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Higher order correction to the Garfinkle-Horowitz-Strominger string black hole
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We study the order cx' correction to the string black hole found by Garfinkle, Horowitz, and
Strominger (GHS). We include all operators of dimension up to four in the Lagrangian, and use the
Seld rede6nition technique which facilitates the analysis. A mass correction, which is implied by the
work of Giddings, Polchinski, and Strominger, is found for the extremal GHS black hole.

PACS number(s): 04.70.Bw, 11.25.Db

In recent years, the string-black-hole solution found

by Garfinkle, Horowitz, and Strominger (GHS) has at-
tracted much attention [1—3]. They solved the leading a'
action of the low-energy effective theory for the heterotic
string. The solution describes a four-dimensional mag-
netically charged black hole coupled with the dilaton.

On the other hand, Giddings, Polchinski, and Stro-
minger (GPS) [4] have obtained the exact solution for
the black hole in the extremal limit. GPS construct an
exact conformal field theory (CFT) (so, the solution in-

cludes the efFects of all higher order a' terms), which
describes the throat region of the extremal GHS black
hole. One new feature of the GPS solution compared
with the GHS solution is the existence of a neutral throat.
The neutral throat is possible for the GPS solution, since
R = ~Q

—1~ I, where R is the throat radius and Q is
the monopole charge. However, the GHS solution does
not allow the neutral throat, since R = Q(= 2M). The
GPS solution is a solution of the full effective theory,
but the GHS solution is only a leading-order solution; so
any difference between these two solutions should come
&om the higher order terms in the eff'ective theory. Thus,
the GPS solution suggests that there exists a correction
to the black-hole mass due to the higher order o,' terms
to make the neutral throat possible. Unfortunately, the
GPS solution does not connect to the asymptotic region;
so, they cannot get the mass correction. The purpose of
this paper is to obtain the mass correction by a different
approach.

To obtain the correction, we shall keep O(a') terms as
well in the effective action and perform n' perturbative
expansion around the GHS background. Without the
detailed knowledge of the effective action, we will show
that the extremal GHS black hole gets a correction in
mass given by M = Q/2 —a'/40Q.

In order to show this result, we will thoroughly em-
ploy the field redefinition technique for analysis. This is a
useful technique to simplify higher order efFective actions.
Even though the field redefinitions change the action and
fields like the metric, it does not change the physics; for
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instance, the 8 matrix is invariant under the field re-
definitions by the equivalence theorem [5,6]. Therefore,
when one works with higher orders in the effective the-
ory, one can simplify the efFective theory by transforming
the original action into a simpler one by the field redef-
initions. Although this technique is illustrated for the
magnetically charged black hole, the technique itself is
general and is useful for the other "dirty" black holes.

In the extremal limit, the GHS solution is given by [1]
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8 = d x —ge ~ l:2+ a'l'. 3+ a'Z4 (3)

where 8; denotes the contributions of i derivative oper-
ators. Z2 is the leading order Lagrangian given by

l:z ——R+ 4(VQ) — F. —1

2
(4)

We need to include all operators, which contain at most
four derivatives because the effective theory expansion is
simply a derivative expansion for the above choice of the
field normalizations [7). The field normalization of A~
indicates that the gauge field has zero mass dimension.

in the Einstein metric. Here, the string metric g„„and
the Einstein metric g„„are related by g„„=ez&g„„. Ps,
the asymptotic value of the dilaton, is set to zero for
simplicity. The mass of the black hole is given by M =
0/2.

Our starting point is the most general action to the
order a' with all possible independent terms:
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This is difFerent f'rom the conventional normalization [8]
where A~ has one mass dimension [thus, F is an O(a')
term]. In other words, we implicitly made the n' rescal-
ing of A„, which implies that the charge Q is not small;
i.e. , Q is of order 1 instead of O(~a). The rescaling is
natural, since we consider a large mass black hole for the
o.' perturbation to be valid.

C3 and 84 are given by

l.3 ——aiF""E pE~„,

l;4 ——a2R Rp, p + ~3R Rp + a4R

(5)

+ asR" V'„PV'„P + usR(V'P) ' + apRV' P

+ a(&'4)'+ a.(&4)'&'0+ a .(&4)'

+ a i(iV'„F" )(V'"F„)

+ ai2F" F„pF F „+ais(F""F„„)

+ 0,&4R"" F»F~~ + aqsR""F„~F + ai6RF

+ aivF'(&0)'+ &isF'(&'4')

+ ais&, 4& 4'F"'F",. (6)

(L) (Y)I„„=d( B„„j+ —(0„„—0„„).4

O~ ) and O~ ) are the Lorentz and Yang-Mills Chern-
Simons forms, respectively. Since the Chem-Simons
forms linearly couple with B„„,the Chem-Simons forms
act as sources for H„„~; therefore, we may not be able to
simply set H = 0. However, for the spherically symmet-
ric metrics we examine below, the Lorentz Chem-Simons
form can be expressed as the exterior derivative of a three
form; thus we can absorb it into the definition of B„„[9].
Also, the Yang-Mills Chem-Simons form vanishes for the
purely magnetic case. For these reasons, it is consistent
to set H„~ to zero.

We assume spherical symmetry; the Bianchi identity
then implies that F„ is unchanged. Thus, the ai, aqua,
and aig terms vanish; also, the ai2 term is no longer
independent of the ai3 term. We will not consider these
terms further, so the above conditions leave fifteen O(n')
terms (a2, . . . , Qip and ais, . . . , ais).

The coefIicients of higher order terms are free parame-
ters in general due to field redefinition ambiguity. To see
this, consider the most general field redefinitions:

g„=g„'„+a' T„„(g',P', F') + O(n' ),
P = P+ a' T(g', P', F') + O(a")a,

A„= A'„+ O(a' ),

where

Using the leading order GHS solution, one can easily
check that every operator has the same order of mag-
nitude.

We did not include terms that are proportional to the
three-form field strength H„~, where

T„„=gi R„„+g2V „PV P + gsF„pF„~
+ g „(94R+gsv y+ gs(v'y) + 97F ),

T = diR+ d2V' p+ ds(VQ) + d4F (9)

gii ——1+ + O(r ). (10)

In the string metric, M~ depends on O(r i) terms in
both gpp and P (and similarly for MI). Using the GHS
solution (1), one can check that the field redefinitions
affect the terms of order r or higher for both the metric
and the dilaton; therefore, black-hole mass is invariant
under the field redefinitions.

We now simplify l:4 using the field redefinitions. There
are originally fifteen terms in l.4. From the explicit cal-
culation, a2 and ai4 are invariant under the redefinitions.
The coefIicients of these terms are thus determined from
a standard S-matrix calculation; for the heterotic string,
a2 = 1/8 and ai4 ——0 [8]. This leaves thirteen field re-
definition dependent terms (ambiguous terms). The field
rede6nitions have eleven free parameters, so one Inight
expect that it is possible to remove all the ambiguous
terms except two by appropriate field rede6nitions. This

Here, g; and d; are free parameters. We have used spher-
ical symmetry to eliminate possible field redefinition for
A„at O(a') Su. bstituting (8) and (9) into (3), one finds
that l:4 retains its form but the coefticients a; change
in general. The explicit result can be found in the Ap-
pendix. (The coefficient changes for the gravity-dilaton
part have been considered by Metsaev and Tseytlin [10].)

In the literature, one often claims that the ambigu-
ity is resolved by choosing the Gauss-Bonnet scheme for
curvature squared terms; i.e., by taking a2 ———1/2 and
as ——1/8. The justification is the argument by Zwiebach
[11];he argued that only the Gauss-Bonnet combination
gives a ghost-&ee theory in the weak field expansion. The
argument is actually irrelevant [8], since our effective ac-
tion is a perturbative expansion in powers of momentum;
the perturbation itself is not valid at the energy of the
apparent ghost.

While we are not able to resolve the ambiguity, this
ambiguity does not matter as long as physical quanti-
ties measured at in6nity are concerned. This is because
the field rede6nitions do not alter these quantities. In
this sense, the only meaningful quantities to evaluate in
higher order effective theories are relations of physical
quantities, like mass-charge, mass-temperature relations,
and so on. Moreover, because physical results are un-
changed under the rede6nitions, what one should do is
to find the simplest Lagrangian one can reach by the re-
definitions to simplify calculations.

As a check of the above statement, we show that mass
and charge are unchanged under the 6eld redefinitions
(8). The monopole charge is of course invariant, since
there is no possible field rede6nition for A„at this order.
The gravitational mass Mt- and the inertial mass MI are
de6ned by the asymptotic behavior of the Einstein metric
[»]:

gp, = —1+ +O(r ),
2MG.
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conclusion is, in fact, correct, but the reasoning is wrong.
There is a subtlety in the counting because variations of
a; are not independent of each other (see the Appendix).

First, consider the gravity-dilaton part of l:4. There
are eight ambiguous terms (as, . . . , aio) and the field re-
definitions have eight parameters as well. (F-dependent
redefinitions do not affect the gravity-dilaton action. )
However, the variations of these a; satisfy (Al); one ba;
is fixed completely once the rest are chosen. Therefore,
one term cannot be eliminated in the gravity-dilaton ac-
tion. Fortunately, Metsaev and Tseytlin show that the
remaining term vanishes after the field redefinitions [10];
thus, aO ambiguous terms are removed. But it is actually
useful to work with the Gauss-Bonnet scheme instead of
keeping only the a2 term. This scheme is useful because
field equations are at most second order in derivatives,
which is reminiscent of the claim that the scheme gives
the "ghost-free" theory.

Next, consider the terms coupled with the gauge
field. There are five ambiguous terms in the action
(ais, ais, . . . , ais) and three F-dependent field redefini-
tion parameters (gs, gr, and d4) [13]. This leaves two
ambiguous terms, but another relation (A2) partly deter-
mines which two a; should be left. Since the variations of
ais, ais, air, and ais contribute to (A2), at least one of
them should be left. We will keep the ais and air terms,
since the equations of motions become simple.

Consequently, we have reached the simple Lagrangian

Z4 —— (—R""~ R„„p —4R""R„„+R )8

+ b(F')'+ cF'(VP)'.

b and c are the parameters that we can fix by an S-matrix
calculation [8] and (A3). However, this step is unneces-
sary. The mass-charge relation we are interested in will
not depend on b after a coordinate transformation and c
will be fixed once we impose that the solution behaves
like the GPS solution in the throat region.

We solve field equations by perturbing around the GHS
background. Take the Schwarzschild gauge in the string
metric

ds . = —e dt +e dr +r dO (12)

and expand the metric functions in a = a'/Q2:

4 = oC2+
A = A&+ 6A2+

th

4 =Pi+ —(c' —42)+ ",
2

where Ai and Pi are given by the GHS solution. (Note
that Oi ——0.) The somewhat artificial choice of P2 is
useful to simplify field equations. Then, the Lagrangian
(11) becomes

8 oc —f'I 22 —x f (2 —(1+2c)z) 4',

& 4 ( 2&, (+ f p'2 + —x (—10c+ (9c —b)z) p2 —2f
~

1 ——
~ $2A2 —

~

1 ——A2+ (b —c)x A2,2 5 zJ E z') (13)

1+2c 442 ——
8

x'

1 —2c 1 3 1+ -x'+ -x'+ x+ ln(1 —x)
2 3 2

(14)

A, = ——x(14x'+ 9x'+ 5z+ 2)20

(6x + 5z + 4z + 3z + 2),4 3
201 —x (15)

where f = 1 —Q/r, z = Q/r, and the prime denotes a
derivative with respect to x.

The only solution regular at the horizon r = Q is given
by

removes the terms. Also, the above solution suggests
c = 1/2; otherwise, 42 contains a term proportional to
ln(1 —x). Such a term should be absent in the light of
the GPS solution. GPS claim that the extremal solution
in the throat region is a product of an rt CFT (the lin-
ear dilaton theory) and an angular CFT. In particular,
goo

———1. If the ln(1 —x) term existed in C'2, our solution
would not give the linear dilaton theory in the throat re-
gion under any choice of field redefinition, i.e., goo would
not approach to —l. On the other hand, ln(1 —x) in Pq
is safe; it just shifts the dilaton gradient in the throat
limit from —1/2Q to —(1+e)/2Q, where e = (2b —1)a.

After the coordinate transformation, we get

bx + 2(b —c) ln(1 —x)1 —x
11b —19c b —4c 2 b+ 21c 3 b+ c+ x+ x x x'.

10 5 60 20
(16)

Even though 1/(1 —z) terms in A2 and Pz look like singu-
lar perturbations, they are not, since a coordinate trans-
formation x -+ x —bk (6z+z5x + 4x + 3x+ 2)/20

y
~

1 ——
~

f, (r)dr +r do„( Ql

( Q) i+a
e ~=

~

1 ——
~

f4(r)")
in the string metric, and
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x fs(r)«'+ r'
~

1 ——
~

f4(r)dO (18)
Q&

'+'

ri
in the Einstein metric, where

fi (r) = 1 ——x(14x + 9z + 5x + 2),20

fs(r) = 1 ——z(llx + 7z + 16x + 38) + g(r),40

fs(r) = 1 ——z(19x + 25z + 26z + 42) + g(r),40

f4(r) = 1 ——x(—9z + 7x + 16z + 38) + g(r),40

/
a2 ——G2,

/
G3 = G3 —g1)

1
a4 = a4+ —gi + (D——2)g4 —2di,

/

a5 ——a5 —4g1 —g2,
1 1

as = as+ —gs —2Dg4+ —(D —2)gs+8di —2ds,
2 2

/ 1
~ = a7 + gi + 2(D —1)g4 + (D ——2)gs —8di —2ds,

as ——as + 2(D —1)gs —Sds,

as = as + 3gs —2D gs + 2(D —1)gs + Sds —8ds,

G10 G10 4g2 —2D g6 + 8d3,
1 1

ais = ais+ —gs —-(D —4)gv + d4,

/
G14 = G14,

g(r) = bz(15—z+ 32z + 57x + 120).
60 (19)

/

a]5 a15 + g1 g3)
1 1

G16 g1 + g3

The solution describes an extremal black hole whose sin-
gularity and horizon coincide. However, the detailed
form of the solution is not important because O(l/rs)
terms do not have invariant meaning. What are impor-
tant to us are invariant relations such as M = M(Q). Us-
ing (10), we get that the gravitational and inertial masses
are the same and given by

M= ——
2 40Q

(20)
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APPENDIX A: FIELD REDEFINITION RESULT

Under the field redefinitions (8), the coefficients of
O(a') change as follows:

This is our main result.
It is not hard to see why M(Q) is modified by higher

dimensional operators. As is well known, the throat of
the extremal GHS black hole results &om the balance of
curvature against the monopole magnetic Geld. However,
by including O(a') terms, the curvature squared terms,
e.g. , R""R„„,cancel part of the monopole term F„„F"".
Thus, for the balance to work at this order, the black-
hole mass has to be slightly lighter than the leading value
for a given charge Q.

An interesting possibility arises by letting Q get small.
Obviously, our perturbation breaks down for small Q, but
if the result were still valid, the solution might suggest
violation of the positive-energy theorem [14].

1 1
(D —4)—g4 + (D —2)—gr + di —2d4,

2
1 1a'

~ = aiy ——gs —gs — (D —4)g—s —2D gy + ds + 8d4,1 4
3 1

ais ——ais + —gs — (D —4)g—s + 2(D —1)g7 + ds —8d4,

16ba4 —4bas —Sba7 + 4bas + 2bag + baio = 0, (Al)

3 9
16bas ——has + 4bas + 3bas + —baio + 16ba] s

2

+10bais + 6bai7 + 8bais ——0. (A2)

The action (3) is transformed into (11) by the field
redefinitions (we set D = 4)

1
+ G3~

2

g2
———2 —4G3+ a5,

1
g3 = —+ G3+ G15

2
1

g4 — (3 + Sas + Sa4 + 6as
16
3 3

g5
————6G4 + —a6 + 3G7—

4 2
5 1

g6 — + 2G3 2G4 ——a5 +
4 2

1 1
+a7 ——as ——G9+ d3

2 4

+ 4aq —2as —as —4"s) ~

1
GS —a9 —d3,

1—G6
2

1
g7 = —(—3 + 24as + 120a4 —6as —28a7 + 6as

32
+as + Sais + 64ais —16ais + 4ds),
1

di ———(5 + 16as + 24a4 + 6as + 4ar —2as —a9 4ds) )
32

where D is the dimension of space-time. Not all the
variations ba; = a', —a; are independent of each other
because
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1
d2 ———(9 —72a4 + 18as + 36a7 —10as —3as —12ds),16

1
d4 ———(3+ 24as + 72a4 —12ar

32
+2as + 12aqs + 48ais —Saxs).

After the redefinitions, the coefficients of b(= a~s) and
c (= a~s) are given by

7 9 3 1
6 = —+ a3+ —a4 —.—a7+ —a8

32 4 8 16
5 3 1

+a13 + a15 + a16 a18&
8 2 4

3 1 3
c = ——12a4 ——a5+ —a6+ 4a7

2 4 2
1

a8 a9 4a16 + a17 + 2a18 ~

4
(A3)
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