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Scattering of a tachyon by a two-dimensional black hole

J. Y. Kim, H. W. Lee, and Y. S. Myung
Department of Physics, Inje Unirrersity, Kimhae 621 7/9-, Korea

(Received 23 February 1994)

We study the scattering process of a black hole in toro-dimensional string theory at the tree
level. Unlike the higher-dimensional black holes, the linearized equations of motion lead to exactly
solvable one-dimensional Schrodinger-type equations for the unit of M = 1 (M is the black hole
mass). Considering the asymptotic form of the solutions, the exact S matrices are derived for the
combined graviton-dilaton mode as well as the tachyon mode. We con6rm that only the tachyon
mode plays an important role in extracting any information for the black hole.

PACS number(s): 04.70.Bw, 11.25.Db, 11.55.Ds

I. INTRODUCTION II. FORMALISM

String theory in two spacetime dimensions has classical
solutions which are analogues of black holes and provides
a simplified context in which to study black hole physics
[1,2]. Stringy black hole solutions may play a role of toy
model for a d = 4 real black hole. In all stringy black
holes, the dilaton and tachyon field play crucial roles [3].

An easy way of understanding the attributes of a phys-
ical system is to find out how it reacts to external per-
turbations and, in the first instant, to infinitesimal per-
turbations. In the case of a black hole, this is the only
method available to us because there is no other way in
which an external observer can explore the other side of
the horizon. The reaction of an object to an infinites-
imal perturbation is determined by the enumeration of
the so-called normal modes of oscillation. For the black
hole, this enumeration reduces to finding how a black hole
reacts to incident waves of di8'erent sorts. The solution
of this latter problem bears on the stability of a black
hole and the determination of the quasinormal modes
[4,5]. From general considerations, one may expect that
a &action of the energy in the incident waves will be irre-
versibly absorbed by the black hole, while the remaining
fraction will be scattered (or refiected) back to infinity.
In other words, it would appear that it may be possi-
ble to visualize the black hole as presenting an effective
potential barrier (or well) to the oncoming waves [6].

In this paper we study the scattering process of the
black hole in two-dimensional string theory [7]. We find
a potential barrier for the tachyonic mode (t), a potential
well for one graviton-dilaton mode (h+ p) and no poten-
tial for the other graviton-dilaton mode (h —&p). Also
we find exact solutions for the unit of M = 1 (M is the
black hole mass). From the asymptotic form of these so-
lutions, we obtain the transmission and reflection coeK-
cients for graviton-dilaton (li+ y) and tachyon (t) modes.
It is found that the transmission amplitude for graviton-
dilaton mode (h+ IP) is a pure phase and thus there is no
reflection. This means that this mode propagates &eely
f'rom +oo to —oo. However, the tachyon mode (t) plays
the crucial role in getting any information &om the black
hole.

Let us start with the o-model action of d = 2 criti-
cal string theory for a graviton (g„„),dilaton (4), and
tachyon (T) (p„v = 0, 1) given by [2,8]

S =, d zv G[g„„V'x"Vz +a'R4+2T] . (1)

The conforinal invariance requires the P-function equa-
tions

R„+V„V„4+ V'„TV'„T = 0, (2)

R + (V'C ) + 2V' Cr + (VT) —2T —8 = 0, (3)

V'T+V@VT+2T =0.
These equations can also be derived &om the d = 2 target
space effective action [9] with substitutions

—PC'psT ~ C') TpsT M v 2T, —BpsT ~ + .

V' Cg„„—V'„V'„C —V'„TV' T

+-,'9„.[(VC)'+ (VT)' —2T' —8] = 0 . (6)

Contracting (6) with 9„„leads to the dilaton equation as

V'4+ (VC)' —2T' —8 = 0 .

Substituting (7) into (3), one finds the contracted version
of Einstein's equation,

B+V'C + (VT)' = 0,

Here we choose the tachyon potential term —T, which
determines the tachyon mass, and neglect all higher-order
terms. In this sense we consider string theory at the tree
level. The classical equations of motion for 4 and T lead
to (3) and (4), respectively. However, the equation of
motion for g„„ is given by
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which can also be obtained from (2). Note that the
tachyon source terms in the equations for the graviton
(2) and dilaton (7) are at least quadratic in T, while
the tachyon equation itself is linear in T to leading or-
der. This means that one can consistently view a weak
tachyon field as a small perturbation and thus ignore its
back reaction on the background geometry to leading or-
der [9].

Let us look for the static background solutions of the
graviton-dilaton sector in the absence of the tachyon.
Substituting the ansatz

bR s(h) = 2V Vsh', + 2V V,h s —2V Vqh,
1—c——2V V' h~,

bl"s(h) = -g (Vsh g+ V hing
—Vgh s) .

Here a, b, c, d denote the orthonormal indices and the
overbar indicates a background object.

First, let us consider the graviton-dilaton modes.
Equation (11) implies

4=2QQ, T=O, g „='I ) JJI/ 0
0 'l

—1 V~h + V' hpp+ 2g~~V rp —2Qg Vph = 0, (14)

into (7) and (8), one finds

2Qf'+4Q f —8 = 0,
Vd, h + V' hyp+ 2g V~(p+ 2Qg Vph = 0, (15)

f"+ 2Qf' = o (10)

VyV y+QV h=0. (16)

where a prime denotes the differentiation with respect to
P. From (9) and (10), one finds a one-parameter family
of physically static geometries [2,3]:

From (14) + (15), one finds

f , 8' 8 8' )f gy2 +f fgy g 2 ( p) (i7)

f =1 —Me ~~, Q=~2,
where the parameter M () 0) is proportional to the mass
of the black hole. All these solutions approach the linear
dilaton vacuum in the asymptotically fiat region (P -+
+oo). The horizon of the black hole occurs at PEii =
(1/2Q)lnM. Here, for simplicity we choose the unit of
M = 1 and /Equi = 0. As a consequence of the fact that
PEii = 0 defines a null surface, the space interior to P = 0
is incommunicable to the space outside.

To study the scattering problem specifically, we intro-
duce the small perturbed fields h„„($,7), p(P, ~), and
t(P, ~) as [5—10]

g„„=g„„+h„„=g„„[1—h(g, r)],

Since the region interior to the horizon (P ( 0) is of no
relevance to our consideration, let us introduce the new
coordinate (P')

4'—:P+ ln(1 —Me ~~) .1

2

Note that P' ranges from —oo to +oo, while P ranges
from the event horizon of the black hole (PEii = 0) to
+oo. Defining H = h —

&p, (17) can be rewritten as

( 8' 82 liH=0.

Here we take the trial solution of the form

H (P', 7.) = I(g') e '" (i9)

4 = 4+ rp(P, ~), and substitute this into (18), then we have the free-field
equation

( c)T = T + t—:exp
~

——
~

[0 + t(P, ~)] . , + k'
~

I(P') = 0 .
( d'

(20)

To obtain the linearized equations governing the pertur-
bations, we linearize (2), (4), and (7) as

bR g(h) + V Vs(p —hI"s(h) V,4 = 0,

V V y —g bF ~V@—h V Vg@+2g V CVgy

—h V 4 Vg@ = 0, (12)

V V' t+ g V' 4V'gt+ 2t = 0,
where

The only allowed solution for I(g*) is

I (P*) = Cexp( —ikP*) (P' m oo),

IEii(P') = C exp( —ikP') (P* ~ —oo),

where C is the undertermined amplitude. This means
that there is no scattering of H(= h —rp) mode by the
black hole. That is, the combined graviton-dilaton mode
H does not feel the presence of black hole.

Next, let us derive the Schrodinger-type equation for
the other graviton-dilaton mode (h + y). From (16), we
obtain the relation
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&a 1f'
W 2f)

1 and we set U(P) =l ndwese =0function of P only, and we se
for simplicity. Also, &om 1

VT(4'*)

f—'f + 2Qf'- (22)

2

i

J=O.., +4Qf'f —~, , (23)

* e *" into (23), we obtainJ($*,7) = K(P*)e *" into, obtainSubstituting J

Ands theether with (21), one find+ (22) x 2 together withFrom (17) + ether with
fo theequation

—4

de (t) surroundingh onic mode t subarrier of tac y
'

de t su
d od' t

FIG.
the d== 2 black ho e i

l
'

1 &well) is given bythe potential wewhere t e

(24)

s iven by
'

1 (barrier) is g'otentiathe tachyon pwhere e

—8Q exp(2QQ*)
2Q4')]'

nd Q— 2

2 *
Vpg—16 exp(2y 2P*)

'
1 well is given by Voz =—e th of potential we iP

25) intoI

(25)

nserting (

iK=O.

1($')e ', we

(26)

M+ p(t

M = l becausesider
' of (24) for M = 1 ee

'
sider o on o

fi d an exact soin ithis case we t
a

Q2M exp(2QQ*)

[M + exp(2QQ')]2

= 1, Q = ~2 (Fig. 2,and, with M = 1,

2 exp(2~2$')
1 + exp(2~2/*)]2

1

2(cosh~2$" )
2 (28)

il. =o.
2(cosh~2$') 2

s onding height26), the correspon
'

om
'

29 with Eq. (2, s onp g'
l barrier is givof potentia

III.. SOLUTION

VT

eve the cve S hrodinger-typu s
' '

28 into (27), we haveSubstituting (28) into, ve
equation

(29

(k V.) ~

i = o,

V~(4*)

(27) al s f the Schrodinger-al solution o end the general sWe wish to 6n
type equa

'
uation

~4=0.
(cosh~2$') 2 )

(30)

or
'

ar Vp, one can sim-t is e
'

for arbitrary
d 1 ton (Ii + y

g
the resu

(t)= —4 and for tac y
so Schrodinger-type eqsolve this c
substitution

ilI = (cosh~2$*) "u,

A = i(gl —2Vo——1)

kes the formfor p, ta esthen t eh equation

ode ii+ y)D

oo '
( *)le In st d2bl kthed=surrounding

+8(A'+ -', k )u = . 31', ' u=O. (31)—4~2A tanh~2$* „+8 s u-
dfe2
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We consider only the scattering for k2 & 0, since there is
no scattering for k ( 0. If we introduce a new indepen-
dent variable

z = —(sinh~2$')

then the equation for u reduces to the hypergeometric
equation

take in our case the values

ik ika= —A+, P= —A—

The two exact solutions of Eq. (32) which lead, respec-
tively, the even and the odd wave functions of u are of
the form

d V 1
2

z(1 —z) + [- —(1 —2A)z] ——(A + -k )u = 0 .
dz2 2 dz 8

(32)

The parameters a, P, p which occur in the general form
of the hypergeometric equation,

dtl
z(1 —z) + [p —(a+ P+ 1)z]——aPu = 0, (33)dz2 dz

( ik ik 1
u, =F

~

—P+,—P—,—;z~,
2 2 2 2 2 )

ik 1 ik 1 3
u2 ——~zF

I

—A+ + —,—A — + —,—;z
I

2~2 2' 2~2 2' 2' )

The general form of the wave function is

(34)

(35)

4 = Ci(cosh~2(P) "F
~

—A +f ik ik 1

2 2 2 2' 2' )
( ik

+C2(cosh@ 2P') "+zF
~

—A+ + —,—A— ik 13
(36)

Here the coefficients Ci and C2 will be determined &om the condition that as P ~ —oo the wave function has the
asymptotic form

4 - exp( —ikP'),

since the incident wave is coming &om P = +oo to P' = —oo.
To find the asymptotic form of expression (36), we use the relation

F(a, P, p;z) = (—z) F a, a+1 —p, a+1 —P; —
~

r(~)r(p- )
'z)

+ ( z) ~F
l

/3 P—+1 —
W I+I —a' —

l

r(~)r(a —p), (
l z

(37)

Then we derive the asympotic expressions

@(gP -+ +oo) (CiAi + C2A2)(2)
'" ~exp( —ikP')

+(CiBi + C2B2) ( z
)' ~~exp(ikP'),

(38)

4'(P' -+ —oo) (CiAi —C2A2)(2) '"~ exp(ikP')

+(CiBi —C2Bz)(2)'" exp( —ikP') .
(39)

I'(1/2) r (ik/~2)
I'(—A + ik/2~2)r(A + 1/2 + ik/2~2)

I'(3/2) r (ik/~2)
I'(—A + 1/2 + ik/2~2) r(A + 1 + ik/2y 2)

The first term in (38) is the incoming plane wave, the
second is the refiected outgoing wave (remember that the
incident wave is coming &orn +oo to —oo). The require-
ment that at P' ~ —oo there is only a left-moving wave
implies that the first term in (39) should vanish

Here for the sake of simplicity we have introduced the
notation

+1+1 +2~2 —0
y (40)

I (1/2) I'(—ik/~2)
I'(—A —ik/2~2)r(4 + 1/2 —ik/2~2)

r(3/2) r(-'k/~2)
I'( —A + 1/2 —ik/2i/2) r(A + 1 —ik/~2)

transmitted
incoming

(CiBi —C2Bz) (2) (41)
(C,w, +C,~,)(-', )

* ' '

Substituting (40) into (41) and performing some trans-

while the second term is the transmitted wave. The
transmission amplitude will then be of the form
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formation using the relation for the I' function,

we have

r(z)r(1 —z) = .
sinvrz

sinh(vr k/i/2)
, (42)

sinh(7rk/~2) + i cosvr(2A + 1/2)

[sinh(xk/~2)]2

[sinh(mk/i/2)] + [cosa(2A + 1/2)]
(43)

where e' is de6ned as

r(ik/i/2)I'( —A —ik/2i/2)r(A + 1/2 —ik/2i/2)

r(—ik/~2) I'( —A + ik/2~2) r(4 + 1/2 + ik/2i/2)

Note that fe'
f

= 1, since fI'(z)
f

= fI'(z') f. From this, we
find the transmission coeHicient 7 = fTf:

B. Tachyon mode

For the tachyon (t) scattering, inserting Vo ——
2 or

A = ——,we have1
4 9

I = Ci(cosh'/2gF) i F —+~ (1

+C2(cosh~2$') '~ i/z

(3 ik 3 ik

(4 2~2' 4 2i/2

2~2' 4

(49)

in (47) is a pure phase. This means that there is no
re8ection, i.e., B~ ——R~ ——O. Even though the potential
well has arisen &om the black hole, the graviton-dilaton
mode K = 6+ p propagates &eely &om +oo to —oc.
This corresponds to a transmission resonance.

Similarly one can derive the reHection amplitude (R) and
coefBcient (R = fRf ):

sinh(vr k/i/2)
Tt, ——

4 exp ibq
sinh(z. k/~2) + i

(5o)

p )
i k/~—2 cosa(2A + 1/2)

cosa(2A + 1/2) —i sinh(m k/~2)

(44)

[sinh(z. k/~2) ]
2

1 + [sinh(mk/~2)]z
(51)

[coax(2A + 1/2)]2

sinh(xk/~2)] + [cosy'(2A + 1/2)]
(45)

We apply this general form of solution to the following
two cases. where

—ik/~2

1 —isinh(hark/i/2)

1

1 + [sinh(m. k/y 2)]2

(52)

(53)

A. Graviton-dilton mode

From the graviton-dilaton (K = Ii + p) scattering, in-
serting Vo = —4 or equivalently A = 2, one finds the
exact wave function as

r(ik/i/2) [I'(1/4 —ik/2y 2)]2

I'(—ik/i/2) [I'(1/4 + ik/2y 2)]2

As might be expected, one finds that 7q + 'Rq ——l.

IV. DISCUSSION

( 1 ik 1
K = Ci(cosh'/2$') E ——+

2

+C2(cosh~2$') '~zE
I 2 2 2 2

2~2'2' )
3

3
z

2

At a erst glance, it seems that black holes in two-
dimensional theory is very diff'erent &om that in four-
dimensional theory. In the case of Schwarzschild black
hole, there exist two kinds of Schrodinger-type equations
from the graviton (g„„).One is the Zerilli equation which
arose in the even-parity perturbation [4—ll]:

The transmission amplitude and coefficient are

T~ = (-,') '"'~exp(iS~),
where

exp(ib Jc )

(47)

d 4'~., +(k2 —&z)C'. = o

Here units are used in which G = c = 2M4 ——1, so that
the horizon is at r' = —oo (r = 1). r* is related to the
Schwarzschild radial coordinate r by

and

r(ik/~2) r( —1/2 —'k/2~2) r(1 —ik/2~2)
I'(—ik/i/2)I'( —1/2 + ik/2i/2) I'(1 —ik/2~2)

d r —1 d

dP P 8P

In these units, the Zerilli potential Vz is given by

9 = fTxf' =1 (48)

Note that the transmission amplitude (TIr ) for K = h+y
2(n, + 1)r' + 3r' + 9r/2n + 9/4n'

Vz ——
r4(r + 3/2n, )' (r —1)
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where the parameter n, in terms of the multipole index
l & 2 of the perturbation, is n—:(1 —1)(l + 2)/2. The
other is the Regge-Wheeler (RW) equation

d2@o
~ 2 + (k —Vaw)@o = 0,

which differs only in the details of the potential

2(n+ 1)r —3
VRw= 4 (r —1) .

The RW equation arose in the study of odd-parity pertur-
bations in the same formalism. Chandrasekhar showed
explicitly the connection between the Zerilli and RW
equations. The existence of difFerent descriptions of the
perturbations of the black hole led Chandrasekhar to con-
sider the general question of the relationship between two
potentials which are equivalent in the sense of producing
the same physical consequences [more specifically, hav-
ing the same refiection (R) and transmission (T) coef-
ficients]. Further, according to Anderson's formalism of
intertwining operators for any potential [12], there are
equivalent potentials. In fact, there exist an infinite num-
ber of equivalent potentials. In Schwarzschild black holes,
for example, the Zerilli and RW potentials are only two
of an infinite set of possible potentials. Of course, all
these potentials belong to potential barriers (not poten-
tial wells). However, in the case of two-dimensional black
hole, we found a potential well as well as a potential bar-
rier. The graviton-dilaton mode (h + &p) with potential
well is trivial in the sense of scattering process, while the
tachyonic mode with potential barrier is very important
to study the two-dimensional black hole.

In order to understand this apparent discrepancy be-
tween two-dimensional and four-dimensional black holes,
let us consider the counting of degrees of freedom. From
d-dimensional theory, a symmetric traceless tensor field
h„„has d(d+ 1)/2 —1 independent components. d of
which are eliminated by the gauge condition that speci-
fies 8„h"„=0 [13]. In addition, (d —1) are eliminated
by our &eedom to make further gauge transformations
hh„„= 8„(„+8„(„with 8„("= 0 and 8~(" = 0. Hence,
the number of degrees of &eedom for the gravitational
Beld in d dimensions is

zd(d+ 1) —1 —d —(d —1) = 2d(d —3) .
for d = 4, we obtain two propagating physical gravi-
tons (Zerilli and RW potentials). However, this is —1
for d = 2. This means that, in two dimensions, the con-
tribution of graviton is equal and opposite to that of a
spinless particle (dilaton). Thus, in a viewpoint of d = 4

theory, general relativity is not much of a theory in two
dimensions. In this connection, the Lagrangian ~gR is
a total derivative for d = 2, and consequently the left-
hand side of Einstein equation (R„„—2g„„R) vanishes
identically. This is the reason why one usually chooses ei-
ther light-cone gauge or conformal gauge (as in our case)
in two dimensions. In analyzing two-dimensional stringy
black hole, we start with one graviton, one dilaton, and
one tachyon. These, in turn, give rise to one graviton
dilaton (h —y), the other (h + p) and tachyonic modes.
However, two modes (h —y, h+ y) are trivial in the scat-
tering process, while the tachyonic mode is very impor-
tant to extract the informations of two-dimensional black
hole. In this sense, we regard the tachyonic mode as a
truly propagating degree of &eedom in the black hole
background. If the above view of extracting the physi-
cal degrees of &eedom is consistent with that of d = 4
general relativity, two graviton-dilaton modes are trivial
gauge artefacts. The reason comes &om the fact that in
our theory gauge fixing is lacking &om the beginning, in
view of d = 4 gravity theory. Therefore, the net physical
degrees of &eedom for two-dimensional stringy black hole
should be given by

—1(graviton) + 1(dilaton) + 1(tachyon) = 1(tachyon) .

Finally, we note that S-matrix problem of the
Schwarzschild black hole (i.e., the knowledge of both R
and '1) is incomplete. In considering this problem, it is
customary to restrict oneself to the potential V(2:) which
satisfies the requirement [6]

(1+ I*I)V(*)d*

is bounded. The d = 4 potentials Vz and VR~ do not
satisfy the above requirement. On the other hand, the
d = 2 tachyon potential VT satisfies the requirement that

(1+ 14''OVT (&')&4' =
I
1+

—OO 2 2

is finite (bounded). This implies that one can solve the
S-matrix problem completely in a two-dimensional black
hole.
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