of the fine-grained entropy is
a consequence of the scale invariance of the vacuum fluc-
tuations of a massless scalar field. Field modes of all
wavelengths contribute to the entanglement of the quan-

Integrating this entropy density over the half line gives
an infinite result. We can obtain a finite answer by intro-
ducing ultraviolet and infrared cutoffs; then we find the
fine-grained entropy

SFG =——trpb lnp

Here the vertical bars denote absolute value. Equation
(47} really describes two distinct coordinate systems; one
coordinate, which we call u;„,varies from —00 to ~ as U
varies from U, to U2. The other coordinate u,„,covers
the region [ L,L], excludi—ng the interval [ U„U2].This
coordinate u,„,approaches ao as U approaches Uz (from
above), and it approaches —ao as U approaches U, (from
below}. It also satisfies

u „,(U=L)=u „,(U= L) . — (48)

Thus any wave packet constructed as a function of u,„,
automatically satisfies periodic boundary conditions as a
function of U on the interval [ L,L]. The time co—ordi-
nate defined by the transformation equation (47) runs
backward in the region outside the interval [ U&, U2 ].

Now the modes of definite frequency with respect to u,



3996 FIOLA, PR@&KILL, STROMINGER, AND TRIVEDI

=8( U —U, )8( U2 —U)e

= [8( U, —U }+8(U —U2) ]e
(49)

this is a superposition of a positive frequency inside mode
and a negative frequency outside mode that is positive
frequency with respect to Minkowski time. Similarly, the
superposition

Pq „=N„(Q,„,+e P„„) (51)

is also positive frequency with respect to Minkowski
I

1
SFo =— trp;„ln—p;„= [u;„(U2

—52) —u;„(Ui +5i) ]

are analogous to the Rindler modes Eq. (38}. Following
Unruh, we can calculate Bogolubov coeScients by
analytically continuing these modes in the lower U half
plane. We thus construct the mode

(50)

time.
With our choice of coordinates, the Bogolubov

coefficients Eqs. (50) and (51) are of just the same form as
the Bogolubov coeKcients Eqs. (39) and (40) for the
Rindler case. Thus, the calculation of the density matrix
obtained by tracing over the degrees of freedom inside
the interval [ U„U2]proceeds exactly as before —we ob-
tain a thermal density matrix with temperature T= 1/2m.
We compute the entropy by integrating the thermal en-
tropy density over the interval. As expected, the expres-
sion for the entropy has a logarithmic ultraviolet diver-
gence at each endpoint of the interval, arising from the
entanglement of the short-wavelength field Quctuations
on either side of the end point. We can regulate the cal-
culation by excluding the contribution due to the radia-
tion bath within (aSne) distance 5z of the upper end point
and distance 5& of the lower end point. Then the result
becomes

11
12

( U2 —U, —52)m ( U2 —Ui —5, )m

2L 2L

5)n. 52~

2L 2L

(52)

1
SFG = ln

12

( U2 Ui )

5,52
(53}

Equation (53) was first derived by Holzhey [13]. Its
curved space generalization will be used repeatedly in
this paper.

Equation (52) has a simple interpretation. It is just the
sum of two expressions of the form Eq. (46},one associat-
ed with each end point of the interval, and with the Snite
length of the interval acting as an infrared cuto8'. How-
ever, there is an additional contribution to the fine-
grained entropy that we have not yet included —the con-
tribution due to the co=0 mode, the mode that is con-
stant in [ Ui, U2]. This contribution to the entropy is for-

This is our expression for the fine-grained entropy (due to
right movers only) of the density matrix that is obtained
by tracing over the field degrees of freedom outside the
interval [U, , U2], in the Minkowski vacuum. Note that
this expression is invariant if U2 U& is replaced by
2L —( U2 —Ui ); in other words we get the same entropy
if we trace over the region outside the interval as if we
trace over the region inside.

If we choose U, = —L and U2 =L, then our interval is
the whole (periodically identified) box. Thus the density
matrix p;„becomes pure, and the entropy should be zero.
We readily see that Eq. (52) has this property. We also
note that SFG has a finite limit as the size of the box gets
large; the entropy is infrared finite. (But see below. } If
we take the limit L —+ 00 with the size of the interval held
fixed we obtain

mally infinite, because the zero-frequency mode has an
infinite number of accessible quantum states.

If we were doing thermodynamics on the fuu line, rath-
er than a finite interval, we could argue that different
values of the constant mode of the field correspond to
different superselection sectors of the quantum theory.
Then it would be appropriate to project out a particular
value of the zero mode, if we want to restrict our atten-
tion to one particular superselection sector. (Alternative-
ly, we could impose boundary conditions, such as fixed
end or antiperiodic boundary conditions, that remove the
zero mode. ) The infinite zero-mode entropy is associated
with the existence of an infinite number of different su-
perselection sectors, rather than an infinite contribution
to the entropy in any particular sector.

However, if we are considering the fine-grained entro-
py on a finite interval, we do not have the option of pro-
jecting out the zero mode, or of removing it by a particu-
lar choice of boundary conditions. There are normaliz-
able modes that are constant in the interval [ Ui, Uz ], and
decay outside the interval. These modes roake a non-
negligible contribution to the entanglement of the Selds
inside and outside the interval.

It turns out that this additional term in the entropy
will not be relevant to our discussion of black hole ther-
modynamics. But it is worthwhile to note that this term
can be easily estimated. Suppose that we imagine using
the nonoverlapping wave packet basis described follow-
ing Eq. (46). In Eq. (53) we have included the contribu-
tions to the entropy due to wave packets that are narrow
compared to Uz —U„and that straddle either the bound-
ary at U, or the boundary at U2. What we are missing is
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the contribution due to the wave packets that are wide
compared to U2 —U&, and that straddle the whole inter-
val.

The essential insight is that these broad wave packets
produce a perfect correlation between the value of the
constant mode of the scalar field in the interval [U„Uz]
and the entangled state of the long wavelength modes to
the left and right of the interval. Thus, our calculation of
the Rindler entropy can be used to find the degree of en-

tanglement of the constant mode in the interval with the
fields outside the interval. The Minkowski vacuum state
has the form

(Oxr ) =~short) 8 (long )jI ~uncorrelated ), (54)

llong& —g glnJ, R & ~nJ. ,L & ~nj, inside& .
j=0 n.

J

(55)

Here the jth factor is the contribution due to a wave
packet mode of width 21( Uz —U, }, centered at the inter-
val, and nj labels the quantum state of that mode. The
field fluctuations in this mode generate correlations be-
tween the quantum state ~nJ, R ) of the portion of the
wave packet localized to the right of the interval and the
quantum state ~nJ, L ) of the portion of the wavepacket
that is localized to the left of the interval. Furthermore,
these fluctuations are perfectly correlated with the quan-
tum state ~n, inside) of the constant mode inside the in-
terval. We see that tracing over the state of the constant
mode inside the interval, to obtain a density matrix for
the state outside, produces just the same density matrix
as if we traced over the left region to obtain a density ma-
trix for the right region. Thus, we can use the Rindler
entropy formula Eq. (46} to estimate the long-wavelength
contribution to the fine-grained entropy for a finite inter-
val, with the size of the interval playing the role of the ul-
traviolet cutofF'. This contribution is

1 Umax
SF@ g

n
2 1

(56)

where
~
short ) represents the product over entangled

modes with wavelength less than Uz —U&, and ~long) is
the product over the entangled modes with wavelength
greater than Uz —U„~uncorrelated) denotes the prod-
uct over the modes that are well localized either entirely
inside the interval or entirely outside, and so do not con-
tribute significantly to the entanglement. Crudely speak-
ing, the long-wavelength entangled state has the form (up
to normalization)

Jmax

terval, and L is an infrared cutoff. The error in Eq.
(56) should be a (nonuniversal) constant of order one that
can be absorbed into 5 in Eq. (57). The result Eq. (57)
agrees with a numerical calculation (for antiperiodic
boundary conditions) that was carried out by Srednicki
[37].

(0,—0, )z
(60)

At this stage let us combine together the contributions
to the entropy due to the right-moving and left-moving
modes. Suppose that the left moving "vacuum" state is
defined relative to the coordinate 1 (V). We consider a
spacelike slice X, and a region on this slice bounded on
the left by the point (0'z, P'z) and on the right by the point
(0&, $', ), as shown in Fig. 3. Tracing over the degrees of
freedom inside this region yields a total fine-grained en-
tropy

B. Curved spacetime

So far, we have assumed that the state of the quantum
field is the Minkowski vacuum. It is easy to extend the
result to the case of a more general "vacuum state" in flat
spacetime. Suppose that we introduce a new null coordi-
nate 0( U), and define a vacuum relative to this new coor-
dinate; that is, we consider the state that contains no
(right-moving) quanta that are positive frequency with
respect to the coordinate 0; The same reasoning that we
used above for the Minkowski vacuum applies just as well
to this case. Thus, if the size of the interval [0,, 0z] is
small compared to the infrared cutofF, the fine-grained en-

tropy is again given by

(0,—0, )'
SFG = ln (58)

S,Sz

The only new subtlety is that the short-distance cutoffs
5& z are here expressed in terms of the new 0 coordinate.
We can reexpress these cutofFs in terms of the Minkowski
(afiine} distances 5, z using the identities

fez ~zfiz (59)

where the prime denotes a derivative with respect to U.
When the cutoff is expressed in terms of the inertial coor-
dinates, the entropy becomes [13]

1 L 1S =—ln —+—lnFG
Lmax

(57)

where 5 is the short-distance cutoff at both ends of the in-

Now, we can find the total fine-grained entropy outside of
an interval of length L on a slice of fixed time. Combin-
ing the contributions of the right movers and left movers
we obtain The distance 5 is actually (5+51 )', where 5& and 5L are

cutoffs for the right movers and left movers, respectively. It can
be interpreted as the invariant proper length over which the
ends of the interval are smoothed out on the time slice.

4We are again neglecting the (infrared sensitive) contribution
due to the mode that is constant in the interval. The contribu-
tion of this mode to the entropy must be considered separately.
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FIG. 3. A spacelike slice through flat spacetime. By tracing
over the Seld degrees of freedom on the portion of the slice in
the region between the points P, =(0„(,) and P, =(02, f', ),
we obtain a density matrix p,„,for the fields on the portion of
the slice outside that region.

(0,—0)'
1 (0,—P)'

SFG = ln, , + ln
~1~251,R52, R ~1~251,L52, L

(61)

where, e.g., 5& z denotes the short-distance cutoff, in iner-
tial coordinates, on the wavelength of the right-moving
modes at end point 1. By combining together the contri-
butions of the right movers and the left movers we thus
obtain an expression that is invariant under Lorentz
boosts, for the product 5R 5L of the cutoffs on the right-
moving and left-moving modes is boost invariant. This
quantity is just (the square of) a proper length measured
on the slice X.

When expressed in terms of the new (0, P) coordinates,
the Minkowski spacetime metric ds = —d U d V becomes

ds = —e 1'dOdt}', (62)

where

(63}

In terms of this metric, the expression Eq. (61) for the en-

tropy becomes

=1 (0,—0, )'
SFo =—(pi+ p2) + ln

1,R 2R

+ 1n (64)

This formula has the advantage that it can be applied
to curved spacetime as well. In curved spacetime, there
is no global inertial frame. But we are free to introduce
coordinates (0, P), and to consider the "vacuum" state
defined by these coordinates —the state that contains no

uanta that are positive frequency with respect to 0' and
. If the spacetime metric has the form Eq. (62) in terms

of these coordinates, then Eq. (64) gives the fine-grained
entropy that results if we trace over the field degrees of
freedom contained in a finite interval of a spacelike slice.

The cutoffs in Eq. (64) are expressed in terms of the local-
ly fiat coordinates (U, V) at the end points of the interval,
for which the metric takes the form ds = —dUdV. As
noted above, the entropy is unchanged by the local
Lorentz transformations that preserve this metric. Since
our cutoff is in effect smeared over a region with width of
order 5, it is implicit in Eq. (64} that p does not vary ap-
preciably over this region.

We should also remark that, for a given "vacuum"
state, the coordinates (0, P) are not uniquely defined. We
have the freedom to perform an SL(2,C) transformation
on the coordinates without changing the vacuum. It is
easy to check that Eq. (64) is SL(2,C) invariant. As ex-
pected, then, the conformal transformations that preserve
the quantum state of the fields also preserve our expres-
sion for the fine-grained entropy.

Finally, we note that our expression Eq. (46) for the en-

tropy on the half line can also be easily generalized to
curved spacetime. Combining the contributions of the
right movers and the left movers, and expressing the
short-distance cutoffs 5R, 5L in terms of locally inertial
coordinates at the boundary, we obtain

1 1
SF~ — pp+ ln

12
max max

5R 5L
(65)

Here, again, the vacuum is defined with respect to the
(0, P) coordinates, and pR is the conformal factor in these
coordinates at the point P that divides the space in half;
O,„andP',„arethe infrared cutoffs.

C. Moving mirror

In a space without a boundary, the right-moving and
left-moving modes of a free massless scalar field are com-
pletely uncoupled, and the quantum states of the right
movers and left movers can be regarded as independent.
But if spacetime has a refiecting boundary (as in the RST
model} then correlations between the right-moving and
left-moving quantum states are induced. These correla-
tions must be taken into account in the computation of
the fine-grained entropy.

Suppose, then, that space is bounded on the left by a
perfectly reflecting mirror, as shown in Fig. 4. We sup-
pose that the mirror moves on some timelike trajectory.
Then we can express the quantum state of the Geld as a
left-moving state at 2 (since there are no right movers
at S ). In particular, we can introduce a null coordinate
0; and consider the "vacuum" state defined on 2 in
terms of the t}'coordinate. Then we may define a 0 coor-
dinate by demanding 0= f at the boundary, the position
of the mirror.

Now consider a spacelike slice X, and an interval on
the slice bounded by a point P, with coordinates (01,P', )

and a point P2 with coordinates (0'2, P'2). As a warm-up
for our analysis of black holes (where the interval will
correspond to the black hole interior), we would like to
trace over the field degrees of freedom inside this interval,
and obtain a density matrix for the state on the slice out-
side the interval. The right-moving and left-moving
modes in the interval are correlated. In fact, as Fig. 4
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(6&)

FIG. 4. A spacelike slice through the moving mirror space-
time. Coordinates have been chosen so that the trajectory of
the mirror is P(0)= 0. By tracing over the field degrees of
freedom on the portion of the slice in the region between the
points P, =(0„(,) and P, =(02, 0', ), we obtain a density ma-
trix p,„,for the fields on the portion of the slice outside that re-
gion.

shows, the right-moving modes in the interval are the
same as the left-moving modes on 2, in an interval
02& 0'&0&. Thus, tracing over the left movers and
right movers inside the interval bounded by P& and P2 on
the slice X is (almost) equivalent to tracing over the left-
movers only on S, in the union of the two intervals
02 & t)'& Oi and f i & P'& f 2 (But.see the caveat below. )

Tracing over the field degrees of freedom in a union of
two disjoint intervals is a bit complicated, but a simpler
problem turns out to be adequate for our purposes. We
consider a point P with coordinates (0~, P~) on the slice
X, and we trace over the field degrees of freedom on X be-
tween P and the mirror. As shown in Fig. 5(a), this is (al-
most) equivalent to tracing over the interval Op & f & P~
on 2 (recallin that the 0 coordinate is defined by the
condition that = P'at the boundary). We may now ap-
peal to Eq. (53) to conclude that

SFG ln ~ ~ ~

4&c
(66)

Here Sa is the short-distance cutoff on the right-moving
modes at the point P, expressed in 0 coordinates; because
of the way the 0 coordinate has been defined, this is the
saine as the cutoff at t = 0~ on S,expressed in terms of
f coordinates. We may introduce "locally inertial" coor-
dinates U and Vsuch that the metric in the vicinity of the
point P is ds = —dUd V; if 5z and 5L are the cutoffs ex-
pressed in terms of these coordinates, then Eq. (66) be-
comes

( P'p —Op)'
Fa 6PP+ 12 5 5

(67)

where p~ is the conformal factor of the metric Eq. (62) at
the point P. The same derivation will of course apply if
we choose the 0 coordinate so that P' —0 is a nonzero
constant, except that we will now have

here Ps is defined as the value of 0' at the point on the
boundary that is contained in a nu11 line through P, as
shown in Fig. 5(b).

If we had imposed Neumann boundary conditions at
the mirror, the model would be equivalent to a model
with left movers only and no boundary. Then Eq. (66)
would be the exact expression for the entropy due to the
modes that are not constant on the interval between the
point P and the mirror. In addition, there would be an
infrared divergent contribution to the entropy of the
form Eq. (56), arising from modes that are constant be-
tween P and the mirror, and decay outside of P. The situ-
ation with Dirichlet boundary conditions is a bit
different. The condition that the fields vanish at the mir-
ror removes the mode that is constant behind P, and as a
result the entropy is infrared finite. To understand why
the entropy of the left movers defined at J is not exactly
the same as the entropy of the left movers and right
movers on the spacelike slice, consider two nonoverlap-
ping wave packet modes at S, both localized inside the
interval [Pz, Pz], and both entangled with modes out-

FICx. 5. {a) A spacelike slice through the moving mirror
spacetime. Coordinates have been chosen so that the trajectory
of the mirror is f (0)= 0. By tracing over the field degrees of
freedom on the portion of the slice between the point
P =(0~, f ~) and the mirror, we obtain a density matrix p,„,for
the fields on the portion of the slice to the right of the point P.
(b) If coordinates are not chosen so that f =0 at the mirror, we
define Vz as the advanced time of an incoming null ray that
reflects off the mirror and then passes through P.
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side. Suppose that one of these wave packets rejects
from the mirror prior to the slice X, and that the two
wave packets then interfere destructively on X. Thus, al-
though each of the two modes is entangled with the fields
outside the interval at 2, their coherent sum (namely,
zero) is not entangled with the fields on X outside of the
point P.

While this error is quite small for the modes with
wavelength much less than the width of the interval, it is
significant for modes of long wavelength. However, on
dimensional grounds, the total error in our estimate of
the entropy is a constant of order one (T. he error is di-
mensionless, and does not depend on the ultraviolet or in-
frared cutoffs. ) This constant can be absorbed into the ul-
traviolet cutoff in Eqs. (66), (67), and (68).

Equation (68}is our main result for the fine-grained en-
tropy in the moving mirror spacetime. To summarize,
the quantum state is the "vacuum" defined with respect
to the f coordinate on J, and SFo is the entropy of the
density matrix that is obtained by tracing over the field
degrees of freedom on a spacelike interval between the
point P and the mirror. The 5ii L are the cutoff wave-
lengths for left and right movers at the point P, expressed
in terms of the locally inertial coordinates U, V (such that
the metric at P has the form ds = dUd—V); p~ is the
value of the conformal factor at the point P for the metric
ds = —e ~dOdP; where the 0 coordinate is defined by
the condition 0' —0= constant at the mirror. (It is also
assumed that p can be regarded as constant over a region
with width comparable to the cutoff length scale. ) We re-
call that the product 5+51 (a proper length squared on
the spacelike slice) is invariant under local Lorentz
boosts, and that S„ois unchanged by the SL(2, 4( ) trans-
formations that modify the 0'coordinate without altering
the vacuum state. We also emphasize again that this for-
mula for SF& applies in curved two-dimensional space-
time, as well as in fiat spacetime.

D. Black hole

p~ +ln (69}

The application of Eq. (68) to the RST model is im-
mediate. In the spacetime of a black hole that forms due
to infalling matter, there is a timelike boundary, up until
the formation of the spacelike singularity. We consider a
spacelike slice X (as in Fig. 6) that passes through the ap-
parent horizon at the point P, and meets the timelike
boundary behind the horizon. Let the quantum state be
the vacuum defined by the coordinate o+—this is the
state that appears to contain no quanta to the inertial ob-
servers at J" . Construct a density matrix p,„,outside the
apparent horizon by tracing over the field degrees of free-
dom behind the apparent horizon. Recalling that the
RST model contains X species of free massless scalar
field, Eq. (68) becomes

~FG tr(Po tie o t)

FIG. 6. A spacelike slice X through the black hole spacetime.
The slice crosses the apparent horizon at the point
P =(o.H, o.H). We de6ne o.z as the advanced time of an incom-
ing null ray that rejects off the boundary and then passes
through I'. Incoming null rays with advanced time between o.

&

and o H cross X inside the apparent horizon.

crosses the apparent horizon. Here ~z is the value of cr
at the point where the null line through P meets the
boundary, as indicated in Fig. 6. The cutoff 5 is the prop-
er length (5„5L)'; alternatively we may choose the local
Lorentz frame at P so that 5+ =5L ——5.

Note that, in defining the conformal factor p in Eq.
(69), we have implicitly used a cr coordinate that
satisfies

0. =0 +const (70)

on the timelike boundary. This o coordinate does not
necessarily coincide with the o. coordinate that is
defined in terms of the Kruskal coordinate x by Eq.
(17). However, we saw in Eq. (34) that, in the linear dila-
ton vacuum, the o coordinates defined by Eq. (17) satisfy

l( o s cr ii ) = ——2 ln2 (71)

at the boundary; thus, Eq. (70) is satisfied, and the two
definitions of o do agree. The same holds true if no in-
falling matter has reached the boundary before the ad-
vanced time 0.+=a&. In our analysis of the thermo-
dynamics of a black hole formed from collapse, we will
find it convenient to assume that this condition holds, so
that Eqs. (70) and (17) are both valid.

Under this assumption we can reexpress Eq. (69) in
terms of the value PH of the dilaton field at the apparent
horizon. First, we see from Eq. (17) that the conformal
factor p in o. gauge is related to the conformal factor pz
in Kruskal gauge by

(Zp ) + (2p& )ds'= —e do+do = —e ' dx+dx

where pH =p(oH, o.H) is the conformal factor of the
metric {in o coordinates) at the point P where the slice

pK A(o+ —o )d +d
2
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or it is

p.=pre+ (—e —u ) .+ (73) N A L/hS =— (—L L—}+ln
z

(77)

For the point on the boundary with the same retarded
time as the apparent horizon (as in Fig. 6) we have

on =crt' , t'hus, combining Eqs. (71), (13), and (31) we find

that the value pH of the conformal factor at the ap-
parent horizon, in cr gauge, is

pa, o=4a 0-+—i+&a &a—} . (74)

Our expression for the fine-grained entropy outside the
apparent horizon then becomes

S =—P —P + A,L+—ln—1 L
FG 6 H cr (75)

where we have defined

L =cTH Og
+ + (76)

Roughly speaking, L is the affine volume (in 0 coordi-
nates} behind the horizon at advanced time o z (as shown
in Fig. 6).

We derived Eqs. (69) and (75) under the assumption
that the quantum state at S is the inertial vacuum.
However, we will show in Appendix A that Eq. (69) and
(75) still hold if the incoming state is a coherent state
built on this vacuuin. (Coherent states are a natural basis
to use in the present context because, in the large-N limit,
they are orthogonal and have a simple evolution'law. ) If
we assume that the infalling matter is in a coherent state
of this type, and that no incoming rnatter reaches the
boundary prior to the global horizon, then Eq. (75) is the
correct expression for the fine-grained entropy of the
matter fields outside the apparent horizon of the black
hole.

IV. EVAPORATION AND INFORMATION

When a black hole forms from collapsing rnatter, some
of the information about the initial quantum state of the
matter becomes encoded in the correlations of the quan-
tum fields outside the horizon with the fields inside the
horizon. This information remains inaccessible to an ob-
server who remains outside the horizon at all times. Our
expression Eq. (69) for the fine-grained entropy quantifies
the amount of this missing information. Thus, by study-
ing the behavior of SFG as the black hole evolves, we can
track the information content of the Hawking radiation
that is emitted.

The simplest case to consider is that in which the black
hole remains "critically illuminated" for a long time.
That is, we imagine that the incoming energy fiux h(o +)
matChess the outgoing thermal flux 8„=—'A. due to the
Hawking radiation. During the period of critical il-
lumination, the black hole mass, and the value P~ of the
dilaton field at the horizon, remain unchanged. If the
quantum state of the infalling matter is a coherent state
built on the asymptotic inertial vacuum, we may then use
Eq. (75) to find the change in the fine-grained entropy of
the matter fields outside the horizon during the process;

where L; and L& denote the values of L at the beginning
and end of the critical illumination. (Note that, though
our expression for the fine-grained entropy depends on a
short-distance cutoff, this entropy change is cutoff in-
dependent. ) During critical illumination, the horizon is
null and Oe is fixed, so that dL/dtrtt=l. It is clear
then, that if the critical illumination lasts long enough,
the increase in the fine-grained entropy may be as large as
desired. We conclude that there is no limit to the amount
of information that can be destroyed by the black hole, or
in other words, no limit to the degree of entanglement of
the fields outside the global horizon with those inside. It
was argued in Ref. [16] that an arbitrary amount of infor-
mation can be stored on a slice inside the horizon of a
black hole. Eq. (77} is the other side of the coin —there is
no limit to the amount of information that can be missing
from the region outside the horizon.

Because the fine-grained entropy can increase without
bound, while the black hole mass remains fixed, it is not
possible to attribute the fine-grained entropy to the en-
tanglement of the degrees of freedom outside the black
hole with a finite number of internal degrees of freedom
of the black hole. Unless there is a stable black hole rem-
nant with an infinite number of degrees of freedom [7],
information is unavoidably lost.

It is useful to recall the origin of the two terms in Eq.
(77) by referring to Eq. (69). The value of p at the ap-
parent horizon in sigma gauge is related to the dilaton
field P by Eq. (74), or

pe,. 0a 0.,+—,'~L-'
the first term in Eq. (77) is just (N/6)(pn & p~, ). Equa-—
tion (78) expresses the familiar property that the field
modes that cling near to the horizon for a long while un-
dergo an exponential redshift. We recall that the cutoff 5
is a fixed proper length at the apparent horizon. This
means that the cutoff in o coordinates at the apparent
horizon is shrinking exponentially, according to

52 i~ngz AL,f2-
(79}

[In the second equality we have neglected the correction
in Eq. (78}due to the evolution of P.] Since the o coordi-
nates are the inertial coordinates on S, Eq. (79) says
that, as the black hole evolves, shorter and shorter wave-
length incoming modes, as measured on J, are being in-
cluded in the calculation of the fine-grained entropy. It is
the very-short-distance correlations between these modes
just inside and just outside the horizon that are responsi-
ble for the dominant contribution to the entropy in Eq.
(77). The subdominant second term in Eq. (77) arises
from the long-distance correlations between field modes
inside and outside the horizon.

It may be appropriate to be somewhat more explicit
about the connection between the cutoff expressed in 0
coordinates and wavelengths measured at 2 . In our
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~pH5a~ ~e (8O)

Thus, as the black hole evolves, shorter and shorter wave-
lengths modes, as measured on S near o + =o s, are be-

ing included in the calculation of the fine-grained entro-

py. It is the very-short-distance correlations between the
modes localized just inside and just outside the horizon
that are responsible for the increase in the entropy.

Although there is a sense in which the dominant con-
tribution to the entropy can be attributed to very-short-
distance correlations, it is not correct to say that the en-

tropy can be very well localized near the horizon. Since
the cutoff is a fixed proper length at the horizon, an ob-
server in the vicinity of the horizon would conclude that
ultra-short-distance modes (with wavelength much less
than 5) make no contribution to the entropy. It is only
when these modes are followed backward to 1,where
they are enormously blueshifted, that ultra-short-
distances need be considered. In fact, on a spacelike
slice, most of the fine-grained entropy is due to the entan-
glement of fields far outside the horizon with fields that
are far inside.

How secure is our conclusion that information is lost
in the RST model? One potential worry is that it is a sub-
tle task to control the fine-grained entropy in a semiclas-
sical calculation [39]. We have attempted to do so by ap-
pealing the 1/N expansion, so that we can neglect the
quantum fluctuations about the background geometry.

5This foliation might not be globally defined on a general
spacetime. However, for our purposes it is su%cient to define

time slices locally in the vicinity of a particular point on the ap-
parent horizon. Also, we note that the time slices defined by the
family of freely falling observers are not the same as the slices of
constant "o. time" o. = 2(o.++o. }. On the o time slices, we

have 6o.H =6o.H ~ e i'a a

analysis of the fine-grained entropy in Sec. III, we really
imposed two cutoffs, one on left-moving modes and one
on right-moving modes. In the case of the black hole
background, these can both be expressed in terms of the
o.+ coordinate —we see from Fig. 6 that there is a cutofF
on left movers in the vicinity of 0.&, and another cutoff
on left movers at uII. Let us denote these two cutofFs by
5o H and 5o H. (Recall that oH =as +const. ) Individu-

ally, the two cutoffs have no invariant significance; it is
only their product 5oH5oH=5 that is determined by
Eq. (79).

The individual cutoffs 5o'& and 5crH depend on how
we choose our time slices. However, there is a natural
way to foliate the spacetime with spacelike slices. We fix
a position far from the black hole, by specifying a value
of the dilaton field P. A family of observers, with their
clocks initially synchronized, fall freely toward the black
hole from this fixed position at regular intervals. The
natural time slices are those on which all observers
record the same proper time. %ith this choice, the
cutoff 5oH remains essentially constant along the ap-
parent horizon, so that the other cutoff shrinks according
to

However, expanding the entropy in powers of A (as we
are attempting to do here ) can be a tricky business, since
the A~O limit of the entropy may be highly singular.
For example, knowing each matrix element of the density
matrix p,„,to leading order in I/N may not be suScient
to determine SF& to leading order, since the size of the
matrix grows as N~(x). %e believe, though, that this
criticism does not apply to our calculations. We have de-
rived an expression for the SFG itself, rather than the ma-
trix elements of p, that is valid to leading order in 1/N.

A second worry [19,22] arises due to the extreme red-
shifting of the field modes that are responsible for the
emitted Hawking radiation. If information is not lost,
then the fine-grained entropy of the Hawking radiation
can be attributed to entanglement with the internal de-

grees of freedom of the black hole. The number of inter-
nal degrees of freedom would presumably be given by the

SBHBekenstein number e ". Therefore, to argue persuasive-

ly that information is lost, we must follow the evapora-
tion of the black hole long enough so that the increase of
SFG exceeds

~BH
SB

TBH

We thus require

2aMBH

24aM BH
A,(L/ L; )-— (82)

=exp
2(p —

p ) 24@MBH

In the RST model, it is understood that the incoming and
outgoing energy Quxes, and the mass of the black hole,
are all quantities of order N. Thus, the argument of the
exponential in Eq. (83) is formally of order one in the
large-N limit. Still, 24aM&H/NA, should be large in a
well-controlled semiclassical calculation, so that this red-
shift factor is truly enormous. Because the Hawking ra-
diation is being emitted in modes that have very large en-

ergy as measured at J, one may wonder whether there
are correspondingly large fluctuations in energy momen-
tum. If so, the response of the geometry to these fluctua-
tions should be included when the evolution of quantum
states is studied.

In fact, we are not aware of any calculation that con-
vincingly demonstrates that these large fluctuations occur
in the RST model, or that they precipitate a breakdown
of semiclassical methods. At any rate, even if they do
occur, their effects are systematically suppressed in the
1/N expansion. %e can always justify neglecting the

Because WA is of order one, corrections higher order in 1/X
are equivalent to corrections higher order in fi.

[neglecting the logarithmic term in Eq. (77)]. It follows
that the quanta that are emitted during the late stages of
the critical illumination process are in modes that have
been redshifted (relative to their frequency at 2 ) by the
factor
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response of the geometry to the fluctuations of a mode
that is blueshifted by the factor Eq. (83), by allowing N
to be sufBciently large. For example, suppose we want
the energy measured at S of a typical mode to be less
than some small fraction e of the mass of the black hole.
The typical quantum emitted in the Hawking radiation
has an energy of order A, , so that the energy measured at

is of order A, times the blueshift factor. This blue-
shifted energy is less than eM&H provided that

1 NA,
N )— exp

e M~H

24aM ~H
(84)

~The case of (nearly) complete evaporation, as opposed to criti-
cal illumination, mill be further discussed in Sec. VI C.

Since MaH /NA, is a quantity of order one, this condition
is satisfied for N sufficiently large (although the required
value of N grows exponentially with the mass of the black
hole).

While we believe that the above technical objections
can be answered, our discussion of "loss of information"
in black hole evaporation should still include some im-
portant caveats. We can follow the evolution of a black
hole far enough to exclude the scenario described by
Page [39], in which the fine-grained entropy begins to de-
crease sharply after about half of the mass has been radi-
ated away. But we cannot follow the evolution all the
way up to the end point of the evaporation process
(without additional assumptions about the behavior of
Planckian black holes). It remains a logical possibility,
therefore, that the "lost" information is finally recovered
in the very late stages of the process, when the large-N
approximation breaks down. (General arguments [40,41]
indicate that, in this event, the final stage would have to
take an exceedingly long time. )

We also note that implicit assumptions have been made
about how physics in our toy model behaves under ex-
treme boosts, and these assumptions might not be ap-
propriate in the real world. We remark again that, since
the redshift factor exp(24nMaH/NA, ) is very large, the
fine-grained entropy that we have computed is dominated
by the contributions due to field modes that are of ex-
traordinarily short wavelength on S . As has been em-
phasized by 't Hooft [19], Jacobson [20], Susskind [21],
and the Verlindes [22], loss of information could conceiv-
ably be avoided if ordinary relativistic field theory ceases
to apply at suSciently short distances, so that our calcu-
lation of the fine-grained entropy is invalidated. While
loss of information appears to occur in the RST model
(for sufficiently large N), it might not occur in a different
model with different short-distance physics.

A related point is that we have made an assumption
about the nature of the cutoff that arises in the definition
of the entropy. This cutoff can be regarded as the proper
length over which we have smeared the boundary be-
tween the region inside the black hole and the region out-
side. Our procedure has been to keep this proper length
fixed as the black hole evolves. This procedure is the

only reasonable one we could think of, but if some
justification could be found for varying the cutoff along
the horizon, our conclusions would be altered.

V. BLACK HOLE ENTROPY

In Sec. III, we derived an expression for the (fine-
grained) entropy of the matter fields outside the apparent
horizon of a black hole. To do black hole thermodynam-
ics, we will also need an expression for the intrinsic entro-
py of the black hole. In the leading semiclassical approx-
imation (neglecting all gravitational back reaction) it is
easy to find the black hole entropy. But in our analysis of
the RST model, back reaction effects of order Nfi are in-
cluded, and we will need to include a next-to-leading
correction to the black hole entropy. In this section we
mill derive this correction.

The leading semiclassical expression for the black hole
entropy can be obtained using thermodynamic reasoning,
given the relation between the black hole mass and the
temperature of the Hawking radiation. If we imagine
that the black hole is in equilibrium with a thermal radia-
tion bath in a (small) cavity, we may regard a process in
which the black hole accretes or emits an infinitesimal
amount of radiation as a reversible thermodynamic pro-
cess. Integrating the identity dS=dM/T then deter-
mines the black hole entropy up to an additive constant.

For the black hole in two-dimensional dilaton gravity
(and the four-dimensional magnetically charged dilaton
black hole to which it is intimately related), the tempera-
ture TaH =A, /2n is independent of its mass. Because the
specific heat of the black hole is actually infinite, there
are very large fluctuations in thermal equilibrium; the
black hole mass wanders randomly [42,43]. However, in
the large-N limit, these fluctuations are suppressed, and
may be ignored. (The characteristic time scale of the
fiuctuations increases as ~N as N increases. ) Thus, the
naive thermodynamic arguments are valid. The leading
expression for the entropy becomes

2&a
~aH ™aH/~aH (85)

where PH denotes the value of the dilaton field P at the
apparent horizon.

To go beyond this leading calculation we wish to find
the correction to the relation between the MaH and PJt,
for a black hole in contact with a radiation bath. Howev-
er, it is not even clear how to define MzH for a black hole
surrounded by radiation —the Arnowitt-Deser-Misner
(ADM) mass, for example, includes both a contribution
from the black hole and a contribution from the bath.
We will therefore proceed in two steps. For a black hole
surrounded by radiation in a (finite) cavity, we imagine
adiabatically introducing a small amount of additional
left-moving matter, which eventually crosses the ap-
parent horizon and is accreted by the black hole. The
first step is to find how the accretion process changes the
value of PIt (or equivalently QH). Using thermodynamics
we can then find the relation between the change in PH
and the change in the total entropy contained in the cavi-
ty.

This first step is not quite the whole story, though, be-
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(86)

where P+ is the total incoming Kruskal momentum up
to advanced time x+, and M is the total mass (at infinity)
of the incoming matter. (We have chosen the origin of
the Kruskal coordinate system to remove possible linear
terms in x+ and x .) If we assume that P+ and M are
constants, then the position of the apparent horizon,
determined by the condition t)+0 =0, is

xH (x+ ) = — P+ (x+ ),1
(87)

and the value of 0 at the horizon is

10 =—M(x+) .0 (88)

Therefore, if a pulse of left-moving matter that carries
Kruskal momentum hP+ and mass AM is accreted by
the black hole, then the horizon shifts outward according
to

hx~ (x+ ) = — b,P+ (x+ ),H g2

and 0 at the horizon changes according to

(89)

cause the total entropy is the sum of the entropy of the
black hole and the entropy of the bath, both of which
change in this process. The temperature of the bath is
unchanged, but when the black hole accretes the addi-
tional matter, the apparent horizon shifts outward, con-
cealing some of the radiation behind the apparent hor-
izon, and thus reducing the entropy of the bath. The
second step is to find how the horizon shift changes the
entropy of the radiation outside the apparent horizon.
Only then can we infer the relation between the change in

PH and the change in SaH.
To carry out the first step of the calculation we begin

by noting that, for an eternal black hole in equilibrium
with a radiation bath, the quantum state of the matter
fields is the Kruskal vacuum, or "Hartle-Hawking
state" —there are no quanta that are positive frequency
with respect to the Kruskal coordinates x* [44]. Now
we recall that if we build an arbitrary coherent state of
left-moving matter on this vacuum, the general solution
to the field equations in Kruskal gauge has the form

r

Q(x+, x )= —
A, x+ x + P+(x+) +—M(x+),1 + 1

bS„,=b (SsH+S „„,)= —hM„„„1

=—dQ H

1
SF/ 6 PH, g+ 21

++ max+ max
(93)

where xm, „and x+,„areinfrared cutoffs (in Kruskal
coordinates) for the right movers and left movers. Of
course, the conformal factor p is gauge dependent; the
subscript E in Eq. (93}indicates that pH s is evaluated in
the Kruskal gauge.

We can check that it is reasonable to interpret SF& as
the thermodynamic entropy of the radiation bath by
evaluating the infrared divergent part of Eq. (93). The
Kruskal coordinates x* are related to the u* coordinates
(which become inertial in the asymptotic region) by Eq.
(17); thus the infrared divergent term in SFo is

(94)

We now proceed to the second step, which is to calcu-
late hS~«„,so that ES&H can be extracted from Eq.
(92}. To carry out this step we need a precise definition of
the entropy carried by the matter outside of the apparent
horizon. Our proposal will be that S,«„is given by Eq.
(35)—it is the fine-grained entropy of the matter fields
outside of the apparent horizon. It is not a priori obvi-
ous that this expression for S,«„is correct or appropri-
ate. Ordinarily, the thermodynamic entropy is a coarse-
grained entropy [46]. Surely, for a pure state, S„o=O
would be a very poor estimate of the thermodynamic en-
tropy. We are proposing that the quantum fields inside
and outside the horizon are so thoroughly entangled that
it is reasonable to regard the fine-grained entropy outside
the horizon as the thermodynamic entropy. In any event,
it is hard to think of another way to give the notion of the
"entropy outside the apparent horizon" any precise
meaning.

For an eternal black hole, there is no reflecting bound-
ary', the right-moving modes and left-moving modes are
uncorrelated. The fine-grained entropy is given by our
curved-space generalization of the formula for the entro-

py on the half line. If the quantum state of N scalar fields
is a coherent state built on the Kruskal vacuum, Eq. (65)
becomes

AQ =—AM .1
H (90)

We may interpret cr',„asthe size L of the cavity that
contains the radiation. Thus, Eq. (94) agrees with the en-

tropy

We must recall, though, that the energy-momentum used
in the field equations has the unconventional normaliza-
tion Eq. (16). In thermodynamics we should use the con-
ventionally normalized mass M, „„=(N/12m)M, so that

S=2—TL
7T

6

of a thermal bath at temperature T=A, /2m, times a fac-
tor of N for the N species. (The factor of 2 arises because

Now the identity dS =dM/T becomes

(91)
The fine-grained entropy outside the black hole horizon has

also been discussed recently by Frolov and Novikov [45].
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both left movers and right movers contribute to the en-

tropy of the bath. }
When the black hole accretes some incoming matter,

only the pH term in Eq. (93}is aff'ected by the shift of the
horizon. Furthermore, since in Kruskal gauge we have
p=P+const, we conclude that

~Smatter 6
~4 H

Combining with Eq. (92), we find that

(96)

N N N NBH- ~ "-
124H 24 -24'" 48

(98)

This is our corrected formula for the black hole entropy.
The formula Eq. (98} for the black hole entropy has a

satisfying interpretation. The action of two-dimensional
dilaton gravity can be obtained by spherical reduction of
the four-dimensional action for a near-extreme magneti-
cally charged dilaton black hole. When this reduction is
carried out, the area of the sphere of constant radius in
four-dimensions becomes the P-dependent prefactor of
the Ricci scalar in the classical two-dimensional action
[8]. Now in the RST model, an extra term is added to
this prefactor. The modified prefactor has just the form
of the black hole entropy in Eq. (98). Thus, loosely
speaking, the relation SBH =

4 A is satisfied by our
corrected entropy formula, but where A is the corrected
"area" of the RST model.

It may help to clarify the nature of the correction that
we have found to Eq. (4) if we restore the factors of R and
"Newton's constant" 6 that have been suppressed until
now. In the classical action Eq. (1},there is a factor G
multiplying the term [R +4(VP) +4k, ], where t)1G is di-
mensionless. Thus the dilaton field P is dimensionless,
and A,

' has the dimensions of length. The leading term
in the black hole entropy is then

2m.MBH
BH, O (99}

and the correction is

1V
SaH, t

—
12 4a .

Relative to the leading term, then, the correction is
suppressed by

SaH, t NA' tI)e NR A, trG sH
1n

SBHO 24~ MBH 48m MBH A,

(101)

Thus, the correction is higher order in fi, but cannot be
neglected in the large-N limit. It is also suppressed, for a

bSaH= (bQH Ape) .
6

We can fix the arbitrary constant of integration by
demanding that the black hole entropy reaches zero when
the apparent horizon meets the singularity, or when
ti'tH =P„=——,'ln(N/48); thus, from the expression Eq. (9)
for Q in terms of P, we obtain

very massive black hole, by the factor 1n(MaH )/MttH.
In the RST model, it is possible to obtain a simple ana-

lytic expression for the value 08 of 0 at the apparent
horizon, on a general time-dependent background. There
is not such simple expression for P&, as Q and P are relat-
ed by the transcendental Eq. (9}. Thus, we cannot write
down an analytic formula for SBH or SFG on a general
background. However, when these quantities are added
together, a notable simplification occurs. Combining
Eqs. (98} and (69}, and comparing with Eq. (10},we see
that

N 1 LS +S =—y ——+ln2+ln-BH FG 6 H, 4 5
(102}

can be expressed in terms of y, which obeys a simple field
equation in the RST model. [Here I.=os crt—, as in
Eq. (76).] Of course, the value hatt of g at the apparent
horizon is gauge dependent, while SBH+SFG is not. This
formula is valid if yH is evaluated in the same coordinate
system used to define the vacuum, in other words, in the
"a gauge. " Recall that cr+ is the null coordinate with
respect to which the incoming vacuum state is defined,
and cr must be chosen so that o+ —cr =const at the
boundary of the spacetime, as we explained in Sec. III.
We should emphasize that Eq. (102} is a general formula
that applies under the above conditions. In particular, it
need not be assumed that the cr* coordinates are related
to the Kruskal coordinates by Eq. (17}.

We will discuss the evolution of SsH+S„oin the next
section. For now, we remark that Eq. (102), like Eq. (98),
has an intriguing interpretation. We observe that g is
proportional to the coeScient of the scalar curvature R
in the quantum corrected e-fective action of the (large-N)
RST model. Thus, if we neglect the logarithmic term in
Eq. (102), we find that the sum SttH+S„ois related to the
quantum-corrected Newton's constant just as SBH is re-
lated to the classical Newton's constant of the model.
This remark makes contact with the observations in Ref.
[25], where a connection between entropy and the renor-
malization of Newton's constant is proposed.

[One is tempted to go further, and regard Eq. (102) as a
hint that the proper way to define the fine-grained entro-

2= 2X
py is to use the "g metric" ds = —e dcr+dcJ when
implementing the short-distance cutofF. Then Eq. (102)
could be interpreted as wholly due to the entropy of en-
tanglement between the regions outside and inside the
black hole —there would be no need to add in a separate
Bekenstein-Hawking term. ]

VI. EVAPORATION AND THERMODYNAMICS

Equipped now with our formulas for the black hole en-
tropy SBH and the fine-grained entropy S„Goutside the
apparent horizon, we are prepared to study the thermo-
dynamics of a process in which a black hole forms from
infalling matter and then evaporates, as in Fig. 1. We
wish to find the time dependence of the total entropy in
this process. We will assume that the incoming matter
state is a coherent state built on the inertial o.+ vacuum
at 2 . For such states we know how to evolve the
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geometry using the RST equations, and we know how to
calculate the fine-grained entropy. We will also make the
further assumption that none of the infalling matter
reaches the rejecting boundary of the spacetime before
the appearance of the global event horizon. This assump-
tion simplifies the calculation of S„z,as we explained in
Sec. III.

In their analysis of the model, RST noted that the
boundary condition Eq. (32) can be reimposed at the end-
point of black hole evaporation (when the singularity
meets the apparent horizon), and that the final quantum
state can be chosen to be the vacuum. This prescription
results in the emission of a thunderpop. Furthermore,
the information about the quantum state of the initial in-
coming matter is lost by assumption. But we wish to em-
phasize that the time dependence of the entropy up until
the apparent horizon meets the singularity is insensitive
to the RST prescription for continuing past this point,
and is not affected by the thunderpop. It mill be of in-
terest to see how the fine-grained entropy outside the hor-
izon behaves as the black hole approaches its demise.

We have seen that the fine-grained entropy depends on
an arbitrary ultraviolet cutoff. However, the ultraviolet
divergence is logarithmic, and the cutofF-'dependent term
is a time-independent additive constant. Thus, the sensi-
tivity to the cutoff does not prevent us from making
definite statements about how the entropy outside the
black hole changes during its evolution, or about the
change in the intrinsic entropy of the black hole itself.

A. Boltzmann entropy

In the previous section we argued that, in the Hartle-
Hawking vacuum state, the fine-grained entropy SFG
could be regarded as the thermodynamic entropy outside
the event horizon of the black hole. But for the black
hole formed from infalling matter, this assignment must
be modified. To see why, cover the spacetime of Fig. 1(a)
with a sequence of spacelike slices, as depicted in Fig.
1(b). Slices I and II in the figure represent times prior to
the formation of the black hole. Since there is no ap-
parent horizon, the quantum state "outside" the horizon
on these slices is a pure coherent state, which has
SF~ —O.

But even though the incoming matter is in a pure state,
it surely carries thermodynamic entropy. We can assign
a nonzero entropy to this state by performing a coarse-
graining procedure. Our coherent state carries the left
mooing energy density

(103)

We may regard @ as a measurable macroscopic quantity.
Given the energy-density profile 6 af the incoming state,
we assign an entropy by counting the number of micro-
scopic quantum states with this energy profile —the en-
tropy is the logarithm of the number of states. We will
refer to the entropy defined by this procedure as SB,&„,
the Boltzmann entropy of the incoming coherent state.

The spacetime is asymptotically Hat, so we may use
standard Qat-space thermodynamics on 7 . We may
then appeal to the equivalence of the microcanonical and

canonical ensembles in the thermodynamic limit, and ex-
press both the entropy density and the energy density in
terms of a locally measured temperature. Fluctuations of
the entropy and energy densities about these values are
suppressed in the large-X limit. If the energy density is
conventionally normalized, we can express the energy
density 8„„„andentropy density S for X left-moving
massless free scalar fields in terms of the temperature T
as

(104)

so that the entropy and energy densities are related by
1t2

The energy density in Eq. (103) has the unconventional
normalization

12m.
conv (106)

so that the Boltzmann entropy can be written

Ss„„=—f d(r++C(cr+) . (107)

In defining SB~ we have chosen to divide the slice X at
the apparent horizon. We made the same choice when we
defined the fine-grained entropy SFG outside the black
hole in Sec. III B. Furthermore, our formula Eq. (98) for
the black hole entropy S~H has been expressed in terms
of the value of the dilaton field at the apparent horizon.
These choices deserve some explanation. If we are adopt-
ing the viewpoint of an observer who remains outside the
black hole, it may seem more logical to divide the slice at
the global event horizon instead. After all, it is passible
for the observer to cross the apparent horizon (very care-
fully) and return to tell about it. However, we find it
more appropriate to define S~, SF&, and S~H using the
apparent horizon, for several reasons. First of all, the po-
sition of the apparent horizon can be determined locally
in time, without any required information about the glo-
bal properties of the spacetime. Our observer on a time

We can now evolve the incoming matter state from
slice I of Fig. 1(b) to slice II, which is still prior to the
formation of the black hole. In general, Sz,&„canchange
under unitary evolution, but for a free field it is invariant
as a consequence of the curved space generalization of
Liouville's theorem [47]. In the present context, this is
simply the statement that the energy profile C(cr+) is un-
changed.

The black hole is finally encountered on slice III.
Liouville's theorem continues to apply here, so that S~&„
is still unchanged. However, we are interested in the en-
tropy of the matter outside the black hole. Therefore, we
divide slice III into two segments, X;„andX,

„„

inside and
outside the apparent horizon. The Boltzmann entropy
SBo outside the apparent horizon is

Sao= —f do+&8(o+) .
out
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slice can readily identify the apparent horizon as the lo-
cation where 8+Q vanishes. Second, because the position
of the apparent horizon is determined by this local condi-
tion, it is easy to compute the trajectory of the apparent
horizon using the RST equations. Third, if we use the
global horizon to define the entropy, the resulting expres-
sions do not seem to have a nice thermodynamic interpre-
tation. In particular, the would-be second law is easily
violated by sending in a very sharp pulse with large en-
tropy and energy density but small total entropy and en-
ergy. The essential point is that the value of the dilaton
at the global horizon responds less sensitively to the in-
coming pulse than does the dilaton at the apparent hor-
izon.

B. Total entropy

Once the black hole forms, matter entropy can become
concealed behind the horizon, and the left-moving
Boltzmann entropy Eq. (108) can decrease. If physics
perceived by an observer outside the black hole is to
respect the second law of thermodynamics, then (as Bek-
enstein argued [2]) we must attribute entropy to the black
hole. Furthermore, we must not neglect the entropy car-
ried by the outgoing Hawking radiation.

We propose to adopt, as our definition of the total ther-
modynamic entropy

S,o,
——SgH+SgP+SFG (109)

Note that we have not really established that this interpreta-
tion is correct. In particular, our expression for SFG has been
derived only for coherent incoming states, and may not apply for
arbitrary states.

The fine-grained entropy SFG outside the apparent hor-
izon is dominated by the entanglement of the right-
moving modes outside the horizon with the right-moving
modes just inside the horizon. It roughly corresponds to
the thermodynamic entropy of the outgoing Hawking ra-
diation, while SBp is the entropy of the incoming matter.
We have seen that the fine-grained entropy does not in-
clude the entropy of the incoming matter —an incoming
coherent state has the same SFG as the vacuum state —so
Sgp must be added on.

While the expression Eq. (109) may appear (and
indeed, is) somewhat strange, we believe it to be a precise
two-dimensional analogue of the notion of "total entro-
py" used implicitly in discussions of four-dimensional
black hole thermodynamics. This prescription might be
interpreted as follows. We may consider, instead of a
pure initial state, the mixed initial state p that maximizes—trp leap, subject to the constraint that the energy densi-
ty is given by the specified function 4'(o+). For this
mixed initial state we have SB,&„=—trplnp. What we
are adding to SaH in Eq. (109) is the fine-grained entropy
outside the horizon for this particular mixed initial state.
In any event we have not been able to find any other
reasonable and precise alternative to Eq. (109}that obeys
a generalized second law.

As we noted at the end of Sec. V the sum SzH+SFG
can be expressed in terms of the field g at the apparent
horizon (in 0 gauge), for which we can find an analytic
expression. Alternatively, we may combine Eqs. (98) and
(75), to obtain directly an expression in terms of the
gauge invariant quantity QH. We obtain

N 1 1 LS +S =—Q ——+—AL+1n—
4

(110)

M(oH)= f der+8(o+) (112)

is the total mass flowing in from J up until advanced
time oH.

Next, we express QH in terms of the quantity
L =O.

H
—0.&. Under the assumption that there is no in-

falling matter up until advanced time x~, the position of
the boundary defined by 0=0„=—,

' is given by Eq. (71).
For the point on the boundary with the same retarded
time as the apparent horizon (as in Fig. 6), we have

Os =o H. Combining Eq. (71) with (111)we find

1 1 1
Q =—+—M ——AL.

4 A, 4

Inserting into Eq. (110)now yields

S +S =——M(a )+ AL+ln ——N 1 + 1 L
FG 6 A,

H 4 5

(113)

(114)

Adding the Boltzmann entropy Eq. (108) outside the
black hole we find

Stot =SBH +SFG +SBO

1 1 LM(o H )+ A,L—+1n——
6 A. 4 5

+f do++I(o+}
~H

(115}

our final expression for the total entropy.
It is instruction to compare S„,and S~&„onthe same

time slice, or equivalently, to compare SBH+SFz with
the Boltzmann entropy Sz& inside the apparent horizon.
Since we assume that there is no incoming energy density
before the advanced time o.+=a.z, we can choose the
lower limit of integration in Eq. (112) to be oui, and we
then have

where L =0 H
—o z, as in Eq. (76). Now we may use the

general solution Eq. (26) to the field equations in Kruskal
gauge, which applies if the state of the matter is a
coherent state built on the sigma vacuum. Recalling that
the apparent horizon is defined by the condition 8+0=0,
we deduce from Eq. (26) that

0 =—+—M(x ) ——ln( —4A x x )
1 1 + 1 2 +
4 a 4 H H

=—+—M(o )
— A(c—r —

, 0 )
——ln2,

1 1 + 1 + 1

4 g H 4 H H

where
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+

S +S —S =— do. —+A(o )
——N H + 1 + A,

BH FG BI 2CT g

L+ ln
5

(116)

C. Complete evaporation

Let us now consider a process in which a black hole
forms from infalling matter and eventually evaporates
completely. Our semiclassical approximations actually
break down at the very end of this process, but we can
still make definite statements about how the total entropy
behaves as the end point of the process approaches.

The end point occurs when the apparent horizon and
the singularity coincide, or when QH =Q„=—,'. From Eq.
(113),we see that at the end point

Since S~&„=S~o+S»is conserved (by Liouville's theorem),
the expression in Eq. (116) differs from the total entropy by an

additive constant.

This expression is always positive, so that S„,is always
greater than SB,&„.In particular, the total entropy S„,
always jumps by a (cutoff-dependent} positive amount
when the apparent horizon first appears.

The first term in Eq. (116) is minimized if we choose
@=A, /4. This incoming energy fiux is the critical Aux8„that matches the fiux of the outgoing Hawking radia-
tion. [From Eq. (106) we see that 8„cor-
responds to the conventionally normalized thermal flux
C«„„=No.T /12, where T=A, /2' ]We. see from' Eq.
(116) that, even when the black hole is critically il-

luminated, the total entropy continues to grow like
(N/6)lnL. This increasing term arises from the long
distance correlations of the quantum fields outside the
black hole with the fields in the region behind the hor-
izon. The existence of this term is a bit of a surprise, as
one might have expected the critical illumination of the
black hole to be a thermodynamically reversible process.
Indeed, one might say that the result Eq. (116) calls into
question our proposal to identify S«, with the thermo-
dynamic entropy —an expression without the lnL term
would look more plausible. However, we will see in Sec.
VII that the second law can be (mildly) violated for an
appropriately chosen energy density profile 8(o+), if the
lnL term is absent.

Note that for a very long-lived black hole, the lnL term
becomes very slowly varying, so that the total entropy of
a critically illuminated black hole does become very near-
ly constant. This is how Eq. (116) becomes reconciled
with our calculation of the black hole entropy in Sec. V,
where we did assume that the emission of radiation by a
black hole in a thermal bath is thermodynamically rever-
sible, so that the total entropy remains unchanged. In
other words (and not so surprisingly), the process in
which a black hole immersed in a thermal bath accretes
or emits a small net amount of radiation becomes reversi-
ble only when it is carried out arbitrarily slowly.

(117)

We may regard Eq. (118) as an expression for the amount
of information that is destroyed due to the formation and
complete evaporation of the black hole. It is not entirely
clear how to interpret the ultraviolet divergence in this
formula, since the amount of lost information should be
finite. Presumably, in a complete description of the eva-
poration process, there will be some quantum fuzziness in
the endpoint, and hence in the position of the global hor-
izon. It then seems plausible that 5 would be replaced by
a (small) characteristic time scale for the final quantum-
mechanical transition that returns the quantum fields to
the vacuum state. Thus, we expect that the first term in

Eq. (118) will actually dominate over the cutoff-
dependent term, in the evaporation of a sufficiently large
black hole.

It is easy to understand the origin of the two terms in

Eq. (118),by referring to Eq. (69). From Eq. (78) we see
that the first term is just (N/6)pz evaluated at the end

point (where P=P„).As we have already discussed in

Sec. IV, e is the factor by which the modes emitted2~H

in the late stages of the process have been redshifted, rel-
ative to frequencies measured on 2 . It is the very
short-distance correlations between these modes just in-

side and just outside the horizon that are responsible for
the dominant contribution to the entropy in Eq. (118).
The subdominant second term in Eq. (118) arises from
the long-distance correlations between field modes inside
and outside the horizon.

The first term in Eq. (118) also has an interpretation in

terms of standard thermodynamics. Recalling the rela-
tion Eq. (106) between our normalization of energy and
the conventional normalization we see that Eq. (118) can
be reexpressed as

2Mconv
SFG T

+. . . (119)

in terms of the conventionally normalized mass that has
been emitted by the black hole during its lifetime. The

"Actually, this explanation does not exclude a possible extra
additive term on the right-hand side of Eq. {117)that is sublead-

ing for large L, both because the Hawking flux takes a short

while to turn on, and becomes the emitted radiation
"overshoots" (resulting in the emission of a negative energy

thunderpop at the end point). But it turns out that this poten-

tial subleading term is absent.

Equation (117}simply says that, at the end point, the to-
tal energy M that has propagated in matches the total en-

ergy 6,g of the Hawking radiation that has been emit-
ted. " The relation between M and L is independent of
the energy profile of the incoming matter, because the
temperature of the black hole is independent of its mass.

At the end point, the black hole entropy goes to zero,
so we readily find the fine-grained entropy to be

N 2M 4M
SFo =SaH+S„o=— +ln

2
. (118}

6
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factor of 2 in Eq. (119) arises because the emission of
thermal radiation into cold empty space is an irreversible
process [17]. (This factor becomes (D+1)/D in D
dimensional space; to compute it we observe that the en-
tropy S of a relativistic ideal gas is related to its energy E
by S=[(D+1)/D]E/T. In three dimensions, —' is

modified by "grey-body factors" [18], but there are no
such factors in the RST model. }

While this factor of 2 agrees with thermodynamic ex-
pectations, that it appears in the fine grain-ed entropy is
nonetheless intriguing. We have found that if a black
hole forms from collapse and then evaporates, the fine-
grained entropy of the emitted radiation is (approximate-
ly) twice as large as the Bekenstein-Hawking entropy of
the black hole that initially formed. We might have ex-
pected, instead, that the amount of quantum-mechanical
information that is lost due to the collapse of a pure state
is correctly quantified by San, as it is often presumed [2]
that the number of distinct quantum states from which
the black hole could have formed is exp(San}. Then the
extra factor of two in the coarse-grained entropy of the
emitted radiation would not be due to an intrinsic loss of
information; the fine-grained entropy would be only half
as large as the coarse-grained entropy, because of subtle
correlations among the quanta. Evidently, the radiation
outside the horizon is so thoroughly entangled with the
degrees of freedom behind the horizon that virtually all
of its thermodynamic entropy can be attributed to corre-
lations with the fields behind the horizon, and hence to
"lost information. " Indeed, we can attribute all of the
thermodynamic entropy to the exponential redshifting of
the modes near the horizon, which, as we noted above, al-
lows shorter and shorter wavelength modes to make a
contribution to the fine-grained entropy as the black hole
evolves.

Of course, we can make the mass M in Eq. (118) as
large as we please by maintaining the black hole for a
long time; we just send in a continuous flux of matter that
compensates for the outgoing Hawking flux. And we can
choose the infalling matter to be in a pure coherent state,
with SFG=0. It is clear, then, that there is no limit to
the amount of information that can be destroyed by the
black hole, or in other words, no limit to the degree of en-
tanglement of the fields outside the global horizon with
those inside, a conclusion that was already stated in Sec.
IV.

The subdominant logarithmic term in Eq. (118) arises
from the. long-distance correlations of the quantum fields
outside the horizon with those inside. This term indi-
cates that the amount of missing information is even
greater than naive thermodynamic expectations can ac-
commodate. It would be satisfying to find an interpreta-
tion of the logarithmic term in thermodynamic language,
but we know no such interpretation.

VII. THE SECOND LAW

dxH

dxH

8+0
a a,n

1 f + 1

A,
( ~)—

4(x~ )
(120)

in the second equality we have used the Eq. (15) satisfied
by 0 in the Kruskal gauge. Recalling that T~++ trans-
forms as a tensor, we may reexpress this condition in cr

coordinates as

C(o~)
e

—A.L (121)

creasing [2]. According to this conjecture, although en-

tropy can disappear behind the horizon, the increase in
the area of the horizon always compensates (and typically
overcompensates) for the lost entropy. Similarly, the
emission of Hawking radiation causes the horizon to
shrink, but the decrease in horizon area is always com-
pensated by the entropy of the emitted radiation.

We want to examine whether this conjecture holds in
the RST model. To show that Bekenstein's conjecture is
correct, we need to attach a precise meaning to the no-
tion of the "entropy outside the black hole. " Our propo-
sal is that the entropy outside is SFG+Szz. Bekenstein's
conjecture then becomes the statement that the quantity
S„,given by Eq. (115) is nondecreasing. This expression
depends on the short-distance cutoff 5 that we introduced
by smoothing the apparent horizon. But since the
cutoff-dependent term is just an additive constant,
changes in the entropy are not sensitive to the cutoff, at
times after the formation of the black hole and before the
end point of its evaporation.

Our task is to determine whether there is any energy
density profile of the incoming matter for which S„,can
decrease as the black hole evolves. We continue to as-
sume, as in Sec. VI, that the incoming matter is in a
coherent state built on the asymptotic vacuum state at

, and that no infalling matter reaches the boundary of
the spacetime before the global event horizon. Under
these assumptions, we will show that the second law is
valid.

To find the time evolution of S«, in Eq. (115), we will
need to know how L=0&—oz evolves, and hence how
the position (orr, o~) of the apparent horizon evolves.
Since the apparent horizon is defined by the condition
8+0~~=0, the trajectory x~(xrr ) of the apparent hor-
izon in Kruskal coordinates satisfies

Bekenstein conjectured that a generalized second law
of thermodynamics applies to processes involving black
holes, so that the sum of the entropy outside the black
hole and the intrinsic black hole entropy is always nonde-

where we have used Eq. (71), and have expressed the re-
sult in terms of the critical (thermal) flux «„=4'A, . We
note that the trajectory of the apparent horizon is time-
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like if the incoming flux is less than the outgoing flux due
to Hawking radiation, and becomes null when the incom-
ing and outgoing flux match.

If we regard the total entropy as a function of the ad-

vanced time AH at the apparent horizon, then we may
use

dL d
(

+
) 1+ —i.l. @ —1OH 0'g e (122)

and Eq. (112) to see that the total entropy given by Eq.
(115)varies at the rate

(123)

which we have expressed in terms of

t (oH)
Ã(crH ) = (124)

The rate of change of this entropy is

g —
1 +e AL+ e

— .AL—.4
L

(125}

and the minimum value attained is

2

d

min

NA, 4
24 kL

-uL 1+ 4
A,L

—A,L
A,L

(126)
This expression is a monotonically decreasing function of
A,L that approaches zero as A.L ~ Oo. Thus, we see that
the total entropy is always increasing, in accord with the
generalized second law.

If the black hole is critically illuminated (8=1), the
mass radiated away is matched exactly by the incoming
matter flux. We see from Eq. (123}that the total entropy
nevertheless continues to increase for L ( ~ (as we al-
ready noted in Sec. VI). The entropy increase is due to
the ln(L /5) term in S„„the term arising from the long-
distance correlations of the quantum fields outside the
horizon with those inside. This term is consistent with
the property that a black hole can reach thermal equilib-
rium with a radiation bath, because the rate of change of
the entropy approaches zero as the age L of the black
hole gets arbitrarily large. Still, since the ln(L/5} term
has no clear thermodynamic interpretation, one is tempt-
ed to seek a reformulation of the second law in which the
long-distance contribution to the fine-grained entropy is
absent.

The obvious thing to try is to subtract the offending
term away, and define a new total entropy

S =S ——ln(new)
tot tot (127)

the ratio of the incoming flux to the thermal flux. As ex-
pected, the rate of change of the entropy does not depend
on the short-distance cutofF 5.

It is not hard to check that Eq. (123) is positiue for any
8)0 and any finite L )0. For a fixed L, dS„,/dcrH is
minimized when the incoming flux is

' —2

e
—2A.L

—A.L (128)

We see that the new entropy does not strictly satisfy the
second law. The entropy of a critically illuminated black
hole is constant, but the entropy decreases slowly if the
incoming flux is slightly below critical. On the other
hand, for A,L )&1 the violations of the new second law
are extremely mild, and occur only under very rare con-
ditions. The entropy is nonincreasing unless the flux lies
in the narrow range

T

A,L1)8) tanh =1—4e
2

(129)

Thus, for A,L ))1, the second law fails only when the flux
is tuned to be exponentially close to critical, and even
then the rate of decrease of the entropy is exponentially
small.

We caution the reader again that our derivation of the
second law applies only under special conditions. In par-
ticular, we have assumed that the incoming matter is in a
coherent state built on the inertial vacuum at S . When
more general quantum states are considered, our proof
breaks down. We will show in Appendix 8 that states
can be constructed that carry, locally, a large amount of
fine-grained entropy and a small amount of energy, or
carry negative energy density without accompanying neg-
ative entropy [13,15]. (Neither of these pathologies
occurs for the coherent states built on the inertial vacu-
um. ) Thus, the second law, as we have formulated it
here, can be violated at least for a while by tossing matter
in such a state into the black hole. Such examples show
that if there is a very general statement of the second law,
our expression for the total entropy cannot apply in all
situations.

Boltzmann's derivation of the macroscopic second law
of thermodynamics from the microscopic laws of statisti-
cal mechanics is one of the most satisfying developments
in the history of physics. We believe that there should be
an equally satisfying derivation of Bekenstein's general-
ized second law. In this paper, beginning from the rni-
croscopic laws of a specific two-dimensional theory, we
have given a derivation of Bekenstein's generalized
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second law which is applicable to a wide range of pro-
cesses. Yet we do not feel that our derivation has provid-
ed complete insight into why the generalized second law
is (often) valid, because we relied mainly on explicit cal-
culation, rather than general reasoning. Indeed, it is not
evident from our derivation that the generalized second
law will hold in variants of the RST model. Thus, while
we have made some progress, the true nature of
Bekenstein's generalized second law remains an outstand-
ing enigma.
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APPENDIX A

In our calculations of the fine-grained entropy in Sec.
III, we considered the quantum state of the scalar field to
be either the inertial vacuum or a vacuum" state that is
conformally related to the inertial vacuum. In this ap-
pendix we will generalize the results to include the case of
a coherent state built on such a "vacuum. " We will show
that the fine-grained entropy for the coherent state is the
same as the fine-grained entropy of the vacuum state.
Thus, if space is divided into two regions, building a
coherent state on the vacuum does not affect the degree
of entanglement of the quantum fields in the two regions.

To begin, we consider a toy problem that incorporates
all of the essential features of the general case. Consider
a system of two uncoupled harmonic oscillators, with as-
sociated annihilation operators a

&
and a2. Perform a Bo-

golubov transformation of the form

, (a|—ra2}

1
(Al}

(a2 ra 1 )

where y is real and y (1. This is the most general Bo-
golubov transformation in which a]' is a linear combina-
tion of an a, annihilation operator and an a2 creation
operator, up to phases that can be removed by adjusting
the phases of the a, , a 2, a 'f, and a).

We can now construct the "y vacuum" that is annihi-
lated by a 'f and a $; it is

Ir &=&1—r 2expr(aitat2}lo, l&10, 2&

=&1 y' g r"ln—, 1 &e ln, 2&,
n=0

(A2)

where I n, 1 & and
I n, 2 & denote the nth excitation of oscil-

lators 1 and 2, respectively. The easiest way to verify the
Srst equality in Eq. (A2} is to use the representation of
the commutation relations with

=(1—y') y y'"I. , »&., ll .
n=0

(A4)

This has the precise form of a thermal density matrix
with inverse temperature P given by

y
2 —e Pcs' (A5)

where co is the frequency of oscillator 1. The calculation
we have performed is just what is needed to proceed from
Eqs. (39}and (40) to Eq. (42}.

A general coherent state built "on top of" the state ly &

has the form

Iy, a&, a2&=N exp[a&(a'f ) ]exp[a2(a/) ]ly &, (A6)

where N is a normalization constant. This is the
1 2

unique normalized state that obeys the conditions

(a'f —a, }ly, a„a2& =0,
(a( a2)lr, a|,a2& =o

(A7)

Thus, we may regard the coherent state as the "vacuum"
state of the shifted annihilation operators

'tl~& =a]—a|, 82r =a( —a2 . (A8)

If we also define shifted annihilation operators

& =a—
1 1

Q)+ yQ2 Q2+ yQ)
a2 =a 2—,(A9)

1 —y 1 —y2

then the Bogolubov transformation relating & ~& 2 to &, 2 is

, (ai ra2 }—,

, (a2 rai },—
1 y2

(A10)

which has exactly the same form as Eq. (Al}. Since the
shifted operators obey the standard commutation rela-
tions, the same argument as before shows that the
coherent state can be expressed as

ly, a„a2&
=+1—y exp(yit, &z ) I0, 1 & I0, 2 &, (All)

where IO, 1 & and I0, 2 & are the ground states of the shifted
oscillators 1 and 2 (or, in other words, coherent states of
the unshifted oscillators). We can trace over the second
oscillator just as before and find

p,
' '—=tr2(ly, a„a2&&y,a,a21}

The conditions a ]'
I y &

=a $ I y &
=0 become two coupled

first-order differential equations satisfied by the coefficient
of I0, 1&|9I0,2&; the expression in Eq. (A2) is the unique
solution that yields a normalized state.

If we now trace over the state of the second oscillator
to find a density matrix for the first oscillator, we obtain

p] tr2( ly & & y I )

=a =aa&=, a2=
Ba

&
Bat

(A3) (A12)
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This density matrix has exactly the same form as Eq.
(A4), except that we are now expanding in terms of the
basis of states that have definite occupation number with
respect to the shifted oscillators. The coherent state den-
sity matrix, then, has exactly the same eigenvalues as the
vacuum density matrix, and it therefore also has exactly
the same entropy. Note that it is not quite correct to de-
scribe Eq. (A12) as a "thermal density matrix, " because
the eigenstates of the shifted number operator &,&, are
not eigenstates of the Hamiltonian H =boa ~a &.

Now we note that the case of two entangled oscillators
described above is all that we need to deal with when we
compute the fine-grained entropy for a free field. It fol-
lows from Eqs. (39) and (40) that

1
a = (a —e a ),

v1 —e

1
a =, (a —e a ),

v1 —e

(A13)

where lOM, j ) denotes the state that is annihilated by the
Minkowski annihilation operators a, and a2 . Equa-
tion (A14) is just a product of states of the form
l}'J=e ', aii J,aL~). The evaluation of the density
matrix p& in the right Rind1er wedge than proceeds as
above, and we find that it has the same eigenvalues for
the coherent state as for the Minkowski vacuum.

As our arguments in Sec. III show, the Minkowski vac-
uum still has the form Eq. (41) when expressed in terms
of the modes that are localized inside and outside a finite
region of space, and the general coherent state built on
the Minkowski vacuum still has the form Eq. (A14).
These statements remain true if we consider, not the Min-
kowski vacuum, but a state that is conformally related to
it. Also, the form Eq. (A14) applies in curved space as
well as in Hat space.

are operators that annihilate modes that are positive fre-
quency with respect to Minkowski time; az and al
denote the operators that annihilate the modes of Rindler
frequency co that are localized in the right and left
wedges, respectively. [The minus signs in Eq. (A13) arise
from the minus sign in the Klein-Gordon inner product
of two negative frequency modes. ] Thus, the expression
Eq. (41) for the Minkowski vacuum is a tensor product of
states that have just the form Eq. (A2), with y=e
Each field mode in the right Rindler wedge is correlated
with a particular mode in the left Rindler wedge; for each
such pair of modes, the entanglement of the state of the
right mode with the state of the left mode has exactly the
same form as the entanglement of oscillator 1 with oscil-
lator 2 in the above discussion.

Furthermore, a general coherent state built on the
Minkowski vacuum also has the property that it can be
factorized into a tensor product of correlated states for
pairs of modes. The general coherent state can be ex-
pressed as

l
Minkowski coherent )

We conclude, finally, that our formula Eq. (69) for the
fine-grained entropy outside the apparent horizon of a
black hole applies not just when the incoming quantum
state of the matter fields is the asymptotic inertial vacu-
um, but also when the quantum state is an arbitrary
coherent state built on the inertial vacuum.

A.PPKNDIX B

In our derivation of the generalized second law in Sec.
VII, we made some restrictive assumptions about the in-
coming matter. In particular, we assumed that the quan-
tum state of the matter is a coherent state built on the
asymptotic inertial vacuum state at 2 . In this appendix
we will examine what happens when this assumption is
relaxed. We will show that if more general quantum
states are allowed, the total entropy can decrease. Thus,
the second law can be violated.

The crucia1 point is that quantum states can be con-
structed that pack a large positive density of (fine-
grained) entropy without carrying a large energy density.
We can prepare matter in such a state, and allow the
matter to fall into a black hole. Then the fine-grained en-
tropy decreases sharply, but without any compensating
sharp increase in the black hole entropy. Hence, the total
entropy decreases.

Alternately, we can make the total entropy decrease
(momentarily) by simply sending negative energy into the
black hole. It can be arranged that the black hole shrinks
and loses entropy without a compensating increase in the
fine-grained entropy.

To demonstrate the existence of such states, consider
an initial state of left-moving matter than is in the "vacu-
um" state defined not with respect to the asymptotic iner-
tial coordinate 0+, but rather with respect to a diferent
coordinate x+(o+) In this. quantum state, the incoming
energy flux, expressed in the cr gauge, is [35]

where
+

GO

3(h')2 h"
4h' 2h

' 1/2
8x

d(x+ ) der+

(B2)

and the prime denotes differentiation with respect to o+.
[Here we have used the normalization convention of Eq.
(16), and have assumed that there are N massless scalar
matter fields. ] Note that the energy density is not neces-
sarily positive. In this "vacuum" the equation for the
trajectory of the apparent horizon, in Kruskal coordi-
nates, is

8+0
van+ H
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Thus, as in our previous analysis of coherent states built
on the o vacuum, the condition for "critical illumina-
tion" is 4=8„—:—,'A, ; when this condition is satisfied, the

incoming flux matches the flux of the outgoing Hawking
radiation, and the apparent horizon is null.

For this state, the expression Eq. (66) for the fine-

grained entropy outside of the apparent horizon becomes

N 1 dxH CRlt +H +8
+ln

dtrH «H

(B4}

This formula differs from our old expression Eq. (69) in

two respects. First, the aSne volume in the argument of
the logarithm in the third term is expressed in terms of
the x coordinate that is used to define the vacuum,
rather than the inertial or+ coordinate. Second, the term
that enters when we reexpress the cutoff in terms of the
inertial coordinates at the horizon is the conformal factor
of the metric in x coordinates. This differs from the con-
formal factor in 0. coordinates, which accounts for the
second term in Eq. (B4).

Now let us suppose that the function x +(o +) is chosen
so that the black hole is critically illuminated at a partic-
ular advanced time AH. At that moment, xH is instan-

taneously constant, as is the value QH of 0 at the ap-
parent horizon. Thus, it is easy to evaluate the rate at
which the fine-grained entropy is changing. Using Eq.

(74) we find

dSFG N 1 h
'

h+
dgH+ 6 2 2h x+ —x+ (B5)

It is clear from Eq. (BS) that we can make the rate of
change of S„olarge and negative by choosing x+(o +}so
that h' is large and positive. Furthermore, we may simul-

taneously arrange that h" is large, so that C(o+) in Eq.
(Bl) obeys the critical illumination condition. Finally,
under critical illumination, the black hole entropy is con-
stant, so that no increase in the black hole entropy com-
pensates for the decrease in the fine grained entropy, and
the Boltzman entropy outside the black hole is also de-
creasing. Hence, the total entropy decreases.

Another way to make the total entropy momentarily
decrease is to throw negative energy into the black hole.
Evidently this can be achieved by choosing h'=0 and
h") 0 in Eq. (Bl}. The black hole will then shrink and
decrease its entropy, but there will not in general be any
compensating increase in S„G.It is not clear, however,
how an analog of the Boltzman entropy should be defined
for these states that carry negative energy density.

A preliminary investigation of the properties of states
with the above properties indicates that such an imbal-
ance between entropy and energy cannot be sustained
indefinitely [48]. We expect that there are fundamental
limitations on the severity and duration of these viola-
tions of the generalized second law.
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