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The curvature coordinates T, Bof a Schwarzschild spacetime are turned into canonical coordinates
T(r), R(r) on the phase space of spherically symmetric black holes. The entire dynamical content
of the Hamiltonian theory is reduced to the constraints requiring that the momenta PT (r), Ps(r)
vanish. What remains is a conjugate pair of canonical variables m and p whose values are the
same on every embedding. The coordinate m is the Schwarzschild mass and the momentum p the
difFerence of parametrization times at right and left infinities. The Dirac constraint quantization
in the new representation leads to the state functional 4(m;T, R] = @(m) which describes an
unchanging superposition of black holes with diferent masses. The new canonical variables may be
employed in the study of coQapsing matter systems.

PACS number(s): 04.70.Dy, 04.60.Ds, 97.60.Lf

I. INTRODUCTION

A. Context

General relativity was cast into canonical form by
Dirac [1], and by Arnowitt, Deser, and Misner (ADM)
[2). Inside asymptotic regions, Hamiltonian dynamics is
entirely generated by constraints. Their imposition as
operator restrictions on the states yields the Wheeler-
DeWitt equation [3,4]. DeWitt realized that by keezing
all but few degrees of freedom of a cosmological model
by symmetry, one can obtain exactly soluble models of
quantum gravity [4]. Misner and his school turned this
idea of minisuperspace quantization [5] into a systematic
exploration of quantum cosmology [6,7].

Minisuperspace techniques were extended to midisu-
perspace quantization of infinitely dimensional models.
The first system treated in this manner was the cylin-
drical gravitational wave [8]. It became clear that the
Wheeler-DeWitt equation is often unwieldy and diKcult
to interpret. For cylindrical waves, the smitch to an ex-
trinsic time representation changed the Wheeler-DeWitt
equation into a functional time Schrodinger equation.
Gravity assumed the form of a parametrized field the-
ory [1,9].

Things did not work that way for other infinitely di-
mensional systems. The most important of these is the
gravitational collapse of a spherically symmetric distri-
bution of matter. Berger, Chitre, Moncrief, and Nutku
(BCMN) set this problem in the Dirac-ADM midisuper-
space formalism. In their classic paper [10] they studied
a spherically symmetric massless scalar field coupled to
gravity. They did not succeed in finding an extrinsic
time representation. Instead, they reduced the action
to a privileged foliation characterized by the vanishing
"radial" momentum. Their reduced Hamiltonian did not
quite reproduce the field equations. This was found and
corrected by Unruh [11].

The BCMN model opens a canonical route to the study
of Hawking's radiation [12,13]. A standard semiclassical

analysis of the Hawking eff'ect starts with a black hole
being formed by the gravitational collapse of classical
matter. One studies a field that propagates on this back-
ground. The modes that disappear below the horizon are
averaged out, and the thermal radiation escaping to in-
finity is described by a density operator. The Hawking
radiation leads to the evaporation of the black hole. No
general agreement has been reached on what is the final
state of this process. The black hole may evaporate com-
pletely, or leave a remnant. If it evaporates completely,
the question remains what happens to the information
which got initially trapped below its horizon.

Midisuperspace canonical approach has two potential
advantages over the standard description. First, it goes
beyond the semiclassical approximation. Second, unless
one encounters a Cauchy horizon, all information is reg-
istered in the canonical data on a Cauchy hypersurface.
One can study what happens inside black holes and hom
they approach the singularity. However, to make use of
this advantage, one must insist that the foliation covers
all available spacetime, and that time evolution is not ar-
tificially arrest'. .d. The BCMN slicing does not meet this
condition. A careful study of the BCMN model in its re-
lation to Hawking's radiation was undertaken by Hajicek
[14,16]. He generalized the model to other spherically
symmetric fields, and paid special attention to the prop-
erties of the apparent horizon and choice of slicing.

One can easily see that the BCMN slicing is problem-
atic already for primordial Schwarzschild black holes. In
vacuo, the BCMN slices coincide with those of constant
Killing time T. They cover only the static regions of
the Kruslml diagram, and never penetrate the horizon.
Canonical treatment of a complete Schwarzschild space-
time was attempted by Lund [17]. To get below the hori-
zon, Lund used the Lamaitre slices, or the slices of con-
stant B( 2M. He did not succeed in covering the whole
Kruskal diagram by a single foliation, or relate the state
of the Schwarzschild black hole on T = const slices to
its state on the Lamaitre slices or the 2M ) R = const
slices. The best solution mould have been to work in
the functional time representation, but Lund presented
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a proof that the extrinsic time representation does not
exist for vacuum Schwarzschild black holes.

Interest in primordial black holes has been revived
by a surge of activity on quantization of dilatonic black
holes (see recent reviews by Gidddings [18], and by Har-
vey and Strominger [19]). Starting from this program,
Gegenberg, Kunstatter, and Louis-Martinez [20,21] dis-
cussed canonical quantization of Schwarzschild black
holes within conformally invariant formulation of Ein-
stein's theory [22]. Along different lines, Thiemann
and Kastrup [23—26] discussed canonical quantization of
Schwarzschild and Reisner-Nordstrom black holes mostly,
though not entirely, within Ashtekar's canonical formal-
ism.

Keeping this background in mind, let us state the goals
and results of this paper.

B. Results

We cast the classical and quantum dynamics of pri-
mordial black holes into geometrically transparent and
explicitly soluble form by choosing a natural canoni-
cal chart on the phase space. Our method amounts to
finding a functional extrinsic time representation anal-
ogous to one which exists for cylindrical gravitational
waves. I.und's no-go theorem is transcended because the
representation does not satisfy its unnecessarily strong
premises.

Geometrodynamics of Schwarzschild black holes is gov-
erned by the Dirac-ADM action restricted to spacetimes
with spherical symmetry. The spatial metric g i, (z') on a
symmetric hypersurface is entirely characterized by two
functions A(r) and R(r) of a radial coordinate r In.
canonical formalism, these are accompanied by the conju-
gate momenta Pg(r) and P~(r). We choose phase space
variables which have an immediate geometric meaning.
The hypersurface action yields the familiar Hamiltonian
and momentum constraints equivalent to those derived
by BCMN [10].

Proper understanding of the canonical formalism re-
quires a careful handling of boundary conditions. One
must specify how fast the canonical data and the lapse-
shift multipliers fall at infinities. The requirement that
A can be freely varied within its falloH' class mandates
the addition of the ADM boundary term to the hyper-
surface action. Unfortunately, the introduction of this
term prevents one fram freely varying the lapse function
at infinities. This defect is amended by parametrization,
which makes the action dependent on two more variables:
namely, on proper times measured by static clocks at in-
finities. All the variables in the parametrized action can
be freely varied, and their interconnection at infinities
acquires the status of natural boundary conditions. This
version of the canonical action principle is vital for our
treatment of black hole dynamics.

The crux of our approach is the introduction of the
Killing time T(r) as a canonical coordinate. The way
in which T(r) enters the formalism is rather delicate.
To begin with, one restricts attention to the space of
solutions. In a given Schwarzschild spacetime, one can

We exhibit the generating functional of the canonical
transformation &om the old to the new canonical vari-
ables. Because T'(r) has an infinite jump on the horizon,
the canonical transformation has there a singularity.

We can now reimpose the constraints, and evolve
the variables by Hamilton equations. Under these
circumstances, the mass function becomes a position-
independent constant of motion. Inversely, one can show
that the Hamiltonian and momentum constraints can be
replaced by a much simpler set of conditions,

M'(r) = 0, PR(r) = 0,

on the new canonical variables.
The canonical structure we have derived holds only

when the lapse function in the ADM boundary action
is considered as a fixed function of the label time. Af-
ter parametrization, the action becomes dependent on a
pair of proper times 7y at infinities, and it no longer
has a canonical form. It is surprising that without
adding any more variables to the parametrized space
7+,7,M(r), PM (r), R(r), PR(r), one can introduce on it
a canonical chart

~ p T(r)»T(r) R(r) PR(~)

The final canonical variables (3) have a simple physi-
cal meaning. The canonical pair R(r), PR(r) reinains
unchanged. The new canonical coordinate T(r) is the
Killing time, and its conjugate momentum P2 (r) is the
mass density M'(r) The c—urvatur. e coordinates T, R
in spacetime are thereby turned into canonical coordi-
nates T(r), R(r) on the phase space. Simultaneously, the
constraints are transformed into the statement that the
momenta PT (r) and PR(r) canonically conjugate to the
embedding variables T(r) and R(r) vanish:

PT (r) = 0, PR(r) = 0. (4)

specify a hypersurface by giving the familiar curvature
coordinates of its points as functions of a radial label r.
The Schwarzschild geometry induces on the hypersurface
the canonical data which satisfy the constraints. From
those data, one can locally determine the Schwarzschild
mass M of the embedding spacetime, and the rate T'(r)
at which the Killing time changes along the hypersur-
face. Though T(r) becomes infinite on the horizon, its
change across the horizon can be consistently inferred
from smooth canonical data.

Next, one forgets how the expressions for M(r) and
T'(r—) were obtained, and turns them into definitions

of two new sets of dynamical variables on. the phase
space. At this stage, the canonical data no longer need
to satisfy the constraints, and the mass function M(r)
can in principle depend on r. The remarkable feature
of the new variables is that they form a canonical pair:
PM(r) = T'(r) —More.over, by retaining the curvature
coordinate, R(r) m R(r) = R(r), but modifying its con-
jugate momentum, PR(r) ~ PR(r), one can complete
M(r) and T'(r) —into a new canonical chart

M(r), PM(r) = T'(r), —R(r) = R(r), PR(r) . (1)
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The Hamiltonian is a linear coxnbination of these con-
straints. The true ADM Hamiltonian disappeared in the
transformation process to the final canonical chart (3).
This phenomenon can be understood as a result of time-
dependent canonical transformation.

Because the Hamiltonian weakly vanishes, the remain-
ing canonical variables m and p are constants of motion.
The canonical coordinate m is the Schwarzschild xnass
of the black hole. The meaning of p is more esoteric: p
characterizes the difFerence between the parametrization
times at the left and right infinities. The comparison of
these two times is xnade possible by connecting the infini-
ties by hypersurfaces of constant Killing time. Once set,
this difFerence is preserved because the two parametriza-
tion clocks run at the same rate. This explains why p
is a constant of motion. While it has always been sus-
pected that the variable conjugate to the Schwarzschild
mass is some sort of proper time, the correct interpreta-
tion of this quantity eluded previous investigators, likely
because they did not pay enough attention to the role of
parametrization, and to how the two asymptotic regions
are connected with each other.

The parametrized action can be reduced to true dy-
naxnical degrees of &eedom, and the dynamics generated
by the unparametrized action can be compared to that we
have just described. It transpires that our parametrized
viewpoint corresponds to performing a tixne-dependent
canonical transformation to "initial data. "

With the new polarization (3) of the phase space,
the Dirac constraint quantization of primordial black
holes becomes straightforward. The state functional
@(m; T, R] of the system is reduced by the constraints
to an embedding-independent function @(m) of the mass
parameter m. Such a state function describes a super-
position of primordial black holes of difFerent masses.
Once prepared, it stays the same on every hypersurface
T(r), R(r).

The curvature coordinates are ill behaved on the hori-
zon. However, once they are constructed from the canon-
ical data, one can easily transforxn them into Kruskal
coordinates by a further canonical transformation.

Primordial black holes, despite all the care needed for
their proper canonical treatment, are dynamically triv-
ial. The true interest of the new canonical variables lies in
the possibilities which they open in the study of gravita-
tional collapse of matter. These questions are now being
pursued in collaboration with Hajicek and Romano.

II. SCHWARZSCHILD SOLUTION

A. Spacetime description

The recurrent theme of this paper is that canonical
formalism should be guided by spacetime intuition. We
thus start by summarizing what is known about spheri-
cally symxnetric solutions of vacuum Einstein equations.

Any such solution is locally isometric to the
Schwarzschild line elexnent

written in the curvature coordinates (T, R)). Here,

dO = de +sin ed/ (6)

is the line elexnent on the unit sphere. We are using
natural units in which the Newton constant of gravitation
G and the speed of light c are put equal to one: G = 1 =
c. The coefficient F(R) has the form

F(R) = 1 —2M/R,

T=, R=T — R
2M ' 2M (8)

where M is a constant. The curvature coordinate R is
invariantly defined by the requirement that 4+R2 be the
area of the two-spheres S2: T = const, R = const which
are the transitivity surfaces of the rotation group. The
vector field 8/BT is a Killing vector field of the metric
(5). It is orthogonal to the hypersurfaces T = const of
the Killing time T.

For M = 0 the spacetime is fj.at. Solutions with M ) 0
describe black holes, solutions with M & 0 correspond to
naked singularities. We lixnit ourselves to solutions with
M)0.

As R ~ oo, the line element (5) becomes asymptot-
ically fiat. At R = 2M, the solution (5) runs into a
coordinate singularity. The maximal analytic extension
of (5) &om the region R & 2M & 0 across R = 2M
describes a primordial black hole. The complete space-
tixne M is represented by the familiar Kruskal diagram
[27,28]. It is covered by four patches of curvature coordi-
nates which meet at the horizon F(R) = 0. Two regions
have R & 2M, and the Killing field 8/BT in them is
timelike. We call them the right and left static regions, I
and III. Two other regions have R ( 2M, and the Killing
field 8/BT in, them is spacelike. We call them the past
and future dynamical regions, IV and II. The past dy-
namical region begins and the future dynamical region
ends in a true curvature singularity at R = 0. '

The total Schwarzschild spacetime can be covered by
a single patch of Kruskal coordinates U and V. The lines
U = const are radial rightgoing null geodesics g, the
lines V = const are radial leftgoing null geodesics g.
Both U and V grow &om past to future. The horizon
is transformed to the lines U = 0 and V = 0. Their
intersection is the bifurcation point. The four regions
covered by curvature coordinates are as follows: right
static region I: R ) 2M: U & 0, V ) 0; left static
region III: R ) 2M: U ) O, V ( 0; future dynamical
region II: R & 2M: U ) O, V ) 0; past dynamical
region IV: R & 2M: U ( 0, V ( 0.

The Kruskal coordinates U and V are mapped into
curvature coordinates T and R by a two-to-one transfor-
mation. Anticipating the steps we shall need later in the
canonical formalism, we build this transformation in sev-
eral steps. The Kruskal coordinates are dimensionless.
We thus first scale the curvature coordinates T and R
into dimensionless coordinates T and R:

ds = F(R)dT +F— (R)dR +R dO (5)
Curvature coordinates are related to Kruskal coordinates
by
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UV = W(R):= (1 —R) exp (R),

V—= sgn(1 —R) exp (T) .
U

(9)

The T = const hypersurfaces appear in the Kruskal

diagram as straight lines passing through the bifurcation

point. The rightgoing branch g of the horizon is labeled

by T = oo, the leftgoing branch g by T = —oo. The R =
const lines are hyperbolas asymptotic to the horizon.

As R increases from R = 0 (singularity) to R = oo, the

function W(R) monotonically decreases from 1 to —oo.
Therefore, it has an inverse R(UV). This enables us to
solve (9) for the curvature coordinates:

T = ln iV] —ln iU], R = R(UV) . (10)

We see that the inversion U t-+ —U, V m —V leaves T
and R unchanged. Two points in the Kruskal plane are
labeled by the same curvature coordinates.

It is useful to describe the mapping (10) in a slightly
weaker form. Introduce the tortoise coonhnate

R* =R+
and combine T and R' into null coordinates

U=T-R', V=T+R'.
By multiplying and dividing the two equations (9) we
obtain

B. Geometrodynamical description

Geometrodynamics views a given spacetime as a dy-
namical evolution of a three-geometry. Let us apply this
viewpoint to the Schwarzschild solution (5). Take an ar-
bitrary spherically symmetric spacelike hypersurface and
let the spacetime metric induce on it the spatial geom-
etry g. Different hypersurfaces carry different induced
metrics. As we evolve the spacetime metric along a foli-
ation which covers the entire Kruskal diagram, we build
the Schwarzschild solution.

The simplest evolution is obtained along a one-
parameter family of hypersurfaces T = const cutting
across the regions I and III of the Kruskal diagram. The
geometry induced on all of these hypersurfaces is the
same: it is a wormhole geometry known under the naxne
of the Einstein-Rosen bridge. As we change T &om —oo
to oo, the geoxnetry does not change at all. It would
be more appropriate to speak in this case about geomet-
rostatics rather than geometrodynaxnics. This reBects
the fact that 8/BT is a Killing vector field, and the T =
const hypersurfaces are Lie-propagated by it. This evolu-
tion has a serious defect [29]: The spacelike hypersurfaces

U = exp( —U), V = exp(V).

The Schwarzschild line element expressed in the
Kruskal coordinates is everywhere regular, except at the
initial and 6nal curvature singularities at UV = 1.

T = const do not cover the entire Kruskal diagram, but
only the static regions I and III. The progress of time is
arrested at the bifurcation point through which aQ the
hypersurfaces pass. The hypersurfaces thus do not form
a foliation. Moreover, as the hypersurfaces proceed &om
past to future in region I, they recede &om future to past
in region III. The evolution does not proceed everywhere
&om past to future.

The dynamical regions II and IV which were not cov-
ered by the spacelike hypersurfaces T = const can be
covered by another simple family of spacelike hypersur-
faces, namely, R = const( 2M. Their geometry is again
a wormhole geometry, but this time it describes a homo-
geneous cylinder S2 x IR. As R progresses from 0 to 2M
in region IV, the cylinder opens up &om the line singu-
larity, its circumference grows larger and larger while its
length per unit T shrinks, and 6nally degenerates into a
disk of circumference 4zM as R approaches the horizon
R = 2M. In region II, as R decreases from 2M to 0, the
whole process is reversed. Spatial geometry is dynami-
cal in regions IV and II. The described evolution is lo-
cally isomorphic to the dynamics of the Kantowski-Sachs
universe [30]. Unfortunately, the foliations 0 ( R =
const ( 2M are asymptotically null at infinities, they ap-
proach the horizon for R + 2M, and again, they do not
cover the whole Kruskal diagram. What they miss are
exactly the static regions.

These shortcomings set our task. We want to study the
spatial geometry on a hypersurface which is spacelike and
cuts the Kruskal diagram all the way through: it starts at
left infinity, goes through the static region III, crosses the
horizon into a dynamical region, traverses it until it again
reaches the horizon, crosses the horizon to the static re-
gion I, and continues to right infinity. At in6nities, such
a hypersurface should be asymptotically spacelike, ap-
proaching some static hypersurface T = T = const at
left infinity, and in general some other static hypersur-
face, T = T+ ——const, at right in6nity. One can cover
the whole Kruskal diagram by a foliation of such hyper-
surfaces. Even better, one can admit all of them at once,
and work in many fingered tim-e formahsm.

III. CANONICAL FORMALISM FOR
SPHERICALLY SYMMETRIC SPACETIMES

The geometrodynamical approach does not start &om
the known Schwarzschild solution: it generates the
Schwarzschild solution by evolving a spherically symmet-
ric geometry. The evolution is governed by the Dirac-
ADM action. In this section, we introduce the Dirac-
ADM action, and carefully discuss the necessary bound-
ary conditions.

A. Hypersurface Lagrangian Iz

Take a spherically symmetric three-dimensional Rie-
mannian space (Z, g) and adapt the coordinates 2: of
its points z E Z to the symmetry: x = (r, 8, $). The
line element do on Z is completely characterized by two
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functions A(r) and R(r) of the radial label r:

do' =A (r)dr +R (r)dO (14)

R[ ] = —4A R 'R" +4A R A'R'

Again, dO is the line element on the»~it sphere.
Primordial black holes have the topology Z = 1R x S,

and r E K thus ranges &om —oo to oo. The coefFicients
A(r) and R(r) cannot vanish because the line element
must be regular. We take both of them to be positive,
A(r) ) 0 and R(r) ) 0. Then, R(r) is the curvature
radius of the two-sphere r = const, and do = A(r)dr is
the radial line element oriented from the left infinity to
right infinity.

Under transformations of r, R(r) behaves as a scalar,
and A(r) as a scalar density. This will simplify the mo-
ment»m constraint. Keeping this goal in mind, we have
avoided the usual exponential form of the metric coef-
ficients. It is important to keep track of the density
character of the fundamental canonical variables. We
shall always denote those canonical coordinates which
are scalars by Latin letters, and those which are scalar
densities by Greek letters.

The line element (14) leads to the curvature scalar

then depend not only on r, but also on t .The leaves of
the foliation are related by the familiar lapse function N
and the shift vector N . Because of the spherical sym-
metry, only the radial component N" of the shift vector
survives, and both N(t, r) and N" (t, r) depend solely on
the t, r variables.

The extrinsic curvature K g of the leaves is given by
the rate of change g g of the metric with the label time
g ~

1K s = ( —g s + N(~)s)) .
2N

(16)

Ig = (16m) N~g) ~ (K K s —K +R[g]). (20)

For the spherically symmetric line element (14), K s is
diagonal, with

K = N'A —(A —(AN") ),
Kss = NR—(R —R'N") t Kpp ——sin 8 Kss. (18)

The vacuum dynamics of the metric field follows &om
the ADM action

Sg (g, N, N (
= f dt f d r Lg

whose Lagrangian Lg is

Let us foliate a spherically symmetric spacetime JH by
spherically symmetric leaves Z, and label the leaves by a
time parameter t E K. The metric coe{Bcients A and R

(In natural units G = 1 = c, the Einstein constant
e = 8z'G/c4 reduces to 8vr. ) In a spherically symmet-
ric spacetime (14), (17), (18),

N~g~
t (K K —Kt) = gN sirrg (g( ——A+ (AN )')( —Rt R'N)R+ ( —R+R'N ) A

~
(21)

Integration over 8 and P gives the ADM action of a Schwarzschild black hole:

OO

Sg(R, A; N, N") = /dt dr —N
~
R( —A+ (AN')')( —R+ R'N') + —A( —R+R'N")

2

+N
~

ARR" +A—RR'A' — AR' + —A—
~

1, 1

2 2 )
(22)

We shall discuss the appropriate boundary terms after
passing to the Hamiltonian formalism.

I

density A is a scalar.
Equations (23) and (24) can be inverted for the veloc-

ities:

B. Canonical form of the action A = NR (RP~——APg) + (AN" )),
R = —NR PA+ R'N".

(25)

(26)
By dHFerentiating the ADM action with respect to the

velocities A and R we obtain the momenta

Pp = NR(R —R'N"—), (23)

Pg ———N A R —R'N" +R A —AN" ' . 24

They allow us to write the extrinsic curvature as a func-
tion of the canonical momenta:

K„„=AR (RPg —APp), Kss = PA.

Throughout this paper, we denote those canonical coordi-
nates which are spatial scalars by Latin letters, and those
which are spatial densities by Greek letters. The con-
jugate momenta always carry complementary weights.
Therefore, the momentum P~ conjugate to the scalar R
is a density, while the momentum P~ conjugate to the

By symmetry, the curvature of a normal section of Z
attains its extremal values Ki, K2, Ks (called princijicl
curvatures) for those sections which are either tangential
~~

or narmal J to the two-spheres r = canst The last.
equation enables us to express these principal curvatures
Kq ——K~I and K2 ——K3 ——K~ in terms of the momenta:
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Kii = K„"= A 'R (RP~ —AP~),

K~ ——Kg ——K~ ——R PA .—2 (28)

g.,(z ) = a., + r-'h. ,(n ) + 0-(r-~'+'~),
&'( ) =.-'I'( .)+0"(.-~'+ ~).

(34)

(»)

Inversely,

Pg ——R Kg, PR = RA(K~~ +Kg) . (29)

K:=Kg + Kg + K3 ——K = K~~ + 2K& .

The action (22) can be cast into the canonical form by
the Legendre dual transformation

Sg [A, R, Pg, PIt, N,¹]

This endows the canonical momenta with an invariant
geometric meaning. Note that Pg is proportional to K~,
but PR is proportional to the 8um of K~~ and K~, not to
K~~ itself. This sum also differs from the mean cumature

h.,(-n.) = h.,(n ), k"(-n.) = -k"(n') . (36)

Together with the canonical data, the lapse function and
the shift vector are assumed to behave as

N(z') = N+(n') +0 (r '),
¹(z')= N+(n') + 0 (r ')

(37)
(38)

Here, n:= x /r, and f(x ) = 0 (r ") means that f
falls ofF like r ", J' like r & + l, and so on for all higher
spatial derivatives. The leading term in g ~

—b g is of
the order r, and the leading term in p is one order
higher, r . The coeKcients h g and k are required to
be smooth functions on S2, and to have opposite parities:
h s(n') is to be even, and k s(n') is to be odd, i.e. ,

Ch dr PAA + PRR —NH —¹H„.31
~ ~

By this process, we obtain the super-Hamiltonian

at in6nity.
Because dr = n dx and d02 = r 2(b' s —n ns)

dx dzs, the spherically symmetric metric (14) can eas-
ily be transformed into Cartesian coordinates:

1 -2H:= —R PRPA + —R APA
2

+A RR" —A RR'A' + —A R' ——A
1 1

2 2

(R)
g., =A' n.n, +

~

—
~

(S..—n.n, ),4")
r 2g' = A-'n n'+ — (P' —n n') .
R (40)

and supermomentum

The general fallofF conditions (34) then determine the
behavior of the metric coeKcients R and A at infinity:

H„:=PRR' —APA . A(t, r) = 1+M+(t)r '+ 0 (r--~'+'l) (41)

The form of H„ is dictated by the requirement that
it generate DifflR of the scalars R and PA, and of the
scalar densities PIt and A. The minus sign in (33) is due
to the fact that the moment»m Pp is a scalar, and the
coordinate A a scalar density, rather than the other way
around.

The expressions (32) and (33) can be obtained from
those derived by BCMN [10] by a point transformation.

C. FallofF of the canonical variables

So far, we have paid no attention to the behavior of
the canonical variables A, R and PA, PR at in6nity. The
importance of the falloff conditions was pointed out by
Regge and Teitelboim [31,32], and their form refined by
many authors. We shall follow the treatment of Beig and
O'Murchadha [33].

Primordial black holes have two spatial in6nities rather
than just one. We shall formulate the falloff conditions
at right in6nity, and then state what the corresponding
conditions are at left infinity.

Let x be a global system of coordinates on Z which
is asymptotically Cartesian. Such a system is related to
the spherical system of coordinates r, 8, P by the standard
Bat space formulae. At r ~ oo, the metric g g and the
conjugate momentum p are required to fall ofF as

R(t, r) = r + p+(t) + 0 (r ') . (42)

R(r) =v+0 (r ').
Consistency then demands that the shift vector must also
asyxnptotically vanish, K+ ——0:

N" (r) = 0 (r ') . (44)

Unlike N", the lapse function cannot vanish at infinity. If
it did, the time there would stand still. Instead, N(t, r)
assumes at infinity an angle-independent value N+(t):

N(r) = N+(t)+0 (r '). (45)

Our next task is to determine the fallofF of the canoni-
cal momenta. The second fundamental form K pe dx
can be transformed into Cartesian coordinates by the
same procedure as the metric. By using (27) we get

Here, because of spherical symmetry, M+(t) and p+(t)
cannot depend on the angles n', but they can still de-
pend on t. Of course, M+ is the Schwarzschild mass as
observed at right infinity. The general fallofF conditions
allow R to difFer by the amount p+ (t) from r at infinity .
Because we want r to coincide with R at infinity, we im-

pose stronger fallofF conditions on R by putting p+ ——0:
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K„„dr +Kssd8 + K~~dp = AR (RP~ —AP~) dr +PJAdO

= (AR (RPR —APJA)n ns+ r Pp(b s —n ns)) dz dz (46)

From here we read the extrinsic curvature and, by refer-
ring back to the metric (40), find the canonical momen-
tum

p:= lgl
i (Kg —K )

=2r A Ppn n +R PR(b —n n). (47)

fall down is that the Schwarzschild solution itself can be
made to fall down that fast by an appropriate choice of
the hypersurface and its parametrization r at infinities.
By choosing the hypersurface to coincide with a T = t hy-
persurface outside a spherical tube R = Ro ——const, and
by labeling it there by the curvature coordinate, R = lrl,
we achieve that

This expression for p " is even in the angular variables.
This means that k ~ is even. The requirement that k ~

be odd implies that k must vanish, i.e.

A(t, r) =1+M~(t)lrl ', R(t, r) = lrl,
(58)

Ooo
(

—
d) P Ooo (

—(1+d)
) (48)

The same considerations apply at r m —oo. Taken
together, they imply the falloff conditions

PA(t, r) = 0, PR(t, r) = 0

for the Schwarzschild solution. We are thus &ee to re-
quire that our phase space variables satisfy (59) every-
where outside a corn.pact region.

A(t, r) = 1+M~(t) Irl '+ 0 (lrl '+'),
R(t, r) = Irl+O (lrl '),

(t, r) = o"(I.I-')
P~(t r) =o (Irl '+')

for the canonical variables, and the falloff conditions

(49)

(5o)

(»)
(52)

D. Boundary terms

Arnowitt, Deser, and Misner complemented the hyper-
surface action Sg by a boundary action Sgg at infinity:

(59)

w(t, r) =m, (t)+o (lrl-'),
N"(t, r) =O (lrl ')

(53)

(54)

A primordial black hole has two infinities, and hence
there are two boundary contributions

T'(t, ) = &+(t) + o (lrl ') (55)

The falloffs of the canonical data ensure that the Li-
ouville form

for the Lagrange multipliers.
Let us note again that R(r) approaches lrl at the rate

0 (lrl ') as r ~ koo. After we reconstruct the Killing
time T(r) from the canonical data, we shall prove a sim-
ilar result for the approach of the t = const foliation to
the T = const foliation:

Sgp ——— dt N+tE+t +N tE t (60)

Ey = (16m) dS 8 '(g g, —gs, )
$'2

(61)

which is given by an integral over a two-sphere S+ at
infinity. In the asymptotically Cartesian coordinates

Each of them is the product of the lapse function with
the ADM energy

dr (PpA+ P~R)
~ ~

(56) dS = r n sin8d8dg, lrl = n

(62)
is well defined. They also imply that the super-
Hamiltonian and supermomentum fall off as

a = o-(lrl-("&), II„=o-(lrl-&'+'&)

Equations (53), (54), and (57) ensure that the Hamilto-
nian is well defined. The canonical action Sg thus has a
good meaning.

The falloff conditions for spherically symmetric vac-
uum spacetimes may easily be strengthened. The only
necessary condition on how fast the canonical variables

I

n s = Irl '(b' s —n ns),

and the asymptotic form (34) of the metric yields

E~ = hm —lrl (A —1) = Mp(t). (63)

The ADM energy of a black hole is its Schwarzschild
mass.

The total action of a primordial black hole takes the
form

RIAPr„RPrt; NN"
i
= J dt J dr (PrrA+PrtR —NH —N'H )

—J dt(NrMr+ N M ). (64)
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Variations of the canonical variables should preserve
the prescribed falloffs. In particular, the leading term
in the variation of A is given by the variation of the
Schwarzschild mass:

bA~ = bM~ ~r~ + 0 ([r~ ) . (65)

N+(t)bM+(t)+N (t)bM (t). (66)

If there were no ADM boundary action, the variation
of the hypersurface action Sp with respect to A would
lead to the conclusion that Ny(t) = 0; i.e. , it would
freeze the evolution at in6nities. The ADM boundary
action is designed so that its variation with respect to
M+(t) exactly cancels the boundary term (66), and the
unwanted conclusion does not follow.

The ADM boundary action leads, however, to an in-
convenient caveat. Without it, the lapse and the shift
functions in the hypersurface action Sp can be freely var-

As emphasized by Regge and Teitelboim [31],without the
ADM boundary action this particular variation of the ac-
tion would lead to an inconsistency. On the other hand,
when the ADM boundary action is included, another in-
consistency would arise if one allowed the variation of the
lapse function at in6nities. It is therefore important to
treat Ny(t) as prescribed functions of t.

To see why this is so, let us identify those terms in the
Hamiltonian density NH + N"H„whose variations lead
to boundary terms. The variation of PR does not yield
any boundary term because there are no derivatives of
PR anywhere in the action. The variables P~ and R also
do not cause any trouble, because the falloff conditions
ensure that the boundary terms brought in by the varia-
tion of P~ and R safely vanish. The sole troublemaker is
the derivative term NRR'A 2A' in —NH. Its variation
with respect to A yields the boundary term

ied. When the boundary action is included. , the variation
of the total action S = Sg + Sgg yields

b~S= — dt M+ t bN+ t +M t bN

E. Parametrization at infinities

The necessity of 6xing the lapse function at in6nities
can be removed by parametrization. The lapse function
is the rate of change of the proper time v. with respect to
the label time t in the direction normal to the foliation.
Because N+(t) = 0, we can write

N+(t) = +&+(t) (68)

where r~(t) is the proper time measured on standard
clocks moving along the r = const worldlines at in6ni-
ties. By convention, we let the proper time at the left
in6nity decrease from the past to the future, to match
the behavior of the Killing time T in the Kruskal dia-
gram. This introduces the minus sign in (68) at —oo.

We now replace the lapse function in the ADM bound-
ary action by the derivatives of wy, (68), and treat ry(t)
as additional variables:

If we allowed N(t, r) to be varied at infinities, we would

get an unwanted "natural boundary condition" M+ ——

0 = M . This would exclude black hole solutions and
leave only a fIat spacetime. Therefore, in the variational
principle (64) we must demand that the values Ny(t) of
the lapse function at infinities be some prescribed func-
tions of t which cannot be varied. This means that the
lapse function N in our variational principle has fixed
ends.

S(APh„RPhh; NN"; rh. , r ]
= f dh/ dr (PhA+PhhR —NH —NH )

—
jdh

(M~d~ —M d ) . (69)

This rearrangement of the action is called the
parametrization at infinities. Notice that N~ still ap-
pears in the hypersurface part Sg of the action.

The variables ry(t) in the action (69) can be freely
varied. The result of their variation is a valid equation,
namely, the mass conservation

M+(t) = 0 = M (t) . (70)

The lapse function at infinities N~(t) can also be freely
varied, because it now occurs only in the hypersurfaee
action, and the super-Hamiltonian asymptotically van-
ishes.

The only remaining question is what happens under
the variation of A. As before, the variation of the hy-
persurface action Sg gives the boundary term (66). On
the other hand, the variation of the parametrized ADM
boundary action in (69) now yields

—~+(t)bM+(t)+~ (t)bM (t). (71)

Before parametrization, the variation of A at infinities,

I

i.e. , the variation of M~(t), produced merely an iden-

tity. After parametrization, the situation is difFerent;: the
variation of M~(t) relates r~(t) to N~(t) by (68). These
equations thereby follow as natural boundary conditions
from the parametrized action principle (69).

As we proceed, we shall at first pay little attention to
the ADM boundary action. We shall meet it again in

Sec. VII.

IV. RECONSTRUCTING THE MASS AND TIME
FROM THE CANONICAL DATA

A. Reconstruction program

In canonical gravity, we know the intrinsic metric and
extrinsic curvature of a hypersurface, but we do not have

any a priori knowledge about how the hypersurface is lo-

cated in spacetime. Suppose that we are given the canon-
ical data A, R, PA, P~ on a spherically symmetric hyper-
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surface cutting across a Schwarzschild black hole. Can
we tell &om those data the mass of the black hole? And
can we infer &om them how the hypersurface is drawn in
the Kruskal diagram?

Disregarding some subtleties concerning the anchor-
ing of the hypersurface at infinities, the answer to both
of these questions is yes. To arrive at the answers, we
start &om the knowledge that the hypersurface must ul-
timately be embedded in a spacetime endowed with the
line element (5). Let the hypersurface be a leaf of a foli-
ation:

T = T(t, r), R = R(t, r). (72)

ds = (N —A (N"—) ) dt +2A N"dtdr

++2gr2 + R2QQ2

we obtain a set of three equations:

P2 FTI2 + F—1RI2

ANFTT+FRR)
N —A(N) =FT —F R

The first two equations can be solved for N":

(74)

(75)

(78)

(77)

—FT'T + F R'R
FT/2 + F $ R/2 (78)

This solution N", together with A of Eq. (75), can be
substituted into the remaining equation (77), which can
then be solved for the lapse:

R'T —T'R
FT'2+ F ~R'2— (79)

The lapse function N should be positive. The transi-

The line element (5) induces an intrinsic metric and ex-
trinsic curvature on the hypersurface. By comparing
these quantities with the canonical data, we connect the
spacetime formalism with the canonical formalism. This
connection enables us to identify the Schwarzschild mass
M and the embedding (72) from the canonical data.

We can expect discontinuities at the horizon where dif-
ferent patches of the curvature coordinates T and R meet
each other. Indeed, T becomes infinite at the horizon.
We shall see, however, that the transition of T across
the horizon is well under our control, and can be pre-
dicted &om smooth canonical data. We can then easily
pass &om the curvature coordinates T, R to the Kruskal
coordinates U, V which are continuous across the hori-
zon. The direct reconstruction of the Kruskal coordinates
would be much more cumbersome.

To implement our program, we substitute the foliation
(72) into the Schwarzschild line element (5) and get

(FT2 F R )dt
+2( —FT'T + F R'R) dtdr

+( —FT' +F R')dr +RdA

By comparing this result with the ADM form of the line
element

Tl —R-~F-~P~~ . (80)

When we substitute this T' back into (75), we can calcu-
late F as a function of the canonical data:

R')t ''(PJ, l '
gAy ~R) (81)

Taken together, the last two equations express T' in
terms of the canonical data. Moreover, because we know
F in terms of M and R, (7), we can also determine the
Schwarzschild mass

2 2 2
(82)

Equations (80) —(82) accomplish our goal. Equation
(82) enables us to read the mass of the Schwarzschild
black hole &om the canonical data on any small piece
of a spacelike hypersurface. It does not matter whether
that piece is close to or far away &om infinities, or even
whether it lies inside or outside the horizon. Equations
(80) and (81) determine the difference of the Killing times
T(rq) and T(rz) between any two points, rq and rz, of
the hypersurface. To determine T(r) itself, we need to
know T at one point of the hypersurface, say, at the
right infinity. Equations (80) —(82) are the key to our
treatment of the Schwarzschild black holes. We shall now
explore their consequences.

B. Across the horizon

Our assertion that Eqs. (80) and (81) determine the
difference of the Killing times between any two points
of the hypersurface requires a caveat. On the horizon,
the coefficient F(r) vanishes, and the time gradient (80)
becomes infinite. We must show that we can propagate
our knowledge of time across the horizon.

A spacelike hypersurface must intersect both the left-
going and the rightgoing branches of the horizon. Un-
less it passes straight through the bifurcation point, it
has two intersections with the horizon. Inside the hori-
zon, the hypersurface lies either entirely within the future
dynamical region, or entirely within the past dynamical
region.

tion from (77) to (79) requires taking a square root. We
must check that the square root we have taken is positive.

First of all, the denominator of (79) is real and positive:
it is equal to A. We shall check that the numerator of
(79) is positive separately in each region of the Kruskal
diagram. Because the lapse function is a spatial scalar,
we first choose in each region an appropriate radial label
r: r = R inregionI, r = T inregionII, r = —Rinregion
III, and r = —T in region IV. Under these choices, the
numerator of (79) becomes T in region I, —R in region II,
—T in region III, and R in region IV. With the label time
going to the future, all these expressions are positive.

We now substitute the expressions (78) and (79) for N"
and N into (23) and calculate Pg . The time derivatives
T and R dutifully drop out, and we get the relation
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How does one recognize kom the smooth canonical
data where the hypersurfaces crosses the horizons One
looks at the points where the combination (81) vanishes.
The function (81) can be written as a product of two
factors:

If the hypersurface passes through the bifurcation
point, T(r ) changes continuously and remains finite. We
conclude that we can determine the passage of T(r)
through the horizon &om the canonical data.

R' PgI' = I+ x F, I'~ ..———6 (83) V. MASS FUNCTION AND TIME GRADIENT AS
CANONICAL VARIABLES

dT(R) 1 2 1
'R —Rp

(84)

for R close to Rp. From here we determine the transition
of T(R) across the horizon:

T(R) .= — ROAD ln ~R —Ro~ +—const.1

2
(85)

As expected, T becomes in6nite at the horizon, but in
a well-determined rate. The value of the "constant" is
determined by matching T(R) at one side of the horizon
to its given value.

At the horizon, at least one of the two factors must van-
ish.

To 6nd what branches of the horizon are described by
the factors I"y, we must determine the signs of several
quantities at the intersection of the hypersurface with the
horizon. This is easily done by inspecting the Kruskal di-
agram. We chose our radial label to grow &om left in6n-
ity to right in6nity. Therefore, inside the future dynam-
ical region T(r ) increases with r, T (r) & 0, and inside
the past dynamical region it decreases with r, T'(r) ( 0.
As the hypersurface is entering a dynamical region &om
the left static region, R(r) is falling, R'(r) ( 0, and as
it is exiting the dynamical region into the right static
region, R(r) is growing, R'(r) ) 0. If the hypersurface
passes through the bifurcation point, both R'(r) = 0 and
T'(r) = 0.

In the dynamical regions, F ( 0, and Eq. (80) tells
us that T'(r) and PJ, (r) have the same sign. There-
fore, P~(r) is positive in the future dynamical region,
and negative in the past dynamical region. From conti-
nuity, Pp(r) & 0 at intersections with the future horizon
V, negative at intersections with the past horizon h, and
zero when the hypersurface crosses the bifurcation point.
We already know that R'(r) ( 0 when the hypersurface
dives &om the left static region through the ) part of the
horizon into a dynamical region, and R'(r) ) 0 when it
reemerges through the & part of the horizon into the right
static region. Putting these facts together, we see that
the equation F~(r) = 0 defines the leftgoing branch of
the horizon, and F (r) = 0 defines the rightgoing branch.
When both F+(r) and F (r) simultaneously vanish, the
hypersurface goes through the bifurcation point.

We can now return to the problem of determining the
passage of time across the horizon. To be de6nite, let the
hypersurface cross the horizon from the future dynamical
region into the right static region at a point rp Rp )
0, PAp & 0. Because Rp & 0, we can choose R as a
radial coordinate on the hypersurface in the vicinity of
the crossing. The crossing condition F (ro) = 0 then
implies (APA)0 ——Ro, and Eq. (80) reduces to

Equations (80) —(82) were obtained from the known
form of the Schwarzschild solution, i.e., by implicitly us-

ing the Einstein equations. Let us now forget their hum-
ble origin, and promote the expressions for M(r) and

T'(r—) to definitions of two sets of dynamical variables
on our phase space. Note that M(r) is a local func-
tional of the canonical data, and as such it depends on r.
Indeed, prior to imposing the constraints and the Hamil-
ton equations on the data, M(r) does not need to be
constant.

We can interpret the function M(r ) as the mass con-
tent of the wormhole to the left of the two-sphere labeled
by r. The other function T'(r) te—lls us the rate at which
the Killing time T(r) falls with r. A remarkable feature
of these two functions is that they form a pair of canon-
ically conjugate variables. Anticipating the outcome of
the proof we are going to present, we denote the dynam-
ical variable T'(r) as P—M(r). Our density notation still
applies: by its construction (82), M(r) is a spatial scalar,
while

PM ——R I' APp (86)

is a scalar density.
Because the expressions for M(r) and PM(r) do not

contain PR, they have vanishing Poisson brackets with
R(r). Unfortunately, their Poisson brackets with P~(r)
do not vanish. We thus cannot complement the variables
M(r), PM(r) by the canonical pair R(r), Pg(r), and get
thereby a new canonical chart on the phase space.

Obviously, we need to modify the momentum P~(r) in
such a way that the new momentum, PR(r), will commute
with M(r) and PM(r), but still remains conjugate to

(87)

The only way of doing this is to add to P~(r) a dynamical
variable e(r) that does not depend on P~(r):

PR(r) = PJi(r) + O(r; R, A, PA]. (88)

(89)

To guess the correct 0 is tricky. Our guiding principle is
that the variables M(r), R; PM(r), PR(r) should form a
canonical chart whose canonical coordinates are spatial
scalars, and momenta are scalar densities. This deter-
mines the form of the supermomentum by the require-
ment that II„(r) generate Diff IR. The same requirement
had already 6xed the form of the supermomentum in the
original canonical variables. These considerations show
that
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We already know how the new canonical variables
M, PM, and R depend on the original canonical variables.
Therefore, by substituting expressions (81) and (82) and
(86) and (87) into (89) we are able to determine O. This
gives us the missing transformation equation for PR .

can be expressed as their linear combination:

P, = P '-(R 'P, II+ R6A '-II„) .

Our task is now clear: We must prove that the transi-
tion

PR ——P~ ——R APp ——R F APp
2 2

R—A I" ( (APJ()'(RR') —(APdi) (RR')' ) .

(90)

By inspecting the form of the constraints, we see that PR

I

A(r), Pg(r); R(r), P~(r) ~ M(r), PM(r); R(r), PR(r)

(92)

given by (81) and (82), (86) and (87), and (90) is a canon-
ical transformation. We prove this by showing that the
difference of the Liouville forms is an exact form:

(93)

The diHerence of the integrands is evaluated by straightforward rearrangements:

PA6A+ P~6R —PM6M —PR6R = h
I

APp + RR'ln— , I
+

I

—R6R»( 1, RR' —APp l t'1 RR'+ AP~ )
(94)

To prove (93), we integrate (94) in r and argue that the
boundary terms

1 RR' + APp

2 RR' —AP~
(95)

vanish.
At r + koo, the fallofF conditions imply that A ~ 1,

R + IrI, R' M +1, P~ = O(IrI '), and 6R = O(IrI ').
The boundary term is of the order

I

of the derivative term is interpreted through its principal
value. This proves (93) and identifies ur:

( 1, RR' —APs
ur[R, A, Pp] = dr

I
AP~+ RR'ln-

(97)

The functional (97) is well defined. The falloff of the
canonical variables at infinities implies

1
RhRln 1+ 2APp

6R R' APJ)

RR'- APRR' ln—, — APA + O(Ir—
I

+'
) (98)

=O(lrl ') (96)

and hence vanishes at infinities.
There are also boundary terms at the horizon, where

R6R is finite, but the logarithm becomes infinite. How-
ever, because of the absolute value within the logarithm,
the infinite boundary term inside the horizon matches the
infinite boundary term outside the horizon, and they can
be considered as canceling each other when the integral

I

The integrand of (97) thus falls faster than IrI i, which
avoids the logarithmic singularity. Close to the horizon
r = ro, the integrand of (97) behaves as ln Ir —roI, and
hence the integral from a given r to ro stays finite.

Equations (93) and (97) lead to the generating func-
tional of the canonical transformation (92). The gen-
erating functional A[P~, P~, M, R] emerges when we in-
troduce the old momenta and new coordinates as a new
coordinate chart on the phase space, rewrite (93) in the
form

dr Ar bPpr +Rr bRr — dr PM r bMr +PR r Rr =bOPp, P~, M, R, (gg)

and express in the new chart. This is done by calculating A ) 0 &om
the mass equation (82),

0:=— dr A r PA r + R r P~ r

+(u [A, PJ), , R, PR]

IRR'I

QR(R —2M) + PA2
(101)

T ~ R ~ ~I I n
RR

I

~ AP~ IOO 1 RR' —AP
(, 2 RR'+AP~ )

(100) and substituting it back into (100). The result can be
written in the form
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OO

O[P~, P~,. M, R] = — dr R(r)P~(r) + dr —RR'ln
2 QR(R 2M)+Ps2+P~

(102)

By comparing the coefficients of the independent varia-
tions bPA, bPR, bM, bR in (99), we generate the canonical
transformation (92) by 0:

A(r) = —bO/be(r), PM(r) = —bA/bM(r),
+(r) = b~/bP&(r) PR(r) = —bf}/bR(r) .

When resolved with respect to the new canonical vari-

ables, these equations give our old transformation equa-
tions (82), (86), (87), and (90).

One should perhaps note that both integrands of (102)
fall at infinities at a slow rate, as 0(lrl '), and hence
the generating functional 0 is singular. This happens
because we added to the well-defined functional ~ an ill-

defined term

R=R,

(112)

In these equations, F is an abbreviation for

F =1 —2MR (113)

VI. M(t, r} AS A CONSTANT OF MOTION

1
PR = PR+ —PM

2

+B F '(F 'R' —FPM ) ((RFPM)'(RR')

—(RFPM)(RR')') + FP—M .
2

dr PpA+ P~R (104)

The simplest way out of this difficulty is to let the mo-
menta fall ofF faster than 0(lrl '). We have seen this can
always be done for the Schwarzschild black hole, (59).

From the transformation formulae (81) and (82), (86)
and (87), (90), and the ioeak fallofF conditions (49)—(52)
we easily deduce the falloH' of the new canonical variables:

M(t, r) = M+(t) + 0 (lrl-'),
R(t, ") = lrl + 0 (l" l

'),
(t,.) = 0"(lrl-&'+ &)

(t,.) = 0"(lrl-~'+ &)

(105)
(106)

(107)

(108)

Recalling that PM(r) = T'(r), we ca—n integrate (107)
with respect to r and prove the earlier statement (55)
about the behavior of the foliation at infinities.

The old canonical variables are continuous (and suffi-

ciently differentiable) functions of r even across the hori-

zon. The transformation equations imply that the new
canonical coordinates M(r) and R(r) are also continuous
across the horizon, but this cannot be said about their
conjugate momenta. Equations (86) and (91) indicate
that PM and PR are both proportional to I" . While
the coefficients of I" are continuous, F goes to zero
on the horizon, and generically changes its sign. As a
result, PM and PR become infinite on the horizon, and
generically suer an infinite jump.

This means that when the canonical data are such that
E vanishes for some r (which, in particular, always hap-
pens for the Schwarzschild solution), our canonical trans-
formation becomes singular. In other words, u is not a
di8'erentiable functional of the old canonical variables.
One must use the new canonical variables with caution.

Except at the horizon, the canonical transformation
(92) can be inverted for the old variables:

Guided by the spacetime form of the Schwarzschild so-
lution, we have introduced the Schwarzschild mass M(r)
as a dynamical variable on our phase space. We shall now
prove that if the canonical data satisfy the constraints,
the mass function M(r) does not depend on r, and if they
also satisfy the Hamilton equations, M(r) is a constant
of motion.

Both statements follow by straightforward algebra. By
differentiating the definition (82) of M(r) with respect
to r, we find that M'(r) is a linear combination of the
constraints (32) and (33):

M' = A '(Z'Il-+a-'P, H„).- (114)

Because M(r) is a spatial scalar,

(M(.), e„(")j = M'(r) b(...'), (115)

I„=PRR'+ PMM'. (116)

The super-Hamiltonian H is then calculated from (114).
By using (109) and (110) we obtain

F M' R'+ FPMPR

(F 'R'2 —FPM2)
(117)

These expressions are useful for showing the closure of
the Poisson brackets:

(M(r), H(r') j = A 'a'a„b(r, r-').- (118)

Eq. (114) can be translated into the statement that
the Poisson bracket of M(r) with the supermomentnm
weakly vanishes.

Equations (114) and (91) express M' and PR as linear
combinations of the constraints. Inversely, we can ex-
press the constraints in terms of the new canonical vari-
ables. We already know that

A= (F R' —FPM )

PA = RFPM (F 'R' —FPM )

(109)

(110)
The same calculation in terms of the old variables is much
more cumbersome. One should note that the right-hand
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H(r) =O, H„(r) =O

are entirely equivalent to a new set of constraints,

M'(r) = 0, PR(r) = 0,

(119)

(120)

except on the horizon.
On the horizon, we need to be more circumspect. Let

the old canonical variables satisfy the constraints (119).
We know that such canonical data correspond to the
Schwarzschild solution, and hence there are at most two
values of r for which F = 0. From (114) and (91) we con-
clude that M'(r) = 0 everywhere, and PR(r) = 0 except

side of (118) does not contain the super-Hamiltonian,
only the supermomentum. Because H(r) generates the
time evolution, (118) means that M(r) is a constant of
motion.

From Eqs. (116) and (117) we can conclude that the
Hamiltonian and momentum constraints

at the horizon points. If we insist that P~(r) be a contin-
uous function of r when the data satisfy the constraints,
we conclude that PR(r) = 0 everywhere.

Inversely, let us impose the constraints (120) on the
new canonical variables. Except at the horizon points,
Eqs. (116) and (117) imply the old constraints (119). At
the horizon points, F(r) = 0, and PM(r) becomes infinite
in such a way that F(r)PM(r) stays finite [cf. (86)j. We
can again argue &om continuity that the new constraints
imply the old constraints even at the horizon points. In
this sense, the constraint systems (119) and (120) are
equivalent everywhere.

VII. THE TALE OF THREE ACTIONS

Written in terms of the new canonical variables
M, PM, R, and PR, the hypersurface action becomes

M) PM R PR ) N) N dt dr PM r M r + PR r R r —N r H r —N"H„r
i

(121)

The super-Hamiltonian H and supermomentum H are now functions (117) and (116) of the new variables. The
variation of (121) with respect to N and N" imposes the Hamiltonian and momentum constraints (119). We have
found that these constraints are equivalent to a new set of constraints, (120), which are simple functions of the new
variables. The action (121) is equivalent to a new action

Sp M) PM) R) PR j N ) N dt dr PM r M r + PR r R r

gr NMrM'r +NRrPRr (122)

in which the new constraints, rather than the old ones,
are adjoined to the Liouville form. This is done by a
new set NM(r) and N" (r) of Lagrange multipliers. The
falloff conditions (105) —(108) imply that the super-
Hamiltonian almost coincides with M' at infinities:

H(r) = pM'(r) + 0 (~r~
] +'

) . (123)

The asymptotic values of the multipliers N and NM are
thus related by

N~M(t) = yN+(t) . (124)

The hypersurface action must again be complemented
by the ADM boundary action (60). In the new variables,
the ADM energy (63) is the value of the mass function
M(r) at infinity, E~ = M~. The boundary action, like
the hypersurface action (122), is again a very simple func-
tion of the new variables:

I

S M) PM) R) PR j N ) N

= Sg M, PM, R, PR, N, N" + Sag M; N . (126)

It is transparent how the boundary action cancels the
boundary term obtained by varying M(r) in the hyper-
surface action.

The lapse functions N~(t) at infinities must be treated
as prescribed functions of the time parameter t. ARer the
constraints are imposed, the boundary part of the total
action survives as a true, t-dependent, Hamiltonian of
the black hole. We shall discuss this reduction process in
the next section.

The ends N~(t) of N(t, r) are freed by parametrizing
the action at infinities:

d,2[M; ~, v ] = —f dt(M~ ~ —M ). (127)

The total action

Sgg ——— dt N+M++N M

The total action is the sum

(125) S [M, PM, R, Pp7, r+ 7 r7, N, N ]
= Sg [M7 P~7 R7 Pp, N

7
N"] + Sag [M7 r+7 r]—

(128)
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depends now on two additional variables r~ (t), which can
also be freely varied. It is no longer a canonical action,
because ~+ and ~ do not come with their conjugate
momenta.

There are two entirely different ways in which the ac-
tion (128) can be brought into canonical form. The first
one is standard, the second one rather unexpected. Let
us explain the standard method first.

One can say that the action (128) has a mixed
Hamiltonian-Lagrangian form, and that ry (t) is a pair of
Lagrangian configuration variables. The purely Hamilto-
nian form should be reached by the Legendre dual trans-
formation which complements w~ by the conjugate mo-
menta x~. However, because the action is linear in the

C+ .—— x+ + M+ ——0,

C:= —vr +M =0.
(129)

They have vanishing Poisson brackets among themselves,
and with the hypersurface constraints M'(r) = 0
PR(r). The resulting constraint system is thus first class.
The new constraints C~ must be adjoined to the canon-
ical action by Lagrange multipliers N~ ..

velocities T~, as soon as one starts implementing this
program, one obtains two new constraints

S M) PM) R) PR) 7+) X+) 7 ) 7i; ™) X ) N+) X

dt dr PMrMr +PRr Rr —N rM'r —N rPRr

~ ~

~

+ dt sr+~+ + vr 7' —N+C+ —N C (130)

The variation of (130) with respect to the moxnenta m'~

leads back to Eq. (68). The new multipliers Ny thus are
what the symbols suggest: the lapse function at infinities.

The price we paid for the canonical form (130) was a
couple of new variables and a couple of new constraints.
It is gratifying to learn that one can get the same product
for free: The mixed variables M, PM, 7.+, ~ in the action
(128) can simply be transformed into a canonical chart.
It is even more gratifying that the new canonical variables
have a clean geometric meaning: they turn out to be
the Killing time T(r) and the mass density PT (r) along
the hypersurface, complemented by a canonical pair of
constants of motion.

To see how this comes about, notice that the action
(128) is linear in the time derivatives M(r), r'~. The ho-
mogeneous part of (128) thus defines a one-form

0:= dr PM r M r — M+b~+ —M bw 131

m = M, I (r) = M'(r) . (132)

Inversely,

r
M(r) = m+ dr'I'(r') . (133)

By introducing (133) into (131) we get

o- =1(r+ —r-)+ «PM(r)
i

~m

OO f T

dr
~

r+bI'(r) + PM(r) dr'bl'(r')
~—OO

+S(M r —M+r+). (134)

We shall now cast (131) into a Liouville form. First,
we replace the xnass function M(r) by the mass at left
infinity m, and by the mass density I'(r):

on (M(r), PM(r); r+, r ) . To rearrange (134), we write the identityT' F ) )

d 'P ( ') d 'hl'( ')
i

=P ( ) d '&I'( ')+&I'( ) d PM( '),
OO —OO —OO OO

(135)

which we then integrate from r = —oo to r = oo:

OO r
dr bl'(r) dr'PM(r') . (136)

We immediately see that

OO

8 =
i (r+ —r ) + dr'PM(r')

i
am

dr
~
r+ — dr'PM(r')

i

h'I'(r)
)

+ b(M r —M+r+) . (137)
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This shows that

m= M

p = (rr —r )+—f dr PM(r )

(138)

(139)

T(r) = Pr(r) = r+ —f dr'PM(r'),

PT(r) = —I'(r) = M— '(r)

which sends 0 into

(144)

(145)

and

I'(r) = M'(r),

Pr(r) = rr —J dr' PM(r')

is a canonical chart: Indeed,

(140)

(141)

O=pbm+ drP7 rbTr + bu,

with

tr = (M r —M+r+) +f dr Pr(r)P(r)

(146)

e = pdm+ f drpr(r)dr(r)

+ b(M r —M+r+)

(142)

(143)

= M (r —r+) —f dr J dr'PM(r')M'(r') .

(147)

differs &om the Liouville form only by an exact form.
When passing &om PM(r) = T'(r) —to T(r) we had

to fix a constant of integration. The Killing time (141) is
fixed by requiring that it matches the proper time w+ on
the parametrization clock at right infinity. By construc-
tion, T(r) is a spatial scalar and I'(r) a scalar density.
We would like to change T(r) into a canonical coordi-
nate, and I'(r) into a canonical momentum. This is done
by an elementary canonical transformation (in the sense
of Caratheodory [34])

The last equations, (146) and (147), show that the trans-
formation

r+ r M(r) PM(r) ~ m, p; T(r), PT (r) (148)

given by Eqs. (138) and (139) and (144) and (145) con-
structs a canonical chart from the originally mixed vari-
ables.

The transforxnation (148) casts the parametrized ac-
tion (122), (127), and (128) to an extremely simple
canonical form

S m, p; T, PT, R, PR , N, N" . = dt
~

pm+ dr (PT(r)T(r) + PR(r)R(r) ) ~

dt dr N rPT r +N rPRr (149)

PT (r) = 0, PR(r) = 0. (150)

The boundary action disappeared &om (149) and the
Hamiltonian took the forxn

H[N ]+H[N ]:=J drN (r)Pr(r)

+ drN" r PRr (151)

It is a linear combination of constraints, and as such it
weakly vanishes.

It is well known that the smeared super-Hamiltonian

H[N] = J dr N(r)H(r) (152)

[We gave the multiplier NM(r) a—new name N+(r). ]
In the transition &om (128) to (149) we have discarded
the total time derivative u. Such a procedure does not
change equations of motion, and it is used throughout
classical mechanics. When applied to canonical action, it
generates canonical transformations. Here we have used
it for bringing the action to canonical form.

Because the multipliers N+(r) and N" (r) are freely
variable, the action (149) enforces the constraints

H„[N"] = f drN'(r)H, (r) (153)

generates the change of the data when the hypersurface
is shifted by the tangential vector N" (r).

The Haxniltonian (151) generates a different type of
displacement. The Hamilton equations

T(t, r) = (T(t, r), H[N~]) = NT(t, r),
R(t, r) = (R(t, r), H[N~]) = 0

(154)

reveal how H[N+] displaces the hypersurface in the
Kruskal diagram. It shifts it along the lines of constant
R by the amount N+(t, r) of Killing time which difFers
&om one line to another. Similarly, H[N"] displaces the
hypersurface along the lines of a constant T in such a way
that the curvature coordinate R changes by the amount
N" (t, r). The Hamiltonian (151) thus generates space-
time difFeomorphisms in (T, R). The elaboration of this
general point can be found in Isham and Kuchar [35].

The new constraints (150) have a very simple forxn: a

in the Dirac-ADM action (31) generates the change of
the canonical data when the hypersurface is displaced by
the proper time N(r) in the normal direction. Similarly,
the smeared supermomentum
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number of canonical momenta is set equal to zero. Lo-
cally, any system of first-class constraints can be brought
to such a form [36), but it is usually impossible to find ex-
plicitly the necessary transformation. Our result demon-
strates that this is feasible for Schwarzschild black holes,
and that it can be done globally. The momenta which
are required to vanish are conjugate to the embedding
variables T(r) and R(r) which locate the hypersurface in
the Kruskal diagram.

There is a pair of canonically conjugate variables in the
action (149), namely, m(t) and p(t), which is not subject
to any constraints. However, there is no nonvanishing
Hamiltonian in (149) which would evolve these variables.
Both m and p are thus constants of motion. The mean-
ing of m as the mass at infinity is clear, and so is its
conservation. The significance of p is at first puzzling.
The momentum p was introduced by the transformation
(139). Because of (144), p can be interpreted as

&(t) = T-(t) —&-(t) . (155)

But should not the Killing time coincide with the
parametrization time also at left infinity, and should not
thus p simply vanish? Are we not missing a constraint?

The answer to this question is no. The times vg are
introduced by the parametrization process and their ori-
gins are entirely independent. The left infinity does not
know what the right infinity does. When we shift the
origins by diferent amounts a = const and cx+ ——const
at the left and right infinities,

variables and more constraints than are really necessary.
Also, it does not disentangle the variables which are con-
strained to vanish from those that survive as true dynam-
ical degrees of freedom. The last of our actions, (149),
sticks to the original number of variables and constraints,
and at the same time clearly identifies the true degrees
of freedom. We believe it provides the simplest canonical
framework for studying Schwarzschild black holes.

VIII. REDUCED CANONICAL THEORY

M(t, r) = m(t). (157)

By substituting (157) and PR(r) = 0 back into (126) we
obtain

Sm, p = dt pm — N+t +N t m~. 158

The form of the reduced action enabled us to identify

Each canonical action we have introduced predicts a
Hamiltonian evolution. To compare these evolutions, we
first reduce the actions to the same set of true degrees of
freedom. The action is reduced by solving the constraints
and substituting the solutions back into the action.

Let us start with the unparametrized action (126). The
constraint M'(r) = 0 tells us that only the homogeneous
mode of M(r) survives:

r (t) m r (t) + a. , r+(t) m r+(t) + n+, (156) p:= df' PM T (159)

the parametrized action is unchanged.
The origin of the Killing time T(r) is also arbitrary. We

have chosen it so that T(r) matches r+ at right inanity.
Once defined this way, T(r) can be used to propagate the
choice of the origin from right infinity to left infinity. [Af-
ter the constraints are imposed, and the Schwarzschild
solution is found, this propagation amounts to draw-

ing the straight line across the Kruskal diagram, from
the 7+(t) = 0 point at right infinity, through the bi-
furcation point of the horizon, and all the way up to
the left infinity. ] There is, however, no reason why the
parametrization clock at left infinity should have been set
to zero at this propagated origin. The variable p tells us
the difFerence between the origins of the parametrization
times at the right and left infinities. More precisely, p
is the value of the Killing time T(r) (which is matched
to the parametrization time at right infinity) at the ori-
gin of the parametrization time at left infinity. Once set,
the parametrization clock and the Killing time clock run
at the same pace, both of them measuring intervals of
proper time. Therefore, it does not matter when we read
their difference. This is the reason why p(t) of Eq. (155)
is a constant of motion.

To summarize, we have arrived at three difFerent
canonical actions describing the same physical system,
namely, primordial black holes. The unparametrized
canonical action (126) has a nonvanishing Hamiltonian.
The two parumetrized canonical actions that follow have
only constraints. The first of these, (130), has more

as the momentum canonically conjugate to m. The re-
duced action has one degree of freedom m and a true
time-dependent Hamiltonian

h(t, m, p) = A'(t)m, A(t):= N+(t) + X (t). (i60)

This Hamiltonian is proportional to m, with a coeKcient
A (t) which is a prescribed function of t. The Hamilton
equations of motion

m = Bh(t, m, p)/Bp = 0,

p = —Bh(t, m, p)/Brn = —A (t)

(161)

s[m, p, T] = f et (pm —Tm), (162)

with

(163)

indicate that xn(t) is a constant of motion, but p(t)
changes in time. This is consistent with (159) which iden-
tifies p with (T+ —T ) The—differen. ce of the Killing
times between the left and the right infinities stays the
same only if we evolve the hypersurface by the lapse func-
tion which has opposite values at Woo, i.e., by A = 0.

Next, reduce the parametrized action (130) by solv-

ing both the hypersurface constraints and the additional
constraints (129). We get
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The action (162) can be obtained from the action (158)
by putting

third one, m, is the single degree of freedom of a primor-
dial Schwarzschild black hole. The constraints are

+(t) = 7 (t) . (164) Pz (r) = 0, PR(r) = 0, (169)

With this replacement, the Hamilton equations of the
two actions are the same, (161). Unlike 3/(t), 7 (t) in
action (162) can be varied. By varying 7 (t), we obtain
once more the conservation of xn(t).

The reduction of our last action, (149), by the con-
straints Pz (r) = 0 = PR(r) is trivial. We obtain

and the Hamiltonian of the system vanishes: 6 = 0.
The state of the black hole on a hypersurface T(r), R(r)

at the label time t should be described by a state func-
tional 4(m, t; T, R over the configuration space. The
momenta are represented by the operators

p = i 8/—Bm, P &(r) = i b/b—T(r),
S m, p = dtpm. (165)

PR(r) = i b/bR(—r) .
(170)

n(t, m, p) = m(p-7-(t)) (166)

of the old coordinate I and the new momentum p, and
let it generate a canonical transformation from m and p
tom and p:

We have already observed that the Hamiltonian h(m, p)
vanishes, and that both m and p are constants of motion.

How are the actions (158) and (162) with a nonvanish-
ing Hamiltonian (160) related to the action (165)? By a
time-dependent canonical transformation. Let 7 (t) be a
primitive function of JV(t), as in (164). Treat 7 (t) as a
prescribed function of t. Take the function

The Dirac rules call for imposing the constraints as op-
erator restrictions on the state functional:

Pz(r) 4(m, t; T, R = 0, PR(r) 4(m, t; T, R = 0.
(171)

4 =%(m, t). (172)

The state must still satisfy the Schrodinger equation

Equations (171) imply that the state cannot depend on
the embedding variables:

p = 80(t, m, p) /Bm = p —7 (t), i 4(m, t) = h 4(m, t) . (173)

m = BA(t, m, p)/Bp = m.
(167) Because h = 0, (173) ensures that 4 does not depend on

t:

Time-dependent canonical transformations change the
Hamiltonian:

h = h+ 80(t, m, p)/Bt = 7 (t)m —m7 (t) = 0. (168)

Our particular generating function (166) turns our par-
ticular Hamiltonian (160) to zero.

Equation (167) reproduces the definition (139) of the
momentuxn p. The Hamilton equations (161) ensure
that the new momentum p of equation (167) does not
change in time. The same conclusion follows &om the
new Hamiltonian (168). The three actions generate the
same dynamics.

The canonical transformation (167) takes the canonical
momentum p at t and transforms it to the value which
it has at an instant when 7 (t) happens to vanish. The
Schwarzschild mass has the same value for any t. One can
thus view (167) as a transformation to "initial data. "

Similarly, one can view the transition from the un-
parametrized action (126) to our final action (149) as
a time-dependent canonical transformation prior to the
reduction.

IX. QUANTUM BLACK HOLES

C(m, t) = 4(m). (174)

M'(r) C = (M(r)%) =0 M(r) 4 = m%.

(175)

In the M(r) representation

O' M; t) = Q(m, t) b (M(r) —m), (176)

and we can continue working with the coefiicient Q(m, t).
This coefficient must satisfy the Schrodinger equation
with the reduced Hamiltonian (160):

The state function (174) describes a superposition of pri-
mordial black holes of different masses. There is not
much for it to do: once prepared, it stays the same on
every hypersurface T(r), R(r) and for all t.

Let us compare this description of states with that one
which follows from the unparametrized canonical action
(126). Let us choose the 4'(t; M, R representation. As
before, the PR(r) = 0 constraint implies that 4' does not
depend on R(r). The M'(r) = 0 constraint translates
into the statement that @ is an eigenfunction of M(r)
with a constant eigenvalue M(r) = m:

The canonical action (149) is a good starting point for
the Dirac constraint quantization. The new configura-
tion space is covered by the coordinates T(r), R(r), and
m. The first two coordinates locate the hypersurface, the

ijfr(m, t) = N(t)m Q(m, t) .

Its solution is

+(xn, t) = P(xn) exp ( —ixn7 (t)),

(177)

(178)
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where 7 (t) is a primitive function to lV(t), as in (164).
Unlike (174), the state function (178) oscillates in the 7
time.

We have seen that the classical transition Rom the
action (126) to the action (149) is achieved by a time-
dependent canonical transformation (166) —(168). We
want to show that the ensuing quantum theories are con-
nected by a time-dependent unitary transformation

m(t):= W(t) m(t) W-'(t),
&(t):=W(t) p(t) W (t) .

(181)

(182)

() = — m(t), h(t), = —[P(t), h(t) (183)

It is easy to show that the new Heisenberg operators form
a conjugate pair, and that they satisfy the Heisenberg
equations of motion

W(t) = exp (
—i7 (t)m) . (179)

with the new Heisenberg Hamiltonian
Let us start in the Heisenberg picture. The funda-

mental Heisenberg operators m(t) and p(t) of the un-
parametrized theory depend on time, and they satisfy
the Heisenberg equations of motion

( ) = —. p(t), h(t) ,
dt

(180)

with the Heisenberg Hamiltonian h(t) = h(t, m(t), p(t)) .
The Heisenberg states ~$0) refer to t = 0 and do not
depend on time.

Change now the fundamental Heisenberg operators
m(t) and p(t) into new fundamental Heisenberg oper-
ators m(t) and p(t) by a general time-dependent unitary

operator W(t) = W(t, m(t), p(t)):

h(t) = —. W '(t) + W(t) h(t) W '(t) . (184)

t

I+(t) ) = ~exp
I

-i «h(t)
I l&o)

o )

~@(t) ) = Texp
~

i —«h(t)
~ ~P, ).

o )

(185)

(186)

Here, T stands for the time ordering. We have two Schro-
dinger states, ~Q(t) ) and ]@(t)), corresponding to two
alternative descriptions, m, p, h(t) and m, p, h(t), of the
same quantum system. These states are related by

In the Schrodinger picture, the fundamental operators
m, p and m, p become time independent, while the state
~$0 ) is evolved by the respective Hamilton operators:

~i'(t) ) = Texp
~

i dth(t)
~

T—exp
~

i dth(t)
~

~Q(t) ) .
t' . ' - l t'.

) k o )
(187)

Apply this general scheme to our simple system. The
unitary operator (179) yields the Heisenberg fundamental
operators (181) and (182),

m(t) = m(t),
p(t) = p(t) + &(t)

(188)
(189)

i'(m) = @(m, t) = exp (i7 (t)m) Q(m, t) = P(m) .

(190)

This clarifies the relation between states (174) and (178).
The last of our three actions, (130), has two additional

constraints (129). The states now depend on two more
con6guration variables ~~. The hypersurface constraints

which are related exactly as their classical counterparts
(167). [For simplicity, we assume that 7(t = 0) = 0.]
The new Heisenberg Hamilton operator (184) vanishes
like the classical Hamiltonian (168). The Heisenberg
equations of motion (183) then guarantee that the
Heisenberg operators p(t) and m(t) are operator con-
stants of motion. By (189), the eigenvalues of the op-
erators xn and m are the same, rn = m.

The same situation can be described in the Schrodinger
picture. Equation (187) relates the states. In the m
representation,

reduce the states to the form Q(m, w+, r, t) The Ham. il-

tonian of the action (130) vanishes, and the Schrodinger
equation implies that Q cannot depend on t The reduc. ed
state function must still satisfy the (reduced) constraints
(129):

Cg Q (m, ~+, ~ ) = 0

( p i 8/87.p + m) Q(m, r+, v ) = 0. (191)

These can be viewed as two Schrodinger equations in the
proper times ~~. Their solution is the state function

g(m, r+, 7 ) = P(m) exp( —i m(7.+ —r )) . (192)

This is the same state as (178), but now written in terms
of the proper times 7~ rather than the label time t.
Though they describe it in slightly difkrent ways, our
three actions lead to the same quanta~~ dynamics.

Because primordial black holes have only one degree
of freedom m which is a constant of motion, their states
are rather simple. Still, there are some interesting
questions to ask. The state function (174) does not
change in time. However, one can construct signi6cant
hypersurface-dependent operators, such as the intrinsic
and extrinsic geometry of an embedding T(r), R(r), and
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ask what their expectation values are. We defer this con-
ceptual exercise to a later paper.

X. INCLUSION OF SOURCES

Schwarzschild black holes are empty vessels and what
can happen to them is rather limited. True dynamics
requires filling them with matter. This was the intent
of the original BCMN model. Matter can propagate on
the wormhole topology, or it can close the wormhole and
change the topology of Z into 1R . The latter case is

I

~~f4 ~I = —(s~) (193)

After the ADM decomposition and midisuperspace re-
duction by spherical symmetry, the Lagrangian action
takes the form

physically more interesting. The following discussion as-
sumes that the wormhole is closed.

We must now ask whether what we have done in the
vacuum can be repeated in the presence of matter.

Introduce a massless scalar field propagating in the
spacetime (M, p):

s~ly, xz, en.j=-'fd j ~ (x ~z (j, ~"y)*—iv~ '~V') . (194)

By introducing the momentum

~ = al,~]ay = N '~R'(y N"y'))—, (195)

S~[P,z; A, R; N, N"
]

dt dr m —NH~ —N"H~ . 196
0

In this process, we obtain the energy density

a4' = —X-'(R-'~'+ R'y")1

2
(197)

we cast the action (194) into canonical form by the Leg-
endre dual transformation:

One cannot, however, expect that this immediately
simplifies the constraints. The underlying physical rea-
son is that the xnatter field curves the spacetime in
which it propagates, and propagates in the spacetime
which it curves. This is reBected by the presence of
the metric variable A in the field energy (197) in the
Hamiltonian constraint (199). This variable is a function
(109) of the new canonical variables. The Hamiltonian
constraint is no longer equivalent to a simple equation
P~(r) = M'(r)—= 0, but it provides an implicit in-
formation about how the energy density M'(r) depends
on sources. The structure of this equation is presently
being investigated by Romano in collaboration with the
author. An analogous study of scalar fields coupled to a
cylindrical gravitational wave by Braham [37] shows that
resolution of such equations is feasible.

and momentum density

(198)
XI. KRUSKAL COORDINATES AS PHASE

SPACE VARIABLES

of the scalar field.
To couple the scalar field to gravity, we add the field

action (196) to the gravitational action (31). The varia-
tion of the total action with respect to N and ¹ leads to
Hamiltonian and momentum constraints on the extended
phase space:

H+H~ = 0, H„+H~ = 0. (199)

Again, up to a point transformation, this is the result
obtained by BCMN [10].

We arrived at the functional time forxnalism for the
Schwarzschild black hole by transforming the original ge-
ometric variables into new canonical variables (92), and
then into (148). Do the charms work in the presence of
sources?

The message of Sec. IV is that (92) is a canonical trans-
formation on the geoxnetric phase space irrespective of
any constraints or dynamics. Therefore, we can intro-
duce the new canonical variables exactly as in the vac-
un~ spacetime. [The transformation (148) needs to be
modified, to accommodate the changed topology of Z.]

Our main device has been the reconstruction of the
curvature coordinates T and R &om the canonical data.
This turned the curvature coordinates in 8pacetime into
canonical coordinates in phase space.

Unfortunately, the Killing time T becomes infi-
nite on the horizon, and the canonical transforma-
tion which leads to it has a corresponding singularity.
Prom the spacetime picture one knows that the entire
Schwarzschild solution can be covered by a single patch
of spacetime coordinates, the Krushd coordinates, which
are well behaved on the horizon. It is natural to ask
whether these coordinates, rather than the curvature co-
ordinates, can be interpreted as canonical coordinates.

The direct reconstruction of Kruskal coordinates from
the canonical data is cumbersome. It is better to reach
them via the curvature coordinates. EfFectively, we are
asked to reexpress the spacetime transformation (8)—
(13) as a point transformation on the phase space.

Because the spacetime transformation involves expo-
nentials, it is first necessary to turn the curvature coordi-
nates into dimensionless quantities. This is done by scal-
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ing on the phase space (m, T(r), R(r); p, PT (r), PR(r)).
The desired configuration space operation mimics (8):

By differentiating (13) with respect to T and R we
obtain the Jacobi matrix

T(r) =, R(r) =, m = m.T(r) R(r)
2m ' 2m

(200) 1
UT- ————U

2
UR = U—F '(&), (208)

The scaled curvature coordinates T and R are dirnension-
less, while m keeps the dimension of length.

It is important that the scaling (200) be done with
the Schwarzschild mass m at in6nity rather than with
the mass function M(r). Although these two variables
coincide on the constraint surface, the coordinates T(r)
and R(r) scaled with the mass function would not have
strongly vanishing Poisson brackets, and hence could not
be used as canonical coordinates on the phase space.

The configuration transformation (200) can be com-
pleted into a point transformation on the phase space:

1
VT- —— —V, Vg = VI—" '(R) . (209)

We took into account that

( ) =P-'(A) =(1-A-') '. (210)

PT-(r) = VT-(r)PV(r) + UT(r)PU(r)

The completion of (207) into a point transformation is
straightforward:

(201)p ( )
PT-(r)

2m

Ptl( )
2m

1
p = p —— dr (P7(r)T(r) + Plt(r) R(r) ) . (203)

m QQ

1
V r P~ r —U r PU r

PR(r) = VR(r)P~(r) + UR(r)P~(r)

= F '~ R(U)r)V(r))) —(V)r)Pv(r)

(211)

Inversely,

(204)

(205)

From here, we can 6gure out the dimensions of the mo-
menta. The unscaled coordinates T and R have the di-
mension of length, while the conjugate momenta PT and
PR are dimensionless. The scaling reverts these dimen-
sions: The scaled coordinates T and R are dimensionless,
while the scaled momenta PT- and PR have the dimension
of length. Scaling does not change the dimension of the
discrete variables: m and m, and p and p all have the
dimension of length.

Because the transformation Rom curvature coordi-
nates to Kruskal coordinates is double-valued, it is bet-
ter to write the transformation from Kruslml coordinates
to curvature coordinates. The con6guration part of this
transformation follows the pattern of (10):

T(r) = »IV(r)I —»IU(r)I R(r) = &(U(r)V(r)).
(207)

Pg(r) = 2m'(r),
PR(r) = 2mPR(r),

1
p = p+ — dr (PT (r)T(r) + PR(r)R(r) ) . (206)

m QQ

+U(r)Prr(r)) .

We assume that the Kruskal variables
U(r), PU(r), V(r), Pv (r) are continuous. The transfor-
mation equations (207), (211), and (212) reveal that
the curvature variables R(r) and PT(r) will also be con-
tinuous, whereas T(r) and PR(r) become infinite when

U(r) = 0 or V(r) = 0.
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