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We construct quantum states for a (1+1)-dimensional gravity-matter model that is also a gauge theory
based on the centrally extended Poincare group. Explicit formulas are found, which exhibit interesting
structures. For example, wave functionals are gauge invariant except for a gauge noninvariant phase
factor that is the Kirillov-Kostant one-form on the (co)adjoint orbit of the group. However, no evidence
for gravity-matter forces is found.
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I. IN j.RODUt. LION

The string-inspired model for lineal gravity [1,2] has
been studied in the last few years with the aim of gleaning
useful information about black hole physics. Even
though many papers have been published, the quantum
mechanical theory has not been solved; only semiclassical
analyses of uncertain validity have been carried out. Of
course the obstacle to a complete quantal solution is the
intractability of quantum gravity, which persists even
when the world has been dimensionally reduced to one,
lineal dimension.

In this paper we report new results in our approach to
the problem of quantizing string-inspired lineal gravity,
once it has been reformulated as a gauge theory [2] of the
extended Poincare group [3,4]. Specifically when point
particles are coupled to the gravitational degrees of free-
dom, the quantum states can be constructed, and we
present explicit wave functionals for the one- and many-
particle cases. The pure-gravity wave functionals, which
had been previously found [5,6], are also discussed.

The rationale for a gauge theoretical formulation of
gravity theory is the hope that familiar techniques for
quantizing gauge theories can be successfully employed,
thereby circumventing apparently intractable problems of
quantum gravity (ddfeomorphism constraints, Wheeler-
DeWitt equation, etc.}. Our success with the point parti-
cle problem encourages optimism.

However, another reason should be put forward in
favor of the gauge theoretical formulation. %'hen the
string-inspired model was first proposed, the gravity ac-
tion was taken to be

IG= I d x+ ge e'(R+—4g""t}yB~—
A, ),4~G P

where y is the "dilaton" field and A, a cosmological con-
stant. (Over bars are used to distinguish the above from a
subsequent, redefined expression; see below. ) Matter is

2'gpv=e gpv ~

g=e

transforms (1.1) into a much simpler expression [3]:

IG= x —g gR—1

4mG

(1.2a)

(1.2b}

(1.3)

Moreover, since (1.2a) describes a conformal redefinition
of the metric and since the matter fields are coupled con-
formally, the form of the matter action does not change
with the redefinition (1.2) except that g„„replaces g„„.
But the dynamics implied by (1.3) leads to vanishing R,
so there is no trace anomaly and no black hole effects, at
least semiclassically.

If one concludes that the conformal trace anomaly in-
terferes with field redefinition as in (1.2}, invalidating the
equivalence theorem, so "that there is not a unique
quantization of dilaton gravity" [7], the theory loses all
predictive power, even as the formalism loses descriptive
ability. But it may be that the above observations on the
semiclassical theory are inconclusive. In this context,
one should take note of the published claim that even in
the original formulation (1.1) there is no trace anomaly,
because any anomaly can be compensated by a shift in
the dilaton field [8]. [The freedom of shifting the dilaton
field is especially evident in (1.3), where it is recognized
that translating g by a constant changes the action only

coupled only to g„„in a conformally invariant manner, so
the trace of the energy-momentum tensor is given solely
by its quantum anomaly, proportional to the scalar cur-
vature R, which according to the dynamics implied by
(1.1) is a nontrivial quantity. Since (1+1)-dimensional
semiclassical Hawking radiation is governed by the trace
anomaly, the above results would indicate that black hole
phenomena, Hawking radiation, etc. arise in this model.
Indeed a "black hole" classical solution to the equations
has been identified [1,2].

Subsequently, it was also realized that a redefinition of
variables
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by the topological term ~ fd x & —g R ] .Moreover, in a
recent calculation the "black hole" mass vanishes [9]. [In
Ref. [9] mass/energy is given a gauge theoretical
definition and agrees with the Arnowitt-Deser-Misner
value. ]

We feel that the gauge principle provides unambiguous
direction on how to proceed through this maze, since
gauge invariance resolves quantum field theoretic ambi-
guities. As we shall see, the quantum states that we con-
struct support the claim that there is no gravity-matter
interaction.

In Sec. II we review the model (1.3) in its gauge
theoretical formulation and describe classical solutions.
The manner in which geometry of space-time and the tra-
jectory of a particle are encoded in a gauge theory is
noteworthy for its subtlety. Section III is devoted to the
formal quantum gauge theory. Section IV contains a dis-
cussion of the pure gravity quantum states; particle states
are constructed in Section V. Concluding remarks
comprise the last Section VI.

and (2.3}the gauge curvature:

F„„=B„A B—A„+[A„,A ]

=F„'Q,+F„J+F„g,
(2.4a)

,'e"—"F„=e"".(D„e„)'P,+B„cog+(B„a + ,'e—'„e,&e )I (,

(D„e„}'=B„e'„—+e'~co„e"„.
(2.4b)

(2.5)

Ap~AV=U 'APU+U 'BAU, (2.6)

(2.7)

These quantities transform with the adjoint representa-
tion, whose properties may be determined from the struc-
ture constants of the Lie algebra (2.1). Given a group ele-
ment U, then

II. GAUGE THEORY FOR LINEAL GRAV1'1 Y
AND ITS CLASSICAL SOLUTION

When U is parametrized as

U e aeMePI8 P
(2.8)

The model that we consider is based on the four-
parameter extended Poincare group, in 1+1 dimensions,
whose Lie algebra is

[P, Pq ]=e,qI,
[P„J]=e,Pq,

[P„I]=[J,I]=0 .

(2.1)

The central element I modifies the conventional algebra
of translation generators P„while the (Lorentz) rotation
generator J satisfies conventional commutators. Indices
(a, b) =(0, 1) label a (1+1)-dimensional Minkowski
tangent space, with metric tensor h, & =diag(1, —1),
which is used to raise and lower tangent-space indices.
The antisymmetric symbol e' is normalized by e '= l.
Although the group is not semisimple, there exists an in-
variant, nonsingular bilinear form P,P' —2IJ, which
defines a metric tensor on the four-dimensional space of
the adjoint representation. This metric tensor is used to
move indices, so that a four-component contravariant
vector V" [A =(a,2, 3)=(0,1,2, 3)] (transforming with
the adjoint representation} is related to a covariant vector
V„(transforming with the coadjoint representation) by
Vg Agg V y V2 V y V3 = —V . Thus an invarian
inner product is defined by

e„'~(eU)„'=(A ')', (e„'+e',8'co„+a„e'),

co&~(co )&=co&+B„a,

a„~(a )„=a„8'e.b—e„' ,'8'e—.~—„+ay

+ ,' d„e'e,b—8

where A'& is the Lorentz transformation matrix:

A'~ =5'scosha+ e'ssinha .

(2.9a)

(2.9b)

(2.9c}

(2.10)

To construct an invariant Lagrange density and action,
we introduce a quartet of Lagrange multiplier fields,

transforming in the coadjoint representation:

(~').=(~, ~,e~8')~'. ,

(g )=g

(2.11)

(2.12a}

(2.12b}

(2.12c}

We then form an invariant by contracting g„with
O' F„"„,and take, for the action,

with local parameters (8',a,p), the transformation (2.6}
in component form reads

(Iv, v) —= w„v"=w. v' —Iv, v, —w, v,
= $V'V —8' V —8' V (2.2)

I = 1
d x ,'e" (g,F„'„+g2F„—„+g3F„„)4~6

The gauge theory involves a gauge connection, which
is an element of the Lie algebra,

1

4+6 J d xd"[g, (D„e )'+g28„co„

+g3(B„a + ,'e„'e be „)] . — (2.13)

A„=e„P,+co„J+a„I (2-3)

and into which are collected the zweibein e„, the spin
connection co„, and a fourth potential a„associ.ated with
the center I. In the usual way, one constructs from (2.1)

Since the Lagrange density involves the gauge invari-
ant inner product (g,F„„),the action is manifestly gauge
invariant. One can show that I is equivalent to IG and

IG [3,4].
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A gauge invariant point particle action requires intro-
ducing an additional variable, the "Poincare coordinate"
q'. A first order action for a particle reads [4,10]

Equations of motion that follow upon varying the
Lagrange multiplier multiplet g„={g,g2, r13) in Ig re-

quire a vanishing F„„:

I~ =f dr p, (D,q )' ,'N—(p—'p,+m ) (2.14} F„„=O. (2.18)

(D,q )'—:q+e'&(q "co„—e„)X". (2.15)

The particle dynamical variables are p„q', and X", each
a function of r, which is an aRne parameter —(2.14) is ~-
reparametrization invariant —and the overdot denotes ~
difFerentiation. The gravitational variables co„,a„, and e„
in {2.14}and (2.15}are evaluated on the particle trajecto-
ry Xi'{r}. The mass-shell constraint is enforced by the
Lagrange multiplier N(~). The gauge theoretical formal-
ism also accommodates in a very natural manner various
nonminimal gravity-matter interactions mediated by a
velocity-dependent interaction with the potentials
(e„',to„,a„) [4]. But we do not consider these elabora-
tions here (see however the discussion in Sec. VI and in
the Appendix).

%hen the transformation law for the gravitational
variables {2.9}and (2.12) is supplemented with one for q'
and p„

B„g+[ A„,ri] =4m Ge„„J",
where

(2.19}

g=g'P, —g J—g I
and the matter current J"is given by

(2.20)

J"=f d ~jX"(r)5 [x —X(~)],
j=j'P, +j J+j I

e'sp P,—q'e, p—I (j =0=j ) .

Varying p, in I gives

(D,q )'=Np'

(2.21a)

(2.21b}

(2.22)

Varying the gravitational variables A„"=(e„',to„,a„) in
I +I leads to an equation for the Lagrange multiplier
multip1et:

q'~(q }'=(A ')'b{q +e,8'),

{p'}.=pb&'.

(2.16) with p, satisfying the constraint

(2.17) (2.23)

where the local gauge parameters {8',a) are evaluated on
the particle trajectory X"(~},one finds that the Lagrang-
ian in (2.14) is gauge invariant.

[The transformation law (2.16) indicates that q'
comprise the first two components of a contravariant
four-vector q", transforming in the adjoint representa-
tion [i.e., like (2.9) without the derivative terms] with

q =—q3=1 and q = —q2= —,'q'q„so that q"'s squared
"length" vanishes (q, q }=0. (The third component of
any contravariant vector, equivalently the fourth com-
ponent of a covariant vector, is itself always gauge invari-
ant. ) Similarly, from (2.17) we conclude that p, comprise
the first two components of a covariant four-vector pz
transforming in the coadjoint representation [i.e., like
(2.12)], with vanishing fourth component p3=p2=0, so
the squared "length" of pz, (p,p },is given by p,p' and
is constrained by N to be —m . A manifestly covariant
formalism and many more details about the extended
Poincare group, its properties and representations are
given in Ref. [4].]

It is important to notice from (2.12) and (2.16) that a
gauge transformation may be used to set g, to zero
[8'(x)=e' gb(x)/q3(x)] or q' to zero
[8'(X(~))= —e's

q
"(r)]. In particular, in the gauge

q'=0, the matter action (2.14}reduces to the convention-
al matter-gravity action. {To recognize this, one should
also replace p, by phd, }Thus, we app. reciate that the
Poincare coordinate is analogous to the Higgs field in
conventional gauge theoretic symmetry breaking: its
presence ensures gauge invariance, while a special gauge,
the unitary gauge (analogous to q'=0}, exposes physical
content.

Varying q, in I leaves, with the help of (2.22),

pa= ~a A~+ (2.24)

in order to satisfy (2.18), and the general solution is a
gauge transformation of (2.25). With vanishing A„,
(2.24) becomes P, =0 and is solved by a constant, which
we choose to write as Pbe „so that P, is timelike when it
is normalized by (2.23):

Pa Pb (2.26a)

(2.26b)

Equation (2.22) reduces to q'=Np' and is solved, using
(2.26a), by

q'=Pbbs f dr'N(r')+q', (2.27)

where Q' are integration constants. Finally the equations
for g are solved after choosing the parametrization

by

X'(~)=~,

r1=2mGe[cr X(t)]j+g—

(2.28)

(2.29)

since j given in (2.21b) is a constant by virtue of (2.26a)
and (2.27}. Here once again the q are integration con-
stants and t =x, e=x', X=X'. Note that g3 is gauge

Finally, the variation with respect to X" does not pro-
duce an equation independent of the above.

A classical solution to the system is obtained by setting

(2.25}
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e„'(x)=(A ')'i, 8„8 (x), (2.30a)

e3„(x)=B„a(x),

a„(x) =BP(x ) + —,
' 8„8'(x)e,s 8s(x ) .

(2.30b)

(2.30c)

According to (2.17) and (2.26a) the momentum takes the
form

invariant and so is the squared "length, "
(3}—i},i}—il) =(2nGrn) .

The solution as it stands does not define a geometry,
because A„and therefore e„' vanish. Also the particle
trajectory X(t) is unspecified. Finally we observe that al-

though a parameterization ~ for the particle trajectory
has been fixed in (2.28), N(~) remains undetermined in
(2.27). Thus we must answer the question of how physi-
cal information is coded in the above solution. The
answer is subtle.

The general solution of the equations of motion is ob-
tained from (2.25)—(2.29) by a gauge transformation with
arbitrary parameters 8'(x), a(x), and P(x). Thus the
geometrical gravitational variables now become, from
(2.9) and (2.25),

(2.36b)

where we have renamed the constant —e'&q as X".
The form of the Lagrange multiplier multiplet is ob-

tained by substituting into (2.33) the 8'(x) of (2.34) and
the X'(r) of (2.36b). Finally, our choice of parametriza-
tion in (2.28) and (2.36b) fixes N(r) to be constant:

N(w) = 1

~0 (2.37)

Note that a„ is like an electromagnetic vector potential
for a constant Seld e„„,which, as is well known, produces
a central extension in the algebra of translations.
[Another chpice, popular in the "black hole" literature, is
e„'(t,cr )=e 5„'. To achieve this, it is necessary to per-
form a local Lorentz gauge transformation as well as a lo-
cal translation. ]

Once 8'(x) is chosen as in (2.34), the form of the orbit
X"(~) becomes fixed by the requirement that the Poin-
care coordinate q'(r) vanishes, i.e., in the "unitary, "
physical gauge. From (2.32) and (2.34) it follows that

8'( X(~))=P' f dr'N(~') e'I,—tI (2.36a)

X'(v) =P' f dw'N(r')+X',

p, (~)=P,e'I, A", (2.31)
so that

X(t)=+vt+X', (2.38)
while the Poincare coordinate becomes, from (2.16) and
(2.27),

q'(~)=(A ')'&[P,e' f d~'N(~')+q"+e, 8'(X(r))] .

(2.32)

Lastly the Lagrange multiplier multiplet q reads, accord-
ing to (2.12) and (2.29),

g, (x)=p, 2mGe[o' —X(t)]+[il, r13e,&8"(x)]—, (2.33a)

i}2(x)= —p, [tI'+ e'i, 8 (x) ]2mGe[cr X(t)]—
+ [rt2 rt, e'1,8 (x) —,'rt38'(x)8, (x—)]—,

i}3(x)=i}3 .

(2.33b)

(2.33c)

A geometrical solution is exposed in the unitary gauge
q'=0 and also requires that 8„8' be nonsingular. These
two conditions give through (2.32) two equations, which
determine the function N(r) and the trajectory X(r) We.
show in an example how this works.

While we require that e„'=8„8'be nonsingular, there
still remains great freedom in fixing its form, i.e., of
selecting 8'. A natural choice is e„'=5&, refiecting the
fact that R =0 and the space-time is fiat. (Of course any
form for 8' gives a zweibein that describes Sat space-
time. ) Hence we take

where v = ~P'/P
~

~1 and we see that the particle is free.
Thus all aspects of the problem now attain an explicit

analytic and geometric description. Notice that by virtue
of (2.36a), where the condition is stated that the Poincare
coordinate vanishes after the gauge transformation, the
Poincare coordinate before the gauge transformation
(2.27) has the same form as the particle path (apart from
an e twist).

The two-particle problem does not provide any new
structure. Upon introducing an action such as (2.14} for
each particle, we find that there is no interaction between
the particles. We shall see that in the quantum theory
the same physics holds.

III. QUANTI&ATION

We quantize I +I using symplectic methods ap-

propriate to first-order Lagrangians [11]and we solve the
constraints as in vector gauge theories. In the matter ac-
tion, we choose the parametrization X (r)=r, so that
there is a common time t—:xo for both the gravity and
matter Lagrange densities, which may be taken as

1
[ihe &+g2dii+g3ai j +eoG, +cooG2+aoG3

4m 6

+ p, q'+p, e'b(q e3, —e", }X ,'N(p'p, +m )——
8'(x}=x'

and therefore

a ga

(2.34}

X5(cr —X},

(2 35a) where the Gauss constraints G„read

(3.1}

VQp= 2E~+

(2.35b)

(2.35c}

1
Gg = (7jg+ pYe/ye3i+Y}3egsei )+eg Py5(lT X)

4m 6
(3.2a)
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1Gz= —G = {qz+ri,e'be, ) —q's, pb5(o —X),

16=—6=
4mG

(3.2b)

(3.2c)

We remind that the fields are functions of t and x'=o.
The particle variables p„q', and X—:X' are functions

I

only of t. The overdot and prime denote, respectively,
difFerentiation with respect to t and cr.

From (3.1} we see that the field "coordinates" are
(e &,co„a, ), while their conjugate "momenta" are, respec-
tively, [—I/(4mG)](ri„q2, g3). Also, p, is conjugate to
the Poincare coordinate q'. So that X possesses a conju-
gate momentum, we call II the coeificient of X in (3.1),
and enforce that definition with another Lagrange multi-
plier u. Thus the Lagrange density that we quantize is

( ir, e&+gzb&+ ird3& )+(p,q'+IIX)5(o' —X)+eoG, +cooG2+aoG3
4m.6
—

[ ,'N(p—'p, +rn )+@[II p, e—'b(q a), e, )—]]5(o—X) . (3.3)

The algebra of constraints re8ects the algebraic under-
pinnings of the theory. The four Gauss law generators
reproduce the Lie algebra (2.1). The nonvanishing com-
mutators are, as expected,

[G,(a)&Gb(a')]=ie~bG, (a )5(cr o)—,

[G,(cr), Gz(cr')]=is, Gb(o )5(o cr') . —
(3.4a)

(3.4b)

(In fact the above commutators, valid for any coupling
constant 4~6, hold separately for the gravity part and for
the matter part of G„.) Moreover the mass shell con-
straint (enforced by N) and the momentum constraint
(enforced by u} commute with G„and with each other.
Thus all the constraints are first class and can be imposed
as conditions on physical quantum states. This we now
proceed to do, to begin with in the next section just for
the gravity portion and then, in the following section, for
the combined gravity-particle system.

IV. GRAVITATIONAL STATES

In this section, we delete the matter (particle} variables
and discuss the quantum states of pure gravity [5,6].
From (3.3) it is seen that the Hamiltonian density consists
solely of the Gauss constraints G„=(G„G2,63) en-
forced by Ac =(eo, coo, ao). Since the algebra (3.4) shows
the constraints to be first class, they may be imposed on
states, and the quantum theory has no further structure.
Before imposing the Gauss law constraints, let us first
discuss in greater detail how gauge transformations act in
the quantum theory.

Examining the explicit expressions for the Gz, we
recognize that they generate by commutation the

I

relevant gauge transformations on the dynamical vari-
ables, i.e., the infinitesimal forms of (2.9) and (2.12).
However, we further note that whereas the full genera-
tors are needed to implement the gauge transformation
on the "coordinates" A,"=(ef,co&,a, ), the derivative
parts of generators ~ (g,', riz, ri3} commute with the "mo-
ments" ri„~ (ri„g2, g3) and are not needed for effecting
the gauge transformation on the "moments. " (This, of
course, merely refiects the circumstance that the "coordi-
nates" are connections, which experience inhomogeneous
gauge transformations, while the "momenta" transform
covariantly. )

A consequence of this difference emerges when we con-
sider, before enforcing the Gauss law, quantum states in
the Schrodinger representation as functionals either of
the "coordinates" or the "momenta. " Let us act on such
functionals with the unitary operator Q that implements
a finite gauge transformation U:

5'=exp(i f dcr8'G, )exp(i f do'aG2}exp(i f doPG3}

(4.1)

Acting on functionals of "coordinates" (i.e., connections
A &" ), '9 gauge transforms the argument of the function-
al. However, when '9 acts on functionals of "moments"
(i.e., Lagrange multipliers g„), in addition to a gauge
transformation on the argument of the functional, there
arises a multiplicative phase. This can also be seen from
the Fourier transform relation between functionals of
"coordinates" 4( A

&
) and functionals of "moments"

%(~) [12]:

%'( ri )=f 2)A
&
exp — f d o ( g, A, ) 4( A

& ), (4.2)

'iV '%(ri)= JXlA, exp — f do. (g, A, ) R '@(A))

=exp ' f (gdUU ') f NAexp fdo(g, UA, U ') 4(A, )

=exp f (ri, dUU ') %{gU) .
L

{4.3)
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Of course, the Gauss law demands that physical states
be annihilated by the generators Gz and left invariant by

Thus, states in the "coordinate" representation are
gauge invariant, while those in the "momentum*' repre-
sentation are gauge invariant up to a phase; i.e., they
satisfy, according to (4.3),

%(g )=exp — f (ri, dUU ') %'(g) . (4.4)
4mG

It turns out to be more convenient to work in the
"momentum" representation, so we seek functionals that
obey (4.4), with ri given in (2.12). Such functionals are
readily constructed by satisfying the infinitesimal version
of (4.4}, i.e., by solving the constraint that Gauss genera-
tors (3.2) annihilate physical states:

Cartan-Killing metric; otherwise, for example, in our ex-
tended Poincare group, we use another metric, as in
(2.2).] When the group generators Q are defined to be
Q=g 'Kg, one finds that their Poisson brackets, as
determined by the above one-form and by the symplectic
two-form d(K, dg g ') =(K,dg g 'dg g '), reproduce
the Lie algebra. The two-form is the Kirillov-Kostant
symplectic two-form, and we similarly name the one-
form. (This one-form in general is well defined only local-
ly. )

We now show that 0 is precisely

[
—1/(4n G)]f (K,dgg '), where K is any fixed ele-

ment in the maximal Abelian subalgebra spanned by the
generators J,I of the extended Poincare group and g is
identified with

ri,'(o )+i4mGe, gb(e)
5ri2 o

+i 4m Gri3(o }e,b 'P(ri) =0,5'
5rib o

(4.5a)

g=g 'leg . (4.9)

We require that under a gauge transformation U, E is in-
variant while g transforms as g ~g =gU, so that
q~gU= U 'gU. It follows that

(K,dg g ') ~(K,dg g '+gdUU 'g ')
re(o )+i 4m Gri, (o }e'b %(g)=0,

5qb o

ri3(o )%(ri)=0 .

The solution to these equations is

%(ri) =5(ri3)5( [ri'ri, —2ri2g3]')e'"g,

(4.5b)

(4.5c)

(4.6)

Hence

=(K,dg g ')+(g 'Kg, dUU ')
=(K,dgg ')+(ri, dUU ') . (4.10)

(4.7)

The only gauge noninvariant portion of (4.6) is its phase,
and one easily confirms that under the gauge transforma-
tion (2.12), (4.4} is true. The phase may be reexpressed by
noting that g3 is an invariant, only whose constant part
survives in (4.6); call it A, . Thus physical no-particle
states are described by states of the form

ql-exp f e' ri, drib p(M, A, ),
8mGA,

(4.8)

where p depends in an arbitrary fashion on the constant
parts of the invariants g'g, —2gzg3 and g3, and the phase
0 is given by

%(g) ~ exp — f (K,dg g ') g(M, iL) (4.11)
4m 6

transforms as required by (4.4) with K = —M+(M/2A, )I
and g =exp(ri, e' Pb/A, ). Notice that g is defined in (4.9)
only up to a left multiplication by a element h in the rnax-
imal Abelian subgroup. By replacing g with hg the phase
is shifted by the boundary term (i /4n G )f—d (K, lnh ),
which may induce topological efFects.

Explicit evaluation, when U is given as in (2.8),
confirms the above, and g, parametrizes the two-
dimensional (co)adjoint orbit of the group; indeed the g,
are just the Darboux (canonical) coordinates on the re-
duced phase space [13].

where M is the constant part of the invariant

g, q' —2g2g3. When reference is made to the geometrical
formulation of the model, e.g., (1.3), it is established that
A, is just the cosmological constant. In the gauge theory,
this is not a parameter, but a possible value of a dynami-
cal variable [3,4]. Also M plays the role of the "black
hole" mass in the classical solution [1,2]; in the quantized
gauge theory it too is a variable.

The phase (4.7) has the following group theoretical
significance.

It is known that the Lie algebra for a group can be ob-
tained from the canonical one-form (K,dg g '). Here
K is a constant element of the Lie algebra, g a group ele-
ment and (, ) defines an invariant inner product on the
Lie algebra. [For semisimple groups this would be the

V. %'AVE FUNCj. lONALS IN
THE PRESENCE OF MATTER

In this section we extend the results of Sec. IV, by in-
cluding matter degrees of freedom, to begin with a single
point particle. We remain with the "momentum" repre-
sentation for the gravity variables, but describe the parti-
cle by position variables, so the state is a functional of g„
and a function of q' and X, while p, and II are realized

by dilerentiation. The gauge transformation generators
now include a matter contribution j„,and their exponen-
tial acting on arbitrary functionals again gauge trans-
forms the argument, and multiplies the wave functional
with the same phase as in (4.3}:
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~-&q(&,q, X)= p
' J (q, dUU '-) e(q', q', X) . e(q', q', X)=exp — I (ridUU ') 'p(n q.».

(5.1)

Thus application of the Gauss law, which requires the left
side of (5.1) to be %(g,q,X), constrains the wave func-
tional to satisfy

(5.2}

Once again solving this constraint is best accomplished
from its in5nitesimal version. We impose the require-
ment that the Gauss law generators annihilate the state.
The resultant difFerential equations are as in (4.5), except
the right sides now contain matter contributions:

ri,'(o )+i4mGe, qb(o) '+i4mGri3(o )e,b %(ri, q, X}= 4nG—5(o'X')e,— b%' {riq, X},
5'~(o )

'
5rib o ' iaqb

(5.3a)

re(o)+i4nGri, (o )e'b %(ri, q, X)=4mG5(cr X)—q'e, %'{ riq, X},
tabb tT

' iaqb

ri'3(o )%(ri, q, X}=0.

(5.3b}

(5.3c)

Equations (5.3a}and (5.3c) are solved by

ql(g, q,X)=e'n5(ri3)4(ri, ri' 2ri2—g3, k, ,p,X), (5.4)

p'=q'+g'(X)/g3(X) . {5.5)

where the phase is given as before by (4.7) and p is
de5ned by

Note that p responds only to the Lorentz rotation part of
a general gauge transformation. Hence (5.6} is a gauge
invariant equation, and so also is (5.3c}.

Solving (5.6) is accomplished by diagonalizing the
operator p'e, 5/i dp so that it acquires the [continuous]
eigenvalue v:

By virtue of (5.3c) and the functional 5 function in (5.4),
ri3 is the constant A,.

Imposing the remaining constraint (5.3b) leads to the
following equation for 4:

A

l P'
(5.7)

(ri'ri, —2ri2r)3)'(o )+8m GA5(o X)p'e, —
b

4=0 .
l P'

(5.6)

This fixes the "angular" p dependence of 4 and then (5.6}
is solved by a functional 5 function that evaluates
q'q, —2g2g3, leaving still undetermined an arbitrary
gauge invariant function ofp,p' and X:

P +P
' iv/2

+(ri,p,X)=e' 5(ri3)5[(ri ri~ 2ri2ri3 }'+8—n GAv5{o' X)] —0, p„(M, A,p'p„X, )
.
p'-p' .

(5.8)

[11+co,(X)q e, pb+p, e'be, (X)]4=0 . (5.9a)

Since 4 satisfies the translational constraint {5.3a),
e

&
{X)'p may be evaluated from that equation, whereupon

{5.9a}becomes

r4'(X)
II— p'+co, (X)p'e, p 4=0 .

ri3 X (5.9b)

where M is the constant part of the invariant

gg 2/2/3 ~

It now remains to solve the momentum and mass shell
constraints. We consider Srst the former —as will be
seen it does not lead to any new structure, but merely
eliminates the Xdependence of rP. That constraint reads

Next moving the phase and the functional 5 functions
that are present in %' across the operator in (5.9b) and
evaluating p'e, 5/imp on its eigenvalue v exposes the
nontrivial content of the momentum constraint, as a
differential equation for g„(M,A, ,p'p„X):

ri,'(X) 5 pa+ p
~

l ax X lap' p' —p'

Xf„(M,A, p p,X)=0 . . (5.9c)

Since p' depends on X through its definition (5.5} [with
7)3(X)=A, ], we see that (5.9c) merely states that g„has no
explicit Xdependence. Thus the one-particle gravitation-
al state is described by the functional
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+(g, q, X)=exp ' f e"g.dg& 5()i13)5[(g g 2gpg3)'+8~G&v5(c —X)]

(5.10a)

l 0+ 1

exp —f d o v5(cr —X )ln
2

' &V/2

X 0 ) $„(M,A,,P p, }
p p

with the gauge-invariant function g to be determined by the mass shell constraint. Note that [(p +p')/(p —p')]'"
may also be presented as

and by virtue of the second 5 function, we can replace v5(a —X) by —[1/(8mGA, )](ri'rl, —2g2g3)'. Therefore after an
integration by parts, the exponential reads

exp f ('ri '0 2 Vpl3)'e bp dp

where p is p'/p. Hence the following expression is equivalent to (5.10a):

I,
)lr(g, q,X)=exp f [e'"rt, drib (rl'ri, —2q2q—3)e,bp dp ]

X 5(g3)5[(rt'ri, 2rt2q—3)'+ 8m G')(,v5(cr X))g„(M—, )(,,p'p, ) . (5.10b)

The last constraint is enforced by N in Eq. (3.3):

a

Bp
+m' 9=0, (5.11)

and with the diagonalization (5.7) it implies a second or-
der difFerential equation for 1'„:

'2 '2
d~ 1 d m 1 v 1+— ———+ — —g„(z)=0 .
dz z dz 2 z 2 z

I,„(m Qp'p, ,

f„(M,A, P'p, ) ~ ',
I(.;„(m p'p, ) .

(5.13)

They differ in their asymptotic behavior: for large posi-
tive value of p'p„ the function I;„diverges exponentially
while K;„decays exponentially. We saw in Sec. II that
the classical solution does not specify the classical path
until the physical gauge q'=0 is chosen. Alternatively
with q'%0, but in the nonsingular gauge where e„'%0,
one may identify the classical trajectory with —e'bq .

l

(5.12)
The two linearly independent solutions are Bessel func-
tions of the second type:

Since the quantal wave function depends on
p'=q'+g'/A, , we may interpret p'p, as X t . The-
physical requirement that wave functions do not diverge
at large distance would then disallow the I;„solution.
This point, as well as the similarity of the quantal
description to a free particle in 1+1 dimensions, are de-
tailed in the Appendix.

Let us briefly comment on the case of several matter
particles. We add in the action one interaction term
(2.14) per particle. The diFerent masses, trajectories and
momenta are labeled by an index: m(„), X(„), II(„). We
also introduce a Poincare coordinate q('„) (and the corre-
sponding momentum p,(")} per particle. [Alternatively,
we can view q' as a function of space-time, which enters
in this system only through its value on the trajectories,
q'(t, X(„))—=q(„)(t). In the case of field theory, the com-
plete function q'(t, cr ) would appear [4].] Notice that no
specific nongravitational interaction between the particles
has been considered.

The Gauss laws (5.3a) and (5.3b) have now on the right
side a sum of 5 functions peaked on the diFerent trajec-
tories and we obtain one momentum constraint (5.9a) and
one mass-shell constraint (5.11) for each particle. The
physical state for several particles thus "factorizes" and
1s

%(p,q(„),X(„)) =exp e' g, drab 5(&3)5 (g'ri, —2g2g3)'+8m GA, g v(„)5(o —X(„))
8m.GA,

0 ] tv( )/2
P(n)+P(n)

() ) I( iv(„)( (n) (/ P(n)pa(n)
n P(n) P(n)

p('„)=q(„)+rl'(X(„) )/A, ,
(5.14)



QUALM STATES OF STRING-INSPIRED LINEAL GRAVITY 3921

which indicates that there is no- interaction between the
particles.

PHY-89-15286, and by the Swiss National Science Foun-
dation {D.C.}.

VI. DISCUSSIQN APPENDIX

Our quantization procedure does not give evidence of
any gravitational force between the matter particles mov-
ing on a line. We believe that this conclusion cannot be
avoided, as long as gauge invariance is maintained. The
possibility of "not . . . unique quantization of dilaton
gravity" [7] is eliminated by the gauge principle.

Let us however call attention to a subtle effect, that is
not apparent in what has been done above, but may be
relevant in other situations. The effect that we wish to
discuss is most readily seen in the gauge ri, =0. When
this gauge is elected, the wave function simplifies to

5( ri'3)5[ri2 4n—G A v5(cr X—) ]
' iv/2q'+q'

X 0 &
X;„(m+q'q ),

q0 ql

the translational gauge freedom generated by 6, is fixed,
but one must also take into account the nontrivial nature
of the [G,(o ), rib(cr')] bracket, which is
i e,&ri3(cr )5(cr cr'). —Since ln det[G„rib ] is effectively
25(0)fdcr Ing3(cr), the wave functional possesses a fur-

ther factor exp( 5(0)f—do Inri3(cr)). In our case this
factor is invisible because r}3 is, according to (5.3c), the
constant A, , and the factor is an irrelevant constant. Con-
stancy of ri3, in the presence of matter, is a consequence
of the absence of a matter coupling to a„; viz. j3 van-
ishes. However, as we have remarked already, it is possi-
ble to introduce a nonminimal matter gravity interaction
Sa„X",which changes ri3{cr} to A, +2n GSe(cr —X). The
finite part of fd rien i r( 3r)cmay be evaluated by first

differentiating with respect to X:

In this Appendix we present a quantal description for
the free motion of a relativistic particle in (1+1)-
dimensional space-time. Our purpose is to exhibit in this
familiar context formulas identical to those in the body of
the paper derived from "string-inspired" gravity.

The Lagrangian is

L = —II "——(IPII —m ) .~ N 2
particle 2 P (Al)

It contains the mass-shell constraint and is parametriza-
tion invariant. One may quantize in a parametrization
invariant fashion, imposing the constraint on covariant
wave functions with II„replaced by Glib". In this way
one is led to the equation

(CI+m )f(X)=0 . (A2)

Since the Lorentz generator in this theory, At =X"e„"II„,
commutes with the mass-shell constraint, it may be addi-
tionally imposed:

X"e ' f(X)=—vg(X} .a
" idX

(A3}

Clearly (Al) and (A2) are identical with (5.11) and (5.7);
they possess the solution (5.13} with X" identified with

An alternative point of view, within which one may
also justify the selection of the K-Bessel solution over the
I-Bessel solution, is provided by solving the constraint
first and choosing the parametrization X (r)=r. We
then have

11,=+112+m'
f dcr lnr}3(cr)= —J 4nG$5(o X)—

r}3(cr)

4nGS.
and

Lp, ,), IIX +II +m- (A4)

where X =t, X'=—X, IIl=—II, with X and II carrying a t
dependence. We are not interested in energy eigenstates.
Rather we seek to diagonalize the Lorentz generator,
which in the parametrized formalism reads

A= —tll+X't/II +m (A5)

Solution of the Lorentz eigenvalue problem in X space
is difBcult owing to the nonlocality of the energy opera-
tor. Therefore we introduce the momentum-space wave
functions cp(t,p ) and impose the symmetrized version of
(A5) as a eigenvalue condition:
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and we conclude that the wave function acquires the
singular factor exp([5(0)/A, ]4m GSX). [In fact the same
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tp+ — +p +m + ~ —p +m — q„=—vy„.—'a 2 2 -'2 2—'a
2 Bp 2 Bp

(A6}

The solution of this first order differential equation is
QQlque:
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2 (p+Vp +m )'"
y„(t,p) =exp( —it V p +m )

(p 2+ m 2)1/4

where a normalization constant is fixed by

(A7) 5(v —v')= —f dX[f&(t,X)g (t,X)

g—~(t,X)P„(t,X)) (A10)

q&~(t,p)q& (t,p) =5(v v—') .dp
(A8)

We wish to compare this with the solution within the
parametrization-independent formalism. To that end,
define the transform

f„(t,X)=f, y„(t,p) . (A9)
( 2+m 2)1/4

The reason for the additional factor of (p +rn )
'/ in

the measure is understood as follows. If g„(t,X) is to be
identified with the parametrization-independent solution,
it should satisfy the Klein-Gordon equation, and indeed
the function g„ in (A9) does so, since the time dependence
of q&„ is exp( —it V p +m ). Klein-Gordon solutions are
normalized by

and this is seen to require the measure as in (A9) when y
is normalized by (A8).

Carrying out the integration in (A9) gives
' iv/2

IV

y ( X)= *" ' K ( V'X' —t')
X —t

(A 1 1)

with the upper [lower] sign if (X t) &—0[(X t) —&0].
Thus we arrive unambiguously at the solution that is well
behaved in spacelike directions, and in this way motivate
the choice made in the text of discarding the I solution.

Finally we remark that the addition of the nonminimal
Sa„X"interaction to the quantum Seld theory results in
a wave functional that coincides, apart from the previ-
ously mentioned singular factor, with the wave function
of a particle moving in an external electric Seld 8, in Sat
(1+1)-dimensional space-time.
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